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Abstract. This paper describes a case study of model-
based diagnostics system development for an aircraft
Auxiliary Power Unit (APU) turbine system. The off-
line diagnostics algorithms described in the paper work
with historical data of a flight cycle. The diagnostics
algorithms use detailed engine systems models and
fault model knowledge available to Honeywell as the
engine manufacturer. The developed algorithms
provide fault condition estimates that allow for
consistent detection of incipient performance faults and
abnormal conditions.

1 Introduction

This paper considers diagnostics algorithms and issues
for an Auxiliary Power Unit (APU) for aircraft. APU is a
small gas turbine engine that provides electrical power
and compressed air. Honeywell is the leading
manufacturer of airborne APUs. This paper is focused
on diagnostics, trending, and prognostics of incipient
faults. Such faults often exhibit themselves as a
deterioration trend in the turbomachine performance
and eventually lead to the need to perform expensive
repair and overhaul activities. Timely detection of
incipient faults enables preventive maintenance and has
significant economic importance. The overall areas of
condition monitoring, diagnostics, trending, and
prognostics for such faults are known in industry as
PTM (Predictive Trend Monitoring).

Accurate and reliable detection and parameter
estimation of incipient faults requires detailed and
thorough understanding and knowledge of the

equipment. Such understanding is available to
Honeywell as a turbine engine manufacturer in the
form of detailed design and control analysis models.
This paper describes diagnostics algorithms based on
such detailed models of the engine performance and
dynamics. Such approaches have been discussed in the
recent literature [1—3], but with more basic models
used.

Development of diagnostics algorithms for small
turbomachines, such as APUs, has different
requirements compared to the bigger turbomachines.
The design and development requirements for
Auxiliary Power Units have for many years emphasized
the reduction of APU system cost and weight.  On
aircraft installations, available APU sensors are limited
to ones essential for the control and safe operation of
the turbomachine. Reducing number of sensors is
considered to improve the system reliability.  Data
acquisition systems on aircraft are generally limited by
the aircraft data bus and data storage capacity and only
a limited amount of APU data can be stored during a
flight cycle for subsequent condition monitoring use.

The PTM algorithms discussed in this paper are
executed on ground-based host servers between the
flight operations. These algorithms process data stored
on the aircraft during each flight cycle to recommend a
maintenance action. The PTM system design
requirements have also to address the preventive
maintenance needs for legacy units. For such matured
installations, the available flight data are often
constrained to snapshots of safety critical APU
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parameters such as speed, Exhaust Gas Temperature
(EGT), Load Compressor Inlet Temperature, as well as
discrete aircraft commands such as APU Start/Stop
command and Main Engine Start command.

A basic approach to PTM is by using snapshot data of
the APU steady state performance. Such an approach
using the performance models is considered in Section 3
of this paper.

Section 4 considers diagnostics and trending based on
the snapshot data of the APU start. During APU
starting, a broad envelope of the APU component
operation is covered, leading to potentially improved
fault observability. At the same time, APU start
diagnostics requires using more detailed dynamical
models.

Finally, Section 5 discusses even more comprehensive
algorithms that can be used if the data are collected at a
high rate through the APU start. These algorithms
enable a detailed and accurate diagnostics of the engine
faults.

2 Technical problem

An auxiliary power unit (APU) is small gas turbine
engine that provides pneumatic and electrical power to
the airplane.  This power is used to start the main
propulsion engines, provide pressurized air for aircraft
environmental control systems, provide electrical power
for aircraft lighting, avionics and galleys on the ground,
and to provide backup and emergency power in flight.
A cross section of a typical APU is provided in Figure 1.
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 Figure 1.  Gas Turbine APU Cross Section.

A typical APU for commercial transport aircraft is
broken up into three main sections – the power section,
the load compressor and the gearbox.  The power
section is the gas generator portion of the engine and
produces all the power for the APU.  The load

compressor is generally a shaft-mounted compressor
that provides all pneumatic power for the aircraft.
There are two actuated devices, the inlet guide vanes
that regulate airflow to the load compressor and the
surge control valve that maintains stable or surge-free
operation of the turbomachine.  The third section of the
engine is the gearbox.  The gearbox transfers power
from the main shaft of the engine to an oil-cooled
generator for electrical power.  Within the gearbox,
power is also transferred to engine accessories such as
the fuel control unit, the lube module, and cooling fan.
In addition, there is also a starter motor connected
through the geartrain to perform the starting function of
the APU.

 A typical federated aircraft control architecture consists
of individual subsystem controllers that provide
information to a central maintenance unit or central
flight data system. Data available for Predictive Trend
Monitoring are stored on the central maintenance
computer. The stored data is transferred to the ground-
based systems after a flight.
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Figure 2.  Model-based diagnostics approach

The sensors set on existing APUs are often different for
each application. The sensors are commonly selected
based on the control system requirements and not for
potential health monitoring benefits.  A typical suite of
sensors is illustrated in Figure 1. The health monitoring
and diagnostics algorithms thus have to work with very
sparse data. Sensor data availability improves for
recently developed or future systems as the technology
matures. Much less data is available on the legacy units
that need however to be serviced.

By using detailed physical models of the hardware
available to the manufacturer it is possible to make an
optimal use of the available engine operation data. Such
model-based diagnostics approach is considered in this
paper and is illustrated in Figure 2. The models include
engine models and incipient fault (deterioration)
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models. Model based diagnostics also require taking
into account model inaccuracies and errors, such as
parameter variations in time, variation from engine to
engine, and sensor noise.

3 APU Steady State Performance

A PTM approach applicable to most APUs with relative
ease involves trending performance data to determine
the health of the APU in consistent and repeatable
conditions. As stated earlier, the APU performs a
variety of functions on the airplane, however, many of
these functions offer a significant amount of variability
depending on the how the other airplane systems are
operating. For example, the environmental control
system is a complex system of many valves and pieces
of turbomachinery that result in different varying load
conditions to the APU. As a result, APU health
monitoring is performed during main engine starting
operation (MES) when variability is reduced with the
APU supplying compressed air for starting the main
propulsion engine of the aircraft only. The state of the
APU during MES is relatively simple and operating
condition has good repeatability.
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Figure 3.  APU steady state performance model

Figure 3 illustrates a performance model used for the
diagnostics of the APU from the steady state MES data.
The model in Figure 3 is obtained by combining the
performance maps of the load compressor and engine
power section. The model can be represented as

)(ˆ VFy = ,                (1)

where V is the vector collecting the input data for the
performance calculations and ŷ  is the vector collecting
the performance predictions. For the Figure 3 model,
these vectors have the form.
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Comparing discrete data collected on the APU against
the outputs of the simplified APU performance model
(2) accounts for much of the variation in the operating
conditions. The prediction residuals relate to the

performance of power section (EGT) and the load
compressor (Bleed Pressure). Computed at the usage
cycle n, these residuals have the form.

nnn yyr ˆ−= (2)

To detect the APU faults and make the needed
maintenance recommendations the residuals are
trended. The trending, explicitly or implicitly, uses the
following model for the residual evolution

nnn srr δ++= 0 ,

where r0  is a constant offset of the residual, sn is the
measured parameter change caused by a fault and δn is
the parameter change caused by the changing ambient
conditions and other factors not reflected in the model.
The measured parameter change sn can be distinguished
from δn by having a different statistical behavior. For
instance, δn can be assumed to be independent gaussian
variables with the same mean and covariance and sn a
step change of an unknown amplitude. The fault-related
change of the measured parameter y is estimated from
(2) by applying several filtering schemes and heuristics,
such as:
a) The residuals are compared to an absolute limit that

is based on economics and the requirement for the
APU to fulfill its mission. The drift over the limit is
illustrated in Figure 4.

b) Sudden change or difference of the residual
between successive points.

c) An APU that exhibits a very high rate of the
residual change consistently over several cycles is
also flagged for removal or inspection.
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Figure 4.  APU steady state performance deterioration

When dealing with on wing data, one must accept and
account for additional noise and variation as compared
to laboratory test conditions.  On wing sensors are
designed for robustness and reliability and this results
in reduced accuracy.  In addition, cross winds across the
airplane, air quality, and humidity can significantly
impact data repeatability. The timing and sequencing of
data acquisition can provide a significant amount of
variation especially since nothing on the airplane
operates in a pure steady state environment. The
processing uses low pass filtered residual data. The
filtered trend is compared to the raw data to ensure
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immediate detection of a sudden change such as a
change illustrated in Figure 5.
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Figure 5.  Sudden change in APU performance

4 APU Starting

A more comprehensive analysis of the APU data is
required for APU starting.  This analysis looks at the
snapshot data such as overall start time, peak EGT
during start, and the speed at which this peak EGT
occurs. Starting of an engine describes its behavior from
the moment the START switch is turned on until the
engine reaches 95% speed. Although an engine consists
of several components, not all of them are important
during startup. An integrated model intended for
diagnostics during the starting mode involves only
those relevant components. These components are
shown pictorially in Figure 6.
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Figure 6.  Integrated model of APU starting

As shown in Figure 6, the model consists of the
following components:
Gas path. This component captures the torque balance

on the engine shaft as the gas flow through the core.
Fuel controller. This component captures the logic

associated with the fuel flow command calculations.
Fuel Actuator. This component captures the dynamics

associated with the hydromechanical actuation unit
that injects fuel into the combustor.

Aircraft. This component captures the inlet and exhaust
air duct of the aircraft containing the engine.

Lube Oil. This component captures the heat transfer
from the gas path to the lube oil.

Starter. This component captures the torque introduced
by an electric starter motor.

In addition to these components, the model also
captures the following interactions.
♦ Heat transfer from the engine core to the lube oil.
♦ Effect of oil viscosity on parasitic drag on the shaft.
♦ Effect of engine state on commanded fuel flow.
♦ Effect of the actual fuel flow on engine core.
♦ Aircraft duct geometry effect on engine core

backpressure.

The model was validated using test cell data for a
normal engine. It provides a mechanism for calculating
output prediction as described by (1), where the model
inputs V and the model prediction outputs ŷ  are:
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ŷ (3)

Each prediction of the output requires to complete a
simulation run for the APU starting with the ambient
and usage parameters V. The simulation run produces
predictions ŷ  of the collected data y.
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Figure 7. Trending APU starting performance

For each usage cycle data, the predictions ŷ  and the
actual data y are used to compute the residuals (2). The
results for trending the residual rn are shown in Figure
7. The upper plot shows the (low-pass filtered) trend for
the Peak EGT residual (the second component of rn). The
lower plot shows the trend for the raw EGT data. As
Figure 7 illustrates, trending the model-based residuals
provides a significant improvement in the ability of
detecting incipient faults compared to the raw data
trending. Trending the residual provide a window of
early warning compared to the actual observed output.
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5 Diagnostics Using Detailed APU Starting Data

More accurate diagnostics of the APU faults can be
demonstrated by collecting data from the sensors
sampled at a regular interval through the starting
duration. The algorithms in this section use such
detailed APU starting data and were demonstrated
using a high fidelity simulation. The simulation model
includes sensor noise, sampling and other features
making the data a very realistic representation of the
real APU starting data.  The simulated data illustrated
in Figure 8 was produced with a few faults seeded into
the engine model. The diagnostics algorithms worked
with the data stored in a file.
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Figure 8. Detailed APU starting data

The prediction model used for diagnostics differed from
the comprehensive high-fidelity simulation model. The
structure of the prediction model for the APU gas path
used for the diagnostics is illustrated in Figure 9. The
model consists of two static maps meaning that the
output variables can be computed from the
instantaneous values of the input variables – no
integration of the system dynamics is required. A model
built this way is largely independent of the fuel
controller (the actual fuel flow is used as an input) and
enables an accurate estimation of the faults.

One of the prediction model outputs in Figure 9 is
engine acceleration. The acceleration is not measured
directly. Instead, in computing the respective residual
the predicted acceleration is compared with the
numerically differentiated engine speed. Design of the

differentiating smoothing Wiener filter for estimating
engine acceleration is presented in some detail in [4].

When applied to the APU starting history data, the
prediction model can be expressed as a set of input-
output equations (an extension of (1))

),,(ˆ VupFy = ,     (4)

where the vector ŷ collects predicted histories of the
model output variables through the start data batch. The
vector V defines the ambient conditions, similar to (3). In
(4), u collects the batch historical data for the variables
shown as the inputs to the prediction model in Figure 9.
The performance parameter vector p in (4) is used for
modeling the engine faults.
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Figure 9. Prediction model for APU performance

In Figure 6, block arrows indicate some of the
performance parameters considered. The faults are
modeled as performance parameter changes. The
mapping between a change in parameter p in (4) and an
underlining physical fault was derived by a
combination of experiential knowledge and very
detailed simulation models. Specifically, the incipient
faults modeled include:
(1) Fuel LRU deterioration or fuel nozzle clogging
(2) Parasitic drag torque on the engine shaft
(3) Performance problems in the power section and

load compressor of the APU.

The model (4) can be employed for the engine condition
monitoring by considering the residual yyr ˆ−= . By
linearizing nonlinear prediction model maps for the
data batch around the no-fault prediction, this residual
can be presented in the form

ξ++= Sqrr 0 , (5)

where 0r  is the prediction model offset caused by the

modeling errors, the error variable ξ  collects all of the
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sensor noise terms and 0ppq −=  is the vector

describing change of the performance parameters
compared to its initial value. Such performance
parameter change would characterize engine
deterioration and emergence of an incipient fault
condition. The performance parameter change q can be
considered as a fault parameter.

The matrix S in (5) is a sensitivity matrix. In the
incipient fault condition, the performance parameter
change q is small and S can be determined from (4) as

),,( 0 Vup
p
FS

∂
∂= , (6)

where p0 describes the nominal value of the engine
performance.  The function F in (4) is not available in an
analytical form, but can be computed numerically for
the given arguments (ambient conditions and the data
batch). The sensitivity matrix S can be estimated
through finite differences, by a secant method. The finite
difference estimation of S requires N+1 runs of the
simulation model, where N is the dimension of the
performance parameter vector p.

By assuming that ξ is an unknown zero-mean random

variable with the covariance Ξ=)cov(ξ . A multiple
Linear Regression estimate of the fault parameter q can
be obtained from (5) as

[ ] 0
111ˆ qrSSSq TT −ΞΞ= −−− ,           (7)

where q0 is the estimation offset corresponding to the
prediction residual offset r0 in (5). The covariance Ξ
describes the model of the modeling error and the noise
in the data. In practice, this covariance can be estimated
empirically from a series of data for a normal operating
engine obtained over many flight cycles. Using the fault
parameter estimate (7) requires trending to take into
account the unknown offset q0 that is individual for each
engine.

The described diagnostics approach is applicable to the
APU data in a straightforward way, provided that the
data collected at the sufficient rate to allow for the
engine acceleration estimation from the speed. The
algorithms were demonstrated using the simulated data
in Figure 8. The sampling interval was 0.2 s. The fault
estimates obtained for this data are compared against
the faults actually seeded in the simulation in Table 1.
Three faults were seeded simultaneously, each in the
range of 2% engine performance deterioration. The
obtained estimates are fairly accurate. The worst relative

estimation error of about 20% occurs for the power
section efficiency loss that is difficult to distinguish in its
effect from the fuel system degradation (nozzle
clogging).

Fault Seeded Estimate
Power Section Efficiency Loss 0% -0.49%
Load Compressor Degradation 1% 0.99%
Parasitic Load Torque 0.4 0.42
Fuel System Degradation 2% 2.11%

Table 1. Diagnostics algorithm results

7. Conclusions

The paper has described three increasingly advanced
approaches to model based diagnostics of small turbine
engines (aircraft auxiliary power units). The increasing
complexity of the approaches corresponds to the
increasing difficulty of fielding them with the legacy
engines. It has been demonstrated that a reliable
diagnostics of the faults is possible even from very
scarce data collected on such engines. This is achieved
through the use of the high fidelity models of the engine
available to the engine manufacturer.
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