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Abstract— Load forecasting of energy demand is usually
focused on mean values in related statistical models and ignores
rare peak events. This paper provides Extreme Value Theory
analysis of the peak events in electrical power load demand.
It estimates risk of the peak events by combining forecast of
the mean with extreme value modeling of distribution tail. The
approach is demonstrated for electric load demand data for
a US utility. The problem is to find the forecast margins that
keep the risk of demand exceeding forecast plus the margin to
one event per year. The long tail model of the peak events is
more accurate and yields 50% larger margin compared to the
normal distribution model. These results show that the long
tail behavior of the forecast errors must be taken into account
when trying to keep outage risk low.

I. INTRODUCTION

Forecasting and management of peak loads is the key to
energy efficiency of the power grid and to carbon reduction
through renewables. To accommodate for the peak loads,
current power grid capacity is three times larger than the
average load. The technological and operational changes
introduced by the non-traditional generation and distribution
increase the load-power balance variability and the risk of
large forecast errors.

The load demand substantially exceeding the scheduled
supply might lead to an outage. Utilities must schedule
supply a day in advance in the electric power markets.
The forecasted supply must take into account the risk of
exceeding the day-ahead schedule, e.g., see [1], [2]. This
paper is focused on forecast adjustment needed to control
the risk. The underlying models are trained on historical data.
This simplifies practical application of the approach.

Practical load forecasting is usually focused on mean
values and relies on least squares or other related statistical
methods for fitting predictive models to the historical data. In
research literature, several machine learning techniques, such
as neural networks, have been tried to forecast the power load
[5], [7]. Other techniques used in the literature, including
[6], [7], involve versions of ARMAX (auto-regressive mov-
ing average with exogenous inputs) model. The mentioned
forecasting approaches are based on least squares model
fit, which implies normal distribution of the forecast errors.
They forecast the distribution mean and they do not address
outliers. The training data outliers that do not follow the
normal distribution for the model errors can bias the model.
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To make the fitted model more accurate, robust statistics
approaches could be used in order to eliminate outliers from
skewing the model fit to the bulk of the data [9]. This can
be done in different ways. One technique is the Huber re-
gression [10], which is a convex optimization approach with
greatly reduced outlier sensitivity compared to standard least
squares regression. Another technique, which we apply in
this paper, is robust statistics update that iteratively removes
outliers until convergence is reached [11].

In the day ahead forecast, the outliers create the risk of
exceedingly large forecasting errors that could require the
utility to buy the missing supply at very high spot prices
or, ultimately, to disconnect a part of the customers. The
large forecast errors can be described through tail distribution
models. The branch of statistics describing rare peak events
and the tails of the probability distributions is known as
extreme value theory (EVT), see [12]. According to EVT,
the distribution tails are often long, follow power laws and
decay much slower than the normal distribution. With long
tails, the extreme event risk is much higher than would be
expected from a normal distribution model.

The risk can be estimated from the past data by combining
the forecast of the mean with modeling of the peaks as
extreme value forecast errors. To the authors’ best knowl-
edge, this has not been done earlier for power load data.
In recent paper [13], the long tail distribution is used to
analyze the exceedances of the power load demand, but not
in conjunction with forecasting.

Finance and actuarial science have many needs for the
estimation of risk. For instance, in finance there is interest
in forecasting the risk associated with lending money to
consumers based on credit [4]. Actuarial applications, such
as insurance, involve looking at the long tail distributions of
losses [3]. Both finance and actuarial applications are related
to this work.

The contributions of this paper are as follows. First,
this paper addresses the gap in the power load forecasting
literature by developing a method that combines the forecast
of the mean with modeling of the distribution tail to evaluate
the peak event risk. A robust estimation approach is used for
building a regression model for the mean forecast. The tail
distribution for the deviation from the mean is modeled in
accordance with EVT as Pareto Distribution (power law) that
decays much slower than the normal distribution.

Second, the paper applies the developed method to fore-
casting of energy load demand using IEEE data set for a
US utility, see [15]. We formulate a linear regression model
of the hourly load demand with 58 nonlinear regressors that
depend on temperature, load values, and time. We fit a long
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tail model of the peaks to the data for modeling the risk of
extreme deviation from the regression forecast.

Third, the paper presents the results of applying the
developed model to the risk adjusted power load forecasting.
We show that when the long tails are taken into account, the
risk of extreme events, such as unusually high loads leading
to power outages, is much higher than with models based on
normal distribution. Taking the long tails into account, load
forecast margins might need to be larger by as much as 50%
compared to the normal distribution model.

II. GENERAL PROBLEM FORMULATION

We will start by formulating the problem in general terms.
The following sections apply this general formulation to the
power load data forecasting. We use log power for forecast-
ing, hence, the Pareto distribution (power law) distribution
of the tails becomes exponential distribution.

A. Main Problem

We consider a dataset

D = {Xi, yi}Ni=1, (1)

where scalars yi are dependent variables (the load) and
vectors Xi ∈ <n are explanatory variables (regressors).
Index i describes the time sample and N is the number of
samples available.

The forecasting model assumes that data (1) was gener-
ated by an underlying conditional distribution with known
parametric form

y ∼ p(θ|X) (2)

The forecasting problem is then to estimate distribution
(2) (parameter θ) from data (1) and compute a risk adjusted
forecast ym = φ(θ, r,X) such that

P (y > φ(θ, r,X)) = r, (3)

We will call r the exceedance risk probability or just ‘risk’.
This paper considers a model of distribution (2) that is a

mixture of a normal distribution, with probability 1− q, and
an exponential distribution with probability q

y = βTX + (1− z)vn + zve, (4)
z ∼ B(1, q), (5)
vn ∼ N(0, σ2), (6)
ve ∼ Exp(λ), (7)

where B(1, q) is the binomial distribution with {0, 1} out-
comes, β ∈ <n is regression parameter vector, σ is the
standard deviation of the normal distribution, and λ is the
rate parameter of the exponential distribution.

Exponential Gaussian mixture distribution (4)–(7) de-
scribes p(θ|X) in (2) with parameter vector θ =
col{β, σ, q, λ}. Distribution (4)–(7) models both the normal
and tail behavior of observed data. Section III of this paper
discusses how the electric load forecasting problem could be
described by the model (4)–(7).

In what follows, we assume that the tail intensity q is a
small parameter, q � 1. Then, for v = y − βTX small,
we approximately have v ∼ N (central distribution (6)).
For v large, the exponent dominates the gaussian and we
approximately have v ∼ Exp (tail distribution (7)). The
described approximations separately consider the central and
the tail distribution parts and are the basis of the proposed
approach to estimating distribution (2). Subsection IV-C
discusses how the risk adjusted forecast ym = φ(θ, r,X)
in (3) can be computed from the estimated model.

B. Estimating Mean

For a moment, let us assume zero tail intensity, q = 0.
With q � 1, this approximation closely holds in the central
part of the distribution (4)–(7). Consider a subset of the data
points belonging to the central part of the distribution

C = {j1, . . . , jK} (8)

In that case, we need to estimate the model y ∼
N(βTX,σ2) from data (1). By introducing data matrices

ȳC = [yj1 . . . yjK ] ∈ <1,K (9)
X̄C = [Xj1 . . . XjK ] ∈ <n,K (10)

the well known Maximum Likelihood Estimates (MLE) for
regression parameter vector β and standard deviation σ are

β̂ = (X̄CX̄
T
C )−1X̄C ȳ

T
C (11)

σ̂ = K−
1
2 ‖ȳC − β̂T X̄C‖2 (12)

where ‖·‖2 is the Euclidean norm of a vector. The regression
parameter estimates (11), (12) depend on the data subset (8).

The mean forecast ŷ can be computed from the estimated
regression parameter. For a given regressor vector X , the
mean forecast is

ŷ = β̂TX (13)

The described regression model and the forecast (13) are
how the forecasting is done in most of the existing literature
on time series forecasting in general and power load in
particular. The regressor choices may vary. The described
forecasting approach is oriented towards the mean load and
does not specify the risk that actual load will exceed the
forecasted value.

C. Estimating Tail

As discussed in Section II-A, for large v = y− βTX , the
exponential (long tail) distribution ve dominates the normal
distribution vn. To model the tail, we consider a subset of
the data points T that belong to the tail.

T = {j1, . . . , jM} (14)

Selecting the subset DT is discussed in Section IV-B.
Our approach to modeling the tail, follows the Peaks Over

Threshold Method of EVT, see [12], in spirit. Consider the
exceedance data set

T = {j : yj − βTXj > a}, (15)
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where a is the exceedance threshold.
In accordance with (4), y− βTX = (1− z)vn + zve. For

a high enough, the probability of vn > a is much lower
than the probability of ve > a. Therefore, it is a reasonable
approximation to assume that for each j ∈ T , we have
zj = 1 and yj − βTXj = ve,j . Since ve ∼ exp in (7), the
exceedances ve,j−a follow the same exponential distribution.

The above reasoning suggests that an MLE estimate of λ
from the data samples T is given by

λ̂ =

 1

M

∑
j∈T

(yj − βTXj − a)

−1 , (16)

where M = card T is the cardinality of (number of unique
elements in) the set T . In the special case of βTXj = 0,
y = logL, and a = minj∈T yj , the MLE estimate (16)
yields the well-known Hill’s estimator described in [12].

Once the estimate of λ is available, q in (4) can be
estimated from the survival function of the tail distribution

F (m; θ) = P (y − βTX > m) ≈ qe−λm, (17)

This formula is approximate because it ignores the tail of
the central (normal) distribution. It is obtained by integrating
distribution density (7) from m to infinity. With N total data
points, and M points where yj−β̂TXj exceeds the threshold
a, we can estimate F (m; θ) as M/N . By substituting this
estimate into (17), given λ̂, we can estimate q as

q̂ =
M

N
eλ̂a (18)

The proposed long tail model can be used for estimation
and control of the outage risk. As a baseline for comparison,
we will also consider risk modeling through the tail of
normal distribution (6) by assuming q = 0 in (4). Similar
to (17), the tail of the normal distribution can be described
by a survival function Fn(m; θ) = P (y − βTX > m)

Fn(m; θ) =
1

2
− 1

2
erf

m√
2σ
, (19)

where erf is the Error Function. The normal distribution is a
special case of (4) with q = 0 and any λ; therefore, in (19)
we have θ = col{β, σ, 0, 0}. The tail of normal distribution
is commonly used for Value At Risk modeling in finance.

III. POWER LOAD FORECASTING PROBLEM

We used data set from [15]. It includes hourly loads and
ambient temperature data for an anonymous US utility. The
data in the set are for 20 zones served by the utility. The
methodology described above was applied to the aggregate
load across all these zones. The range of the aggregate load is
0.8 to 3.2GW, with the average value being 1.6GW. The data
covers a time range of approximately 4 years with sampling
interval of one hour. Figure 1 shows a 601-hour segment of
the 38,070 hour aggregated load data set.

A. Linear Regression Forecast Model

Let L(t) be the load demand at time sample t. The data
is sampled every hour and t is the number of hours elapsed
since the start of the data collection. We use logarithmic load,
normalized by L0 =1GW, as dependent variable y

yt = log(L(t)/L0), (20)

The regressor set that we use in the forecasting model is
a modified version of the regressors described in [14]. The
regressors can be described as follows

Xt = [1, t,DD(t), C(t), HOL(t), L(t− 24)/L0]T (21)

The 58 components of the regressors vector Xt are

DD(t) = [HDD(t), CDD(t)] (22)
C(t) = [D(t),M(t), H(t)] (23)

HOL(t) = [CH(t), CH1(t), PP (t)] (24)
HDD(t) = [HDD0(t), ...,HDD5(t)] (25)
CDD(t) = [CDD0(t), ..., CDD5(t)] (26)
HDDi(t) = max{Fref (t)− Fi(t), 0} (27)
CDDi(t) = max{Fi(t)− Fref (t), 0} (28)

The regressors are defined as follows:
Regressors Fi(t) in (27) and (28) have the meaning of

average temperatures over the previous 2i−1 hours, for i =
1, ..., 5, and for the current hour, i = 0. More precisely

Fi(t) =


Ftemp(t) i = 0
Ftemp(t− 1) i = 1

1
2i−1

∑t−2i−1

j=t−2i+1 Ftemp(j) i = 2, ..., 5

,

(29)
where Ftemp(t) is the ambient temperature in degrees F at
time t. We take Ftemp(t) = 0 for t < 0. Using (29) reduces
the number of regressors by averaging contributions of
increasingly dated inputs Ftemp(t) over increasingly longer
intervals.

Regressors HDDi(t) in (27) and CDDi(t) in (28) are
known as the heating and cooling degree days, respectively.
Fref is the reference temperature where the temperature
influence in minimized. To find Fref , a cubic polynomial
is fitted to load demand data taken vs temperature. The
minimum of this polynomial is acieved at Fref , see [14].

Regressor D(t) is a vector with components Di(t). Index
i is the day of the week and t is the hour. One day is left
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Fig. 1. Aggregate load value (GW) for a 601 hour interval.
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out as a baseline and i = 1, ..., 6; Di(t) = 1 if hour t is in
day i and 0 otherwise.

Regressor vector M(t) has components Mi(t), (i =
1, ..., 11), where i is the month number. One month is left
out; Mi(t) = 1 if hour t is in month i and 0 otherwise.

Regressor vector H(t) has components Hi(t), (i =
1, ..., 23), where i is the hour of the day. One hour has been
left out.

Hi(t) =

{
1 if t mod 24 = i
0 otherwise (30)

The regressors in (24) are: CH(t) = 1 if hour t is in a
fixed holiday (e.g. Christmas, Independence Day, etc.) and 0
otherwise; CH1(t) = 1 if hour t is in the day after a fixed
holiday and 0 otherwise; PP (t) = 1 if hour t is in the last
day of the year and 0 otherwise.

Regressor L(t − 24) is the energy load a day before
the prediction time; we assume that L(t) = 0 for t < 0.
Using L(t − 24) and assuming that an accurate 24-hour-
ahead forecast of ambient temperature Ftemp(t) is available
provides the day ahead forecasting.

B. Outage Risk

The outage risk r in (3) is a small probability parameter.
A more meaningful interpretation of r follows by relating it
to nout, the expected number of outliers (outages) that will
occur in a year time frame.

In our probabilistic model, the residuals yt−βTXt are in-
dependent and identically distributed. Therefore the expected
number of outliers can be computed as

nout = r ×Nh, (31)

where Nh = 8760 is the number of hours in a year. In the
power load data set example, we assume nout = 1, i.e., one
outage per year, and get the risk parameter r = 1.14 · 10−4.

IV. ALGORITHM

This section presents an algorithm for estimating param-
eters of the mixture model (4)–(7) from data (1) and for
computing the risk adjusted forecast (3). The algorithms are
illustrated by applying them to the logarithmic power load
data set described in the previous section.

The algorithms outlined here start from the central (nor-
mal) part of the data. We use a robust statistics approach for
fitting a model to the data while ignoring outliers. After the
central part of the distribution is fitted, the tail model is fitted
to the threshold exceedance data.

A. Robust Regression Estimation

Method for implementing linear regression that mitigates
effect of outliers is an iterative approach. We initialize (8)
to C = {1, . . . , N}. At each algorithm iteration, the model
fit parameters β̂, σ̂ are computed from (8)–(12). Then, the
set C (8) is updated by rejecting the model fit outliers as
C = {t : |yt− β̂TXt| ≤ c · σ̂}. The iterations have converged
when the set C stops changing.

The described robust regression estimation algorithm was
applied to the logarithmic power load data set described in

the previous section. Figure 2 shows the distribution of the
residuals vi = yi − β̂TXi obtained after fitting the linear
regression described in the previous section. The estimated
58-component regression parameter vector β̂ is not presented
here because of the space limitations. The estimated standard
deviation is σ̂ = 0.0584 and describes the width of the bell-
shaped curve in the histogram of Figure 2.
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Fig. 2. Histogram of residuals for the robust regression fit.

B. Tail Model Estimation

In accordance with the model (4)–(7), the exceedances
of the residual vi = yi − β̂TXi over a large threshold
a are described by the exponential distribution (7). (The
exceedances of the exponential distribution are distributed
exponentially.) This distribution describes the logarithmic
load data (20). By exponentiating and returning to the raw
load data we get a Pareto Distribution. This is consistent with
long tail model for the load demand data considered in [13]
and is as prediced by EVT.

The tail model is fitted to the tail data set D indexed by T ,
in accordance with (16), where β is replaced by the robust
regression estimate β̂.

The fit of the exponential distribution is illustrated in
Figure 3. The tail threshold was selected as a = 4σ̂. The
plot of the normal distribution part of the mixture (4)–(7) in
Figure 3 is within the line thickness of the horizontal axis.
This justifies the assumption of the exponential distribution
dominance used in the tail modeling.

C. Risk Adjusted Forecast

Model (2) described by (4)–(7) can be used to solve
problem (3) by computing m such that P (y − βTX >
m) = r. Margin value m describes how much extra power
on average needs to be reserved for the next day above the
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Fig. 3. Tail model fit for the histogram of residuals.
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forecast (13). Once m is found then the risk adjusted forecast
is ym = φ(r,X, θ) = βTX + m. For given risk probability
r, margin m can be computed from (17) as m = F−1(r; θ).

By solving F (m; θ) = r for m in (17), we get m =
λ−1(log q − log r). The risk adjusted forecast (3) can be
computed from this and (13) as

ym = β̂TX + λ̂−1(log q̂ − log r) (32)

The right hand side of (32) defines function φ(r,X, θ̂) in
(3). This expression is only valid for small risk r, specifically
for r � q. In the load data example of the previous section
this holds since r = 1.14 · 10−4 and q̂ = 0.02.

As baseline for comparison of the risk adjusted forecast
(32) we will consider the risk based on the normal distribu-
tion tail model. By inverting the survival function in (19) we
get the baseline risk adjusted forecast for the normal model

yn = β̂TX +
√

2σ̂ · erf−1(1− 2r) (33)

D. Algorithm Verification

Data set (1) with N = 40, 000 data points was gener-
ated by simulating a mixture of Gaussian and exponential
distribution (4)–(7). In the simulation, the regression vector
X was empty and we assumed the zero mean, βTX = 0.
Simulation parameters were picked roughly corresponding
to the real power load data example in this paper: standard
deviation of the normal distribution σ = 0.05, exponential
tail inverse length λ = 15, and tail intensity q = 0.05.

Parameter σ was estimated from robust regression with the
threshold parameter c = 3. To estimate λ, (16) was used with
the threshold a = 4σ̂. To estimate q, (18) was used. Table I
shows these estimates versus the ground truth parameters in
the simulation. The accuracy is quite good.

V. POWER LOAD FORECASTING RESULTS

The algorithms of Section IV were applied to the power
load data and the forecasting problem described in Sec-
tion III. A linear regression model was fitted to the data as
described in Section IV-A. The time series plot comparing
actual load demand data (in GW) with load obtained from
the regression model fit (13) is shown in Figure 4 and
covers about 300 hours of the data. In accordance with (20),
the modeling used logarithmic loads. The plotted data are
converted back to the engineering units (exponentiated).

To fit the tail model, the methodology of Section IV-B
was used. Parameter estimates are given in Table II. Figure 3

TABLE I
TRUE AND ESTIMATED PARAMETERS FOR SIMULATED DATA

σ λ q
Estimated Value 0.0501 17.3584 0.0812
True Value 0.05 15 0.05

TABLE II
DISTRIBUTION PARAMETER ESTIMATES FOR THE MIXTURE MODEL

Distribution Normal σest Exp λest Binomial qest
0.0584 16.9743 0.0208

shows the exponential distribution fit for the tail; the normal
distribution tail does not match the data. The exponential and
normal distribution fit are further compared in the QQ plot
of Figure 5. A QQ (Quantile-Quantile) plot is a statistics
tool commonly used in EVT to evaluate the extrapolation
power of the statistical model for the tail. The theoretical
inverse cumulative distribution function (CDF) predicted by
the model is plotted vs the empirical inverse CDF. The theo-
retical inverse CDF for the long tail distribution in Figure 5 is
related to survival function (17), which is complementary to
the CDF. The theoretical CDF for the normal distribution is
complementary to survival function (19). The long tail model
data are much closer to the diagonal (empirical data) than
the normal distribution tail data. This is yet another indicator
of the long tail nature of the peak load demand events.

50 100 150 200 250 300

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

TIME (HOURS)

AG
G

R
EG

AT
E 

LO
AD

 D
EM

AN
D

 (G
W

)

AGGREGATE LOAD DEMAND AND FORECAST

 

 
LOAD DEMAND (GW)
FORECASTED LOAD DEMAND (GW)

Fig. 4. Actual load demand data (GW) and regression model forecast.

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

EMPIRICAL INVERSE CDF

TH
EO

R
ET

IC
AL

 IN
VE

R
SE

 C
D

F

QQ PLOT OF AGGREGATED DATA

 

 

EXP (LAMBDA =16.9734)
NORMAL (MU=0,SIGMA=0.058398)
STRAIGHT LINE FIT
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When simulating the forecast action of the model, it is
assumed that an accurate forecast of the weather is available.
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The day-ahead ambient temperature is needed to determine
some of the regressors described in Section III-A. With the
regression and long tail model estimates available, we can
compute the risk adjusted forecast (32) for the long tail
model. We also compute risk adjusted forecast (33) for the
normal risk model. The margins are computed in accordance
with risk value r = 1.14 · 10−4, see Section III-B.
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Fig. 6. Load data time with the two risk adjusted forecasts.

Figure 6 shows a 61 hour segment of the data along with
the long tail risk adjusted forecast (larger margin) and the
normal distribution risk adjusted forecast. As Figure 6 shows,
the normal distribution risk adjusted forecast is surpassed by
load demand at a few points. The long tail forecast is almost
never exceeded by the demand as predicted by the model.

For better engineering insight, we compute the risk margin
as an additive value in GW. This is how much extra power
the utility must order to mitigate the risk. Since yt in (20) is
the logarithmic load, the additive margin (last term in (32)
or in (33)) corresponds to a multiplier factor for the load. As
a result, the power load margin GW values change with the
load. Table III shows the additive margin values averaged
over the entire 4-year dataset. The table shows over 50%
difference in the margin values between the tail distribution
and normal distribution.

Table IV is a description of the number of outliers that will

TABLE III
MARGIN VALUES

Forecast Margin
Normal Margin 0.3872 GW

Exp Margin 0.5785 GW

TABLE IV
OUTLIERS PER YEAR

Normal Model Long Tail Model
Normal Margin 1 15.7287

Exp Margin 6.672 · 10−4 1

occur per year depending on which risk adjustment margin
and model is being used. The number of outliers predicted
by the long tail model is always higher. If the margin is
computed using the normal model, the long tail model shows
that about 16 outliers per year would in fact occur instead
of the desired single outlier per year. This is consistent with
what is actually observed in the data.

VI. CONCLUSIONS

This paper shows that peak electrical power loads cannot
be accurately forecasted with help of standard normal distri-
bution models. We combined a robust statistics approach to
modeling of the central part of the power load distribution
with a long tail model of the extreme events, the data points
that have large deviation from the regression model. Such
modeling provides a very good description of the real utility
power load data and allows to compute the forecast margin
for a given level of exceedance risk. A simpler standard
normal distribution (least squares) model underestimates the
forecast margin value by more than 50% compared to the
long tail model. For the utility data, an extra margin on the
order of 200MW is necessary to avoid the risk unaccounted
by the normal distribution.
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