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Abstract—This paper describes an integrated approach to
parametric diagnostics demonstrated in a flight control sim-
ulation of a space launch vehicle. The proposed diagnostic
approach is able to detect incipient faults despite the natural
masking properties of feedback in the guidance and control
loops. Estimation of time varying fault parameters uses para-
metric vehicle-level data and detailed dynamical models. The
algorithms explicitly utilize the knowledge of fault mono-
tonicity (damage can only increase, never improve with time)
where available. The developed algorithms can be applied
to health management of next generation space systems. We
present a simulation case study of rocket ascent application
to illustrate and validate the proposed approach.
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1. INTRODUCTION

This paper is focused on the developement of algorithms for
vehicle health management (VHM) of a launch vehicle in
closed-loop flight including vehicle dynamics, flight control
actuators, sensors, navigation, and propulsion system. Flight
control related faults can have severe impact on crew and ve-
hicle safety during ascent. Safety margins could be improved
by early detection of incipient faults (prognostics) to enable
timely mission decision.

We are evolving a software-based capability for fault estima-
tion by fusing cross-vehicle parametric data without introduc-
ing any additional sensors. The approach re-uses dynami-
cal models available for the GN&C (Guidance, Navigation,
and Control) system design and analysis. We demonstrate
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the approach by using simulated telemetry data for a launch
vehicle of Space Shuttle class. Faults seeded in the simula-
tion are subsequently estimated by the VHM algorithms to
validate their performance. The estimated fault parameters
include air drag change from aerodynamic surface damage.
This could model leading edge damage like that sustained
in the Columbia Accident STS-107 mission. We also con-
sider estimation and trending of such parameters as propul-
sion performance, thrust vectoring actuator/gimbal wear, and
a drift in one of GN&C sensors (pitch angle). These faults
are choosen as plausible representative faults that demon-
strate the detection algorithm effectiveness. Development of
a practical VHM system would require an additional careful
analysis and engineering of the fault models in the VHM al-
gorithms.

The fault estimation capabilities described in this paper will
integrate smoothly with vehicle health management systems
that use a test and diagnosis methodology. Systems such
as the Honeywell’s Boeing 777 Central Maintenance Com-
puter (CMC) integrate discrete Buit-in-Test (BIT) data using
vehicle-level diagnostic models to provide a substantial added
value [14].

Adapting this approach to space systems, we continuously
monitored simulated ISS telemetry data, generated test re-
sults from that data, and processed the test results through
a model-based reasoner [1]. The system is expected to dra-
matically improve fault isolation and facilitate discrimination
of the root cause from Caution & Warnings and sensor data,
analysis that is performed manually by mission controllers.

Advanced testing methods are needed to detect systems dy-
namics and incipient faults. In this work we integrate para-
metric sensor data using vehicle-level models to estimate
fault parameters for prognostics and incipient fault diagnos-
tics. The challenge is to estimate incipient faults and trend
system degradation hiding behind dynamical variation, feed-
back guidance and control, and noise of the sensor signals.
We address this by using accurate dynamical vehicle models
and optimal statistical estimation of fault condition. These
results will significantly extend the capabilities of diagnos-
tic reasoners by providing information about additional types
of faults that can’t be obtained through subsystem BIT and
simple limit-checking.

We envisioned that initially the algorithms demonstrated in
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this work could be deployed on-ground in a mission control
center. The algorithms would use a stream of telemery data
coming from a vehicle and provide on-line estimation of the
fault parameters for mission management decision support.
For the next generation space vehicles, the algorithms could
be also deployed in on board avionics to support greater au-
tonomy.

This work is a case study demonstrating fesibility of estimat-
ing fault parameters during an ascent of a space launch vehi-
cle. At the same time, the technical approach presented herein
is innovative as well.

There is a large body of work on model-based parametric di-
agnostics using detailed models of system dynamics. Much
of this work was historically associated with controls commu-
nity and considers linear dynamical systems. For examples
of classical parametric estimation and identification methods
applied to diagnostics see [6], [7], [11]. Modern systems the-
ory methods applied to designing dynamical observer filters
for fault estimation includeH2, H∞, and such, e.g., see [3],
[13].

The approach of this paper is related to the cited work in spirit
but is different in a few respects. First, in the problem at hand
the telemetry data is sampled at a high rate whereas the esti-
mation update is relatively slower. This results in a multi-rate
estimation problem. Second, the application problem consid-
ered in this work is inherently nonlinear. We use nonlinear
models for computing prediction residuals and then linearize
the problem with respect to the faults similar to how it is done
in [5]. Third, and the most important difference is that we take
some of the faults to be monotonic, i.e., they describe deterio-
ration that can only get worse with time, never improve. The
optimal statistical estimates for such faults can be computed
in a batch mode. We make use of all the available data at
any instant as opposed to a standard Kalman Filter recursive
solution. The monotonic fault approach extends that of [9],
[16].

There has been a recent focus on constrained state estima-
tion as discussed in [8], [9], [15]. These techniques allow
using a broad range of nonlinear filtering models. Some re-
cent work has also discussed in depth the implementation of
receding horizon filters implementing constraint problem so-
lutions, which are most useful for an on-line implementation,
e.g., see [4].

In this work, some of the estimated faults are modeled to be
monotonic similar to [9]. Some other faults are modeled as
non-monotonic, or simply constant. This results in a multi-
rate estimation problem with a multi-variable mixture of fault
parameters subject to constraints. We estimate the unknown
faults by numerical optimization of the log-likelihood func-
tion. The formulation and optimization of the log-likelihood
loss index reflects fault signature models, measurement noise
statistics, and fault evolution models. Using optimization-

based estimation allows us to achieve flexible modeling, in-
corporate knowledge that damage conditions might only grow
worse with time for some faults, and also make estimates ro-
bust to modeling errors. The optimization problem is a con-
vex Quadratic Programming (QP) problem and a solution can
be computed in efficient, scalable way using the state of the
art solvers. Such optimization can be embedded into the on-
line computations.

The paper is organized as follows. Section 2 introduces the
application problem and gives an overview of the different
faults and subsystems under consideration. In Section 3 we
describe the residual based estimation approach. Section 4
provides a mathematical formulation for the estimation prob-
lem which serves as an input to the solver. The results of the
estimation are given in Section 5.

2. APPLICATION PROBLEM

Rocket ascent simulation

The diagnostic algorithms developed in this paper are demon-
strated through a simulation study of the ascent of the Shuttle-
class vehicle depicted in Figure 1 [2]. We simulate the ve-
hicle dynamics, kinematics, guidance, navigation & control
(GN&C), propulsion, and consider some representative sys-
tem faults. The detailed simulation model and the models
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Figure 1. Block Stations

used for fault detection are developed in-house and described
in detail elsewhere [10]. The measured states and control his-
tory of the simulation are logged as simulated telemetry data.
This data is subsequently used for validating the fault estima-
tion algorithms developed in Section 3.
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As a part of the case study, a simulation model of the launch
vehicle ascent was developed. This is a simplified model of
a Space Shuttle class vehicle that is based on data published
in the open literature [2]. The detailed engineering simula-
tion used by NASA for the Space Shuttle has in excess of 100
states and thousands of parameters. Details of such complex
simulations are understood by teams of people. To demon-
strate our diagnostics algorithms, we choose to create a more
manageable yet representative example. The rocket launch
simulation set up in this study has on the order of 10 states,
a few dozen parameters, and is easily understood by a single
person. Though the details of the simulation are not presented
here, the highlights are presented below.

The dynamical model of this simulation consists of a set of
ordinary differential equations (ODE) that are numerically
integrated. This ODE system is stiff, since the timescales
for rocket motion and fast GN&C actuators are very differ-
ent. Also, the magnitude of the variables runs many orders
of magnitude, i.e. the control torque is required to move an
engine bell producing5 × 106 lb thrust for angle tracking of
≈ 10−3 deg.; while the final value of the achieved altitude is
≈ 5× 105 ft.

We simulate a two-stage vehicle with liquid fuel (H2 and O2)
delivering a medium payload to low Earth orbit. We consider
in-plane dynamics only for planar equatorial flight that termi-
nates in a0o inclination orbit. The modeling includes varia-
tion of mass, center of gravity, and moment of inertia with the
propellant expenditure. The aerodynamic model is borrowed
from an asymmetric vehicle (the first stage drag minimum is
at small positive angle of attack) [2]. The model assumes a
non-rotating spherical Earth and uses an inverse square grav-
itational field and an exponential atmosphere. In the diag-
nostics example to follow, the first stage of the trajectory is
primarily considered since the nonlinearities of the aerody-
namic model are most predominant while still in the thick
atmosphere. Expansion to the full launch sequence would be
straightforward.

As depicted in Figure 2, a GN&C system is implemented as a
part of this simulation. For this trajectory-following guidance
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Figure 2. Block Diagram

and control scheme, the engine bell is gimbaled to attain the
desired pitch angle while the thrust is maintained at 100% (it
is a function of altitude and stage). We assume full-state mea-
surements for the navigation model. Neighboring Extremal

(NE) closed-loop guidance uses a point mass simulation to
calculate the minimum fuel trajectory [2]. NE guidance is
implemented as full-state proportional feedback, which does
not steer back to the original optimal trajectory. Instead, at
each guidance calculation, if the vehicle has deviated from
the optimal path, NE guidance provides the desired control
for the optimal trajectory from that point to the desired end-
point. In the reported results, a PID controller tuned using
trial-and-error is used for the main engine gimbal actuator to
keep the vehicle on the NE trajectory.

As shown in Figure 3, the state variables for this vehicle sim-
ulation are:

• κ is the downrange angle measured in rad
• h is the vehicle’s altitude in ft
• v is the vehicle’s velocity in ft/s
• γ is the flight path angle measured in rad
• θ is the vehicle’s pitch angle measured in rad
• δ is the engine gimbal angle measured in rad
• ωe is the engine rotational rate in rad/s
• ω is the vehicle’s rotational rate in rad/s

whereh is positive up,κ is increasing as the rocket flies
downrange, andωe is positive in the direction pictured as pos-
itive δ. Using this state definition, the equations of motion for
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Figure 3. Rocket

this vehicle are [10]

κ̇ =
v cos γ

rs + h
, (1)

ḣ = v sin γ, (2)
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v̇ =
1

m + me

[
(T −meleω

2
e) cos (α + δ)

− (m + me)g sin γ −meω
2l cos α

− meleω̇e sin(α + δ) + mlω̇ sinα−D] , (3)

γ̇ =
1

(m + me)v
[
(T −meleω

2
e) sin (α + δ)

− (m + me)g cos γ + L + meleω̇e cos(α + δ)

− mlω̇ cosα−melω
2 sin α

]
+

v cos γ

rs + h
(4)

θ̇ = −ω, (5)

δ̇ = ω − ωe, (6)

with the rotational accelerations

J∗ω̇ + Jcω̇e cos δ = Jcω
2
e sin δ

+ Q− mlT sin δ

m + me

+
(

lcp − ml

m + me

)
(L cos α + D sin α) , (7)

J∗e ω̇e + Jcω̇ cos δ = −Jcω
2 sin δ −Q

+
mele

m + me
[L cos (α + δ) + D sin (α + δ)] . (8)

In Equations (1) to (8)

J∗ = J +
mmel

2

m + me
, (9)

J∗e = Je +
mmel

2
e

m + me
, (10)

Jc =
mmelle
m + me

, (11)

α = θ − γ. (12)

In Equations (7) and (8),Q is the torque to move the engine
bell. The gimbal actuator is modeled as a first order actuator
of the form

Q̇ = 20k(xd − xs) (13)

wherexd is the desired servo actuator position,xs is the servo
position, andk is the servo position-to-torque gain. Addi-
tionally, m is the rocket mass,J is the rocket inertia,l is the
distance from the gimbal pivot to the rocket center of gravity,
andlcp is the distance from the gimbal pivot to the center of
pressure. The engine bell has corresponding quantitiesme,
Je, andle. The lift and drag forces areL andD, thrust isT ,
and gravity is denotedg.

The simulation is PC based and programmed in Mathworks’
Simulink (double precision) as a continuous time model with
Runge-Kutta integration of the ODEs. The simulation cov-
ers the≈ 371 sec. trajectory of ascent into an 80× 150 nm
equatorial orbit. The vehicle launch mass is1.03×105 slugs,
mass flow rate is constant in each stage, and staging occurs
upon expending of first stage propellant at the time 153.54 s.
The sensor and control data is logged at a 0.1 s sampling inter-
val and saved into a data file. The simulation model includes

an ability to add (seed) the faults as described below. The
simulated telemetry data is subsequently used for validating
the fault estimation algorithms that do not have an access to
the seeded faults and should estimate them from the trajectory
data.

Modeled faults

The algorithms developed in this work offer a great deal
of flexibility in the estimation of parametric faults. These
algorithms are capable of estimating constant, step, mono-
tonic, and non-monotonic time-varying faults. The nature of
the faults is not a limiting factor (though fault observability
through the available data is). The particular faults chosen
in this study were the ones providing a good demonstration
of the approach capabilities and are not meant to represent
a practical design of a vehicle health management system.
They arerepresentativeof real faults that span several sys-
tems of concern within the closed-loop flight system.

We consider the following four parametric faults aggregated
into a fault vector to be estimated:

f :=




Thrust Loss, percent
Drag Increase, percent

Gimbal Sluggishness, percent
Pitch Sensor Offset, percent


 (14)

The first fault vector component, percentage of thrust loss, is
related to the propulsion subsystem. It describes the degrada-
tion that occurs in the propulsion engine over a period of time.
We model this fault as a monotonic one assuming that the ef-
ficiency of the rocket engine can only decrease (deteriorate)
with time.

The second component of vectorf describes an increase in
the aerodynamic drag of the vehicle. The drag mostly impacts
the dynamics during first stage ascent while the vehicle is still
in the thick atmosphere. The importance of estimating this
fault parameter can be related to the Columbia accident. The
increase in drag might indicate damage to the aerodynamic
(and heat shielding surfaces).

The third element in the fault vector is the percentage of slug-
gishness of the gimbal actuator. The gimbal actuator is used
for vectoring the main engine thrust and is the primary con-
trol actuator. Gimbal sluggishness during a vehicle’s launch
may be caused by a pressure loss in the actuator’s hydraulic
system, some hydraulic valve problem, or in wear of of me-
chanical gears or bearings. This sluggishness may lead to a
deviation from the desired trajectory since it effects the con-
trol system for the vectored thrust steering torque.

The fourth fault we consider in this work relates to drift of
the pitch sensor in the GN&C system. The origin of this fault
may have to do with some error in calibration of the sensor
or in wiring induced noise or offset. This fault may lead to
an incorrect value of the vehicle’s pitch angle used by the
guidance and control laws.
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The developed simulation includes the faults of interest as
parts of the propulsion subsystem, flight dynamics (GN&C)
subsystem and the gimbal actuation subsystem models.

Diagnostics data availability

The ‘telemetry’ data stream used by the algorithms is pro-
duced by the simulation discussed in Subsection 2. This data
is available at a 100ms sampling interval. At each sample, the
data generated by the simulation consists of (i) vehicle state
data (8 values), (ii) vehicle acceleration data (4 values), and
(iii) gimbal servo data (2 values). At sampling timet these
data make the 14-component data vectorx(t).

We assume vehicle rigid-body acceleration data is available
as a part of telemetry. The accelerations are normally avail-
able to the vehicle GN&C system from on-board accelerome-
ter or a navigation Kalman Filter estimator that could also use
position and velocity data. The bandwidth of the acceleration
measurement and estimation would be much higher than the
10 Hz sampling rate of the telemetry data. The vector of ac-
celerations has the following components:

• v̇ is the vehicle’s vertical acceleration in ft/s2

• γ̇ is the flight path angle rate measured in rad/s
• ω̇e is the engine’s rotational acceleration in rad/s2

• ω̇ is the vehicle’s rotational acceleration in rad/s2

The gimbal actuator servo data include two values:

• xact is the gimbal actuator position measured in rad
• xd is the gimbal actuator servo command measured in rad

Figure 4 illustrates telemetry data obtained for the first stage
ascent of a launch vehicle in the simulation example that is
further discussed in Section 5.

3. ESTIMATION PROBLEM STATEMENT

In this work we usemultiratedata processing assuming that
the fault estimation algorithms take longer than the 100 ms
sampling interval to execute. As the new data vectorsx(t)
from (simulated) telemetry become available, they are stored
till the next cycle of algorithm execution. The described time-
line of the data processing logic is illustrated in Figure 5. The
results of Section 5 have been obtained with the estimation
update algorithms running every 15 seconds to process the
data including the new 150 vectorsx(t) accumulated through
that time.

The algorithms’ outputs are the fault estimates in the form of
time functions. We validate algorithms by demonstrating that
these estimates match the time-varying faults seeded in the
simulation when generating the ‘telemetry’ data.

The fault estimation algorithms perform on-line computa-
tions using the residuals and fault signatures from the pre-
diction models as inputs and providing estimates of unknown
fault parameters as a function of time at the outputs. Whereas

the fault estimates must be computed on-line, the fault signa-
tures and other data used by the estimation algorithms can be
pre-computed off-line for the planned ascent trajectory as is
explained below. The on-line estimation is cast as a convex
optimization problem that can be solved very efficiently.

100 ms rate 
data stream 

Run fault 
estimation 
algorithms 
 

Data 
history 
buffer: 
from 
start to 
present: 
Yt  
 

Compute model 
prediction 
residuals: y(t) 
 

Vehicle 
data: 
x(t) 
 

15s rate update 
 

Fault 
estimates Ft  
 

  
 

Figure 5. Fault estimation timeline

Prediction Model

The prediction model is a key part of the estimation algo-
rithms. It computes parity relationships between the mea-
sured variables. The prediction model outputs should be
zero in the absence of faults and reflect the fault parameters.
The prediction models for the three subsystems: propulsion,
GN&C, and gimbal actuation, are developed separately and
then integrated. Though the prediction model is logically dif-
ferent from the simulation model discussed in Section 2, both
are based on the same dynamical knowledge. One major dif-
ference between the simulation and prediction models is that
the simulation includes closed-loop GN&C while the predic-
tion uses the applied control input to compute the expected
(predicted) system outputs (such as vehicle rigid body accel-
erations) and is thus independent of the control algorithms.

For each of the three subsystems, prediction models take the
relevant telemetry data and computed data from other sub-
systems as inputs and predict some outputs (other telemetry
data). The difference between the predicted and the actually
observed outputs yields the prediction residuals. The predic-
tion models used in this work also accept the four faults as
additional inputs. This is needed for modeling fault signa-
tures.

The GN&C prediction model takes as its inputs the data vec-
tor X(t) including the vehicle state and the gimbal actua-
tor position. It also inputs the thrust value predicted by the
propulsion subsystem model. The outputs are three residuals
for predicting (i) vertical acceleration, (ii) flight angle rate,
and (iii) pitch acceleration.

Consider now the prediction model for the gimbal actuation
subsystem. The hydraulic actuator of the main engine gimbal
suspension is used for vectoring the main engine thrust and
provides the control for the GN&C system. The gimbal ac-
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tuation includes a servo-system for tracking the desired vec-
toring angle. The dynamics are linearized by the closed-loop
feedback and are assumed to have the form

ẋact = (xd − xact)ωf , (15)

whereωf is the bandwidth of the closed-loop feedback con-
trol servo system which guides the vehicle along the desired
trajectory. The reduction of the bandwidth parameterωf in-
dicates the gimbal actuator sluggishness.

The predictive residual is computed such that it is zero ifxd

andxact satisfy the model (15). The nonzero residual should
reflect the change inωf . The difficulty is that differentiation
of the signalxact(t) is required to verify if (15) holds. To
avoid increasing the noise in a finite difference estimation of
the derivative, we use a smoothing differentiator. The model
prediction residual is computed as follows

rgimbal(t) =
s

s + τs
xact − 1

s + τs
xd, (16)

wherergimbal(t) is the servo rate residual (in rad/s),s is the
Laplace variable (differentiator operator),τs is a smoothing
filter pole (time constant) and the two transfer functions de-
scribe the filtering operators applied to the two respective sig-
nals. The two filters in the r.h.s. of (16) have proper and
strictly proper transfer functions respectively and can be easy
implemented. Note that if (15) is satisfied, then the residual
in (16) is exactly zero. Applying a smoothing filter is a linear
transformation of the signal. It does not offset the residual,
just brings about a filtering delay while enabling differentia-
tor implementation.

The overall residual vectory(t) is a combination of the
GN&C subsystem residuals and the gimbal subsystem resid-
ual

y(t) :=




Vertical acceleration residual, ft/s2

Flight angle rate residual, rad/s
Pitch acceleration residual, rad/s2

Servo rate residual, rad/s


 . (17)

The residual vectory(t) is calculated at the same rate as the
sampling rate for the telemetry datax(t), which in our case
corresponds to a sampling time of 100ms.

Residual-based Estimation

A non-zero residual vector in (17) indicates an off-nominal
behavior and implies presence of faults. The integrated di-
agnostics algorithms use these residuals along with the fault
signatures as inputs to determine the fault estimates. The fault
signatures, also referred to as the fault sensitivities, provide a
mapping between the unknown faults and the residuals. In
many practical cases, including the one in hand, this mapping
can be assumed linear. This allows us to efficiently solve the
estimation problem by reducing it to a convex optimization
problem.
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Figure 6. Model-based residual processing

When processing the datax(t), the algorithms first use
detailed prediction models for computing residuals - mis-
matches between model prediction and actually observed sys-
tem outputs. The faults are then estimated from the residuals
using the fault signatures (fault models). This is illustrated in
Figure 6 and explained in more detail in the remainder of this
section.

The residual datay(t) is sampled at a high rate of 100ms.
There are approximately 1530 samples in the residual vector
for the 153 seconds of the first stage ascent duration. The es-
timation algorithm runs at a much slower rate, once everyM
high-rate samples. In our example the update is every 15 sec-
onds, i.e., for everyM = 150 samples of residual data. The
choice of the update interval depends on a variety of factors
including the efficiency of the algorithm and the hardware
limitations of the on-board processors.

For the multi-rate system explained in the preceding para-
graph, we letτ be the estimation update cycle. Then the
residual data vector accumulated from the lift-off till the esti-
mation update cycle numberτ will be denoted as

Yτ =




y(1)
...

y(τ ·M)


 (18)

The sampled-data estimation logic assumes that fault param-
etersf(t) (14) are constant through each estimate cycle, i.e.,
f(t) = F (n), for M(n − 1) < t ≤ Mn. This assump-
tion reduces the number of the fault values that are estimated
and improves statistical averaging propertices of the estima-
tion scheme. At the same time, there is little loss of estima-
tion performance in addition to the already accepted sampling
time delay of the estimation update. The fault parameter vec-
tor accumulated from the lift-off till the estimation update cy-
cle numberτ will be denoted as

Fτ =




F (1)
...

F (τ)


 (19)
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The algorithm objective is finding the unknown fault parame-
ter vectorFτ . This requires relatingFτ to the available resid-
ual data vectorYτ . If the faults don’t change the underlying
system dynamics substantially, we can linearize dependence
between the residuals and the unknown faults. This assump-
tion allows us to express the relationship in the form

Yτ (|Fτ ) ≈ Sτ · Fτ + ζτ (20)

whereSτ is the fault sensitivity matrix,ζτ is the noise vec-
tor which accounts for all the modeling uncertainties such
as propulsion generated vibration, thrust fluctuations, turbu-
lence, unmodeled flexible dynamics of the rocket, fuel slosh,
model parameter errors, sensor measurement noise, etc. Note
that if ζτ = 0 in (20) (no noise, no modeling error), then the
residual in the absense of faultYτ (|0) = 0, as it should be.

The dependence of the residual data vectorYτ on the faults
Fτ in general is not available in an analytical form for com-
puting the sensitivity (Jacobian) matrixSτ . This dependence
is however encoded into our prediction model and we can
compute the sensitivity matrix by a finite difference method.
This is done by simply incrementing each component of the
fault vectorFτ and then running the prediction model with
the corresponding fault inputs to compute pointwise values
of the residual data vectorYτ (|Fτ ). The finite difference es-
timate of the columns ofSτ is obtained by normalizing in-
crements of the observed residual vector change. The sen-
sitivity matrix computation may be performed off-line prior
to the launch of the vehicle. The pre-computed sensitivity
matrix may then be stored and later used by the estimation
algorithms during on-line computations. Such a computation
of Sτ assumes that the vehicle will closely follow the nominal
trajectory during the flight. If the actual state of the vehicle
doesn’t match the desired trajectory, then there will be an in-
accuracy in the computed sensitivity matrix.

An alternate method is to compute the sensitivity matrix on-
line using the actual vehicle state obtained from the sensors.
In this approach the nominal prediction model is run along-
side the prediction models with each of the fault inputs in an
online setting using the actual vehicle state at that time of the
flight.

The discussion above was about the matrixSτ corresponding
to the estimation update cycleτ . This matrix does not need
to be computed from scratch at each update cycle. Instead it
can be computed once for the terminal update cycleτ = T of
the ascent. For anyτ < T the matrixSτ is a truncation of the
matrixST (aMτ × τ submatrix of theMT × T matrixST ).

Figure 7 shows the columns of the linear operatorS(τ) for
the update cycleτ = 4, i.e., 45 ≤ t ≤ 60). The operator
is causal in the sense that sincey(t|Fτ ) does not depend on
F (ρ), ρ > t/M . It is also clear from the figure that the map
is sparse in time because of the negligible influence of fault
after-effect on the residual vector for the next cycle.

50 100 150
−1

0

1
GIMBAL SLUGGISHNESS

A
C

C
E

LE
R

A
T

IO
N

[ft
/s

2 ]

50 100 150
−1

0

1

F
LI

G
H

T
 A

N
G

LE
 R

A
T

E
[r

ad
/s

]

50 100 150
−1

0

1

P
IT

C
H

 A
C

C
E

LE
R

A
T

IO
N

[r
ad

/s
2 ]

50 100 150

−3

−2

−1

0
x 10

−5

E
N

G
IN

E
 A

N
G

LE
 R

A
T

E
[r

ad
/s

]

50 100 150
0

0.2

0.4

0.6

THRUST REDUCTION

50 100 150
0

2

4

x 10
−5

50 100 150
−3

−2

−1

0
x 10

−4

50 100 150
−1

0

1

50 100 150
0

0.02

0.04

0.06

0.08
DRAG INCREASE

50 100 150
0

1

2

x 10
−6

50 100 150

−4

−2

0
x 10

−5

50 100 150
−1

0

1

50 100 150

−0.06

−0.04

−0.02

0
PITCH MEASUREMENT OFFSET

50 100 150

−2

−1

0
x 10

−4

50 100 150

−1.5

−1

−0.5

0
x 10

−3

50 100 150
−1

0

1

Figure 7. Fault signatures computed for an interval during
the first stage ascend

4. SOLUTION APPROACH

Given the statistical models in (20), (24), the estimation prob-
lem is to find the unknown fault parameter sequenceF from
the residual dataY . Indexτ is dropped, it can be anything or
final

The Maximum Likelihood (ML) estimate of the unknown
fault sequence is obtained by numerical optimization of the
log-likelihood

J = − logP(F |Y ) → min (21)

By using Bayes rule and independence of the fault vector
componentsFk(τ) in (24) for differentk we obtain

P(F |Y ) = const· P(Y |F ) ·
4∏

k=1

P(Fk(·)), (22)

whereFk(·) denotes the entire time seriesFk(1), . . . , Fk(L).

We assume that in the model (20), the noiseζ(τ) is normally
distributed zero-mean with covarianceQ. This is a usual as-
sumption leading to a least-square fit estimation. In that case
we havelogP(Y |F ) =− 1

2 (Y − SF )T Q−1(Y − SF ).

Using the Bayesian conditional probabilities (22), we can
thus present the loss function (21) in the form

J =
1
2
(Y − SF )T Q−1(Y − SF ) +

4∑

k=1

Jk (23)

The termsJk = − logP(Fk(·)) in the loss index (23) depend
on the nature of each fault in the fault vectorF .
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We use a random walk model for the probabilistic modeling
of the unknown fault parameter sequence, i.e.,

Fk(n + 1) = Fk(n) + ξk(n), ξk(n) ∼ pk(x), (24)

whereFk(n) denotes the respective fault component at the
update cyclen andξk(n) is the process noise driving the evo-
lution of Fk. We assume thatξk(n) are mutually independent
for different k andn and have probablity distributions with
the density functionspk(x). Then

Jk =
L∑

τ=2

− log pk (Fk(n)− Fk(n− 1)) . (25)

The initial fault state vectorF (1) is assumed to be unknown
(its componentsFk(1) do not contribute toJk in (25) ). The
distribution pk(x) of the random variableξk(n) reflects a
prior knowledge about the fault and a fault evolution model.
In this work we consider three types of such models: the
faults that are non-monotonic, monotonic, or constant.

Case I: Non-monotonic Faults—Assume the driving noise
ξk(n) of the fault evolution model (24) to be zero mean nor-
mally distributed with covariancerk. This yields a standard
random walk model and− log pk(x) = x2/(2rk). In this
caseJk adds a quadratic penalty term to the loss index (23)
and the problem becomes an unconstrained generalized least
squares estimation. A recursive solution of such problem can
be computed using a Kalman Filter formulation. In the ex-
ample to follow, pitch sensor offset is assumed to be a non-
monotonic fault.

Case 2: Monotonic Faults—In some instances the faults are
known to increase (or decrease) with time, e.g., because the
accumulation of an irreversive damage. For such monotonic
faults we considerξk(n) to have an exponential distribution
with width λk such that− log pk(x) = x/λk in (25) with a
constraint thatx ≥ 0. The performance index (23) now in-
cludes a linear penalty inJk and should be minimized subject
to the constraintsFk(n + 1) ≥ Fk(n). This yields a con-
strained quadratic programming (QP) problem which can be
solved efficiently using convex optimization solvers. More
detail on monotonic fault modeling and estimation can be
found in [9]. In the example to follow, thrust loss and drag
increase are assumed to be monotonically increasing faults.

Case 3: Constant Faults—A fault may describe an unknown
condition that does not change after the liftoff (or staging).
Such fault may be assumed to be constant. In this case the
loss function (23) can be assumed to haveJk = 0 for respec-
tive k while being subject and to an equality constraints of
the formFk(n + 1) = Fk(n). In the simulation example to
follow, gimbal sluggishness is assumed to be a constant fault.

The above described models of fault evolution are of course
empirical models and a careful engineering judgement should
be exercised when deciding which one to use. The probability
distribution parameters in these models can be considered as

tuning parameters, similar to how the noise covariances are
selected in the Kalman Filtering practice. If the real faults
do not exactly follow the assumed models, the estimation al-
gorithms should still produce meaningful results compatible
with the made assumptions (e.g., monotonicity).

Estimation Algorithm

As discussed in the previous section, the problem of minimiz-
ing the performance index (23) with or without the constraints
is a convex optimization problem. Several efficient routines
are available to solve such QP problems. To enable embedded
implementation, we use a solver based on an interior point
method. This high performance convex solver provides an
estimate of the fault vectorF as a solution to the constrained
(or unconstrained) QP problem given the fault sensitivity ma-
trix S and the residual data vectorY . The solver is imple-
mented in Matlab, the simulation and prediction models were
developed in Simulink. The solver uses sparse arithmetic and
exploits the problem structure of the problem under consid-
eration to efficiently compute the fault estimates. It can esti-
mate fault parameters that fall in any of the three categories
discussed above by minimizing the appropriate loss index.

The covariances of the noisesζ(t) andξ(n) are used as tuning
parameters in the optimization solution. They are empirically
chosen to obtain good fault estimates. The efficiency of the
computation largely depends on the individual problem struc-
ture, i.e., the number of constraints in the problem and the
sparsity structure of the arrays involved. The estimates will
in general be computed more efficiently if the fault signatures
are calculated off-line.

For the launch vehicle ascent example, the estimation algo-
rithms consist of two parts. The first part are off-line pre-
launch preparation computations. During this phase each
of the considered faults is in turn seeded in the simulation
model. The simulation is then run to obtain the residuals cor-
responding to this fault. These residuals correspond to fault
signatures and allow to compute the fault sensitivity matrixS
using the procedure described given in Section 3.

After the off-line preparation is complete, the optimization-
based estimation is run on-line as the telemetry data is re-
ceived. These on-line algorithms make the second part of the
estimation.

5. ESTIMATION RESULTS

The specific fault estimation problem considered in this paper
has a four element fault vector given in (14). For the purpose
of a simulation we decided to assign different values to these
four faults as shown in Figure 9. The sluggishness of the
gimbal actuator was assumed constant during the first phase
of the flight. A value of 20 percent was seeded for this fault.
The percentage of thrust loss in the propulsion subsystem was
assumed to grow with the expenditure of fuel. A gradual in-
crease in thrust loss from 1 to 3.5 percent was seeded. For the
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Figure 8. Prediction Residuals for First Stage Ascent

drag a four percent step increase after 60 seconds of the flight
was seeded in the simulation model. This may correspond to
a sudden increase due to the aerodynamics surface damage,
such as a piece of the fuel tank insulation foam falling off
and damaging the leading edge of the wing in the Columbia
accident. The pitch sensor drift in the GN&C sensor is as-
sumed to vary sinusoidally between 0.1 to 0.8 percent during
the course of the first stage of the flight. To verify the validity
of the estimation approach, the seeded faults were selected to
span all three cases discussed in the previous section: non-
monotonic, monotonic, and constant fault. The simulation
produced ‘telemetry’ data that was logged and provided to
the fault estimation algorithms. First, the prediction model is
run to compute the residuals for this data. The resulting resid-
ual data vector is shown in Figure 8. These nonzero residu-
als indicate the presence of faults. To make the simulation
more realistic, a uniformly distributed uncorrelated random
noise was added to the telemetry signals. The noise mag-
nitude makes about 5-10% of the residuals. The residuals
were processed by the multirate optimization-based estima-
tion algorithm described in Section 3. As mentioned earlier
the data in this example is sampled every 100 ms. The estima-
tion algorithm runs every 15 seconds producing a total of 15
estimates during the 153 second of the first stage ascent. To
enable this fault estimation, we pre-compute the sensitivity
matrixS as explained in Section 3.

Before running the estimation calculations, the inputs are
scaled. This is necessary, since the variables values mea-
sured in different physical units might differ by many orders
of magnitude from one another. As an example, the vehicle
climbs to an altitude of approximately5 · 105 ft whereas the
angle tracking is on the order of about10−3 radians. To avoid
poor conditioning of the sensitivity matrix, the estimates of all
variables are scaled and converted into nondimensional units.

20 40 60 80 100 120 140 160

15

20

25

30
GIMBAL SLUGGISHNESS, PERCENT

20 40 60 80 100 120 140 160

2

3

4
THRUST REDUCTION, PERCENT

20 40 60 80 100 120 140 160
0

2

4

6
DRAG INCREASE, PERCENT

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

PITCH MEASUREMENT OFFSET, PERCENT

Seeded Fault

Seeded Fault

Seeded Fault

Seeded Fault

Figure 9. Comparison of Seeded Faults and Fault Estimates

The scaling was selected empirically to make all the nondi-
mensional variables about the same order of magnitude and
improve problem conditioning.

For validation, the obtained estimates are compared against
the faults that were actually seeded in the initial simulation.
Figure 9 shows the estimates computed att = 70, 115, and
150. As seen in the plots the estimates improve with time,
as more data are accumulated, and match the unknown faults
reasonably well despite the noise and the unaccounted non-
linearity. The estimates may be tuned further by running an
update every 4 or 8 seconds instead of the chosen 15 seconds
interval.

6. DISCUSSION OFINTEGRATED DIAGNOSTICS

The multivariate trending and detection of parametric faults
is a part of a holistic approach to Integrated Vehicle Health
Monitoring (IVHM). This paper has described a methodol-
ogy for detecting a class of faults that will contribute substan-
tially to an overall understanding of the vehicle health state.
By combining the results of multivariate detection with all
of the subsystem Fault Identification Detection and Recovery
(FDIR) logic, subsystem BIT, limit checking, simple trend
detection, and other symptom detection methods, a diagnos-
tic system can be made substantially more capable.

An envisioned advanced integrated diagnostic system of a
space vehicle will present to the users as complete a picture
of the health state of the vehicle as practicable [1]. The health
state is a description of the ability of the systems, subsystems
and components to perform their designed function. Each ve-
hicle element is described as nominal or off-nominal, along
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with the degree of degradation of off-nominal elements. This
paper demonstrates an ability to detect fault conditions before
they have fully developed. This allows to characterize incipi-
ent failure modes; rather than waiting for a major degradation
in functionality, the onset of the deterioration is identified. As
with other more familiar failure modes, the identification of
the root cause likely requires correlation between several in-
dications. For example the “gimbal sluggishness” indication
may correspond to other symptoms in the hydraulic, electrical
or other systems indicated by BIT messages. These correla-
tions may be completed using a vehicle level reasoner.

In order to understand the root cause of a failure, it is nec-
essary to correlate all of the effects of the failure and trace
the effects back to the root cause. In a system using only
BIT, it is likely that not all of the information needed to iso-
late the cause will be available. Adding sensors could pos-
sibly remove ambiguity in the diagnostic information; how-
ever, each sensor adds weight, power draw and complexity.
The ability to get more information out of existing sensors
using advanced analytical techniques as we have described is
a significant advantage toward the goal of total health state
knowledge.

7. CONCLUSIONS

This paper described an approach to mutivariable integrated
diagnostics and trending of parametric faults. The approach
was discussed and illustrated for a case study of flight con-
trol system diagnostics during space lauch vehicle ascent.
The approach might be useful in many other aerospace ap-
plications. The developed algorithms require using detailed
models for computing fault residuals and signatures. Such
‘controls’ type models are typically available as a part of
control system design and analysis for aerospace systems.
The estimation is based on embedded optimization and of-
fers flexibility in types of faults that can be estimated: con-
stant, time-varying, and monotonic. Using state-of-the-art
convex solvers allows achieving high computational perfor-
mance. This implies both ground telemetry-based and on-line
embedded implementation of the algorithms can be feasible.
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