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Abstract—This paper develops a novel approach to
computation of the probability integrals encountered
in derivative pricing using stochastic models estimated
from historical data. First, nonparametric probability
distribution models are built directly from the data as a
solution of a convex optimization problem scalable to very
big data sets. Second, these models are used for numerical
calculus of probability integrals, where the quadrature
includes long tails of the probability distributions. The
application example is the procurement contract in the
day-ahead bulk market for electricity. The data for PJM
utility loads and prices in the day-ahead and spot markets
were used to estimate the risk and to price the contract.
The data-driven forward contract pricing allows to
optimize the contract cost and reduce it by 2% compared
to the baseline; this corresponds to about $0.6B/year in
potential utility savings.

I. INTRODUCTION

This paper presents a data-driven probability integral
method for pricing fixed-term derivative contracts. The
motivating problem is described next but the method is
potentially applicable to many other derivative pricing
problems. We consider a Load Serving Entity (LSE),
such as an electrical distribution utility, that holds a ser-
vice obligation to supply electricity at the predetermined
hour without restriction on volume (a load following
contract). In the day-ahead forward contract, the LSE
procures the forecasted amount of the electricity from the
wholesale day-ahead market and faces the opportunity
cost of procuring an unknown remaining amount at the
contract delivery time in a volatile spot market.

The stated problem has special features that call for
use of modern signal processing methods, see [1]. First,
the electrical load and the spot prices are non-Gaussian
random variables. Their distributions are conditional on
the known regressor variables and often have long tails.
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Second, this is a fixed term problem, which allows to
use data-driven models trained on historical data for
the past fixed term periods. Third, the stochastic pricing
problem involves two interdependent random variables:
the electricity load and the spot price. The electricity
load influence means the contract cannot be priced by
arbitrage relative to the spot price.

The established derivative pricing approaches, such
as the celebrated Black-Scholes model, assume normal
distributions of the variables, see [2]. Most derivative
pricing approaches for the electricity market use normal
distribution models as well, e.g., see [3], [4], and [5].

Closer to the subject of this paper is work on fixed
term derivatives, starting from [6], [7], where nonpara-
metric models of distributions can be estimated directly
from the historical data. In [8], [9], nonparametric mod-
els are used for pricing electricity forward contracts.

The cited work does not include nonparametric model-
ing of conditional distributions with many regressor vari-
ables. The electricity markets are more predictable than
stock markets. This allows using more complex models
with regressors including seasonal variables (monthly,
weekly, intra-day hour), weather variables, and others.
An approach known as quantile regression (QR) is well
suited for modeling of such nonparametric distributions,
see [10], [11], [12], [13]. The QR distribution models
have been used for derivative pricing, e.g., see [14] and
[15]. The QR models have been also used for electricity
data forecasting, see [16], [17], and [18]. The QR models
are applied to risk estimation in [13], [19], [20], [21].

Most of the related prior QR work uses kernel regres-
sors, e.g., see [22], [23], [24], [25], [26], and [27]. The
finite-support or Gaussian kernels cannot model the long
tails of the probability distribution.

Long tail models have been long used in the actuarial
science approaches to insurance, see [28], [29], [30]. The
use of the long tail model in finance has increased in
the recent years, e.g., see [31], [32], [33], [34]. With
the proliferation of variable wind and solar generation,
the probability distributions in the electricity market are
increasingly non-Gaussian. However, the only prior work
using QR models with long tails in electricity market



applications known to the authors is [16].
The contributions of this paper are as follows. First, it

develops QR non-parametric models of the probability
distributions based on historical data and including long
tails. Second, these models are extended to two interde-
pendent variables: the electrical load and the spot price.
Third, the paper shows how to use the developed models
for numerical computation of stochastic integrals in the
derivative pricing. Finally, it demonstrates applications
of the methodology to the motivating example of the
load following contracts in the electricity market.

Sections III-A through III-E of this paper are based
on the earlier conference papers [35], [36].

II. PROBLEM FORMULATION

We consider the dataset

D = {yP,i, yπ,i, Zi}Ni=1, (1)

where scalars yP,i and yπ,i are response variables, vec-
tors Zi ∈ <n are explanatory variables (regressors), i is
the sample number, and N is the number of the samples.

In the motivating problem of the forward contract
pricing, variable yP,i describes the amount of the elec-
tricity to be procured in the contract. Variable yπ,i
describes the future spot price of the electricity at the
delivery time. In what follows, we assume that data (1)
are i.i.d., and follow unknown conditional multivariate
distribution yP , yπ|Z. In forecasting applications, i is
the time sample and the i.i.d. assumption means the
underlying process is stationary.

The stochastic pricing requires to estimate the multi-
variate probability density p(yP , yπ|Z). This distribution
is used to compute a stochastic integral of the form

E[f(yP , yπ)] =

∫∫ ∞
−∞

f(yP , yπ)p(yP , yπ|Z)dyP dyπ.

(2)

We consider the class of probability integrals (2) for
the functions of the form

f(yP , yπ) = φ(yπ) · (Aχ(yP )−B)+ , (3)

where the notation (·)+ = max(·, 0) is used; χ(·) and
φ(·) are two monotonically increasing functions; χ(·)
is unbounded. Such integrals are often encountered in
derivative pricing, e.g., for spread options, see [37].

Let y∗ be the solution to χ(y∗) = B/A; for the
unbounded monotonically increasing function ψ, the
solution always exists. The full stochastic integral (2),

(3) is now approximated as

E[f(yP , yπ)] = A ·Ψ(y∗|φ, χ)−B ·Ψ(y∗|φ, 1), (4)

Ψ(y∗;φ(·), χ(·)) =

∫ ∞
−∞

∫ ∞
y∗

φ(yπ)χ(yP )

p(yP , yπ|Z)dyP dyπ, (5)

where the dependence on the definite integral Ψ on the
integrand functions χ and φ has been made explicit. The
term Ψ(y∗|φ, 1) in (4) means that the integral is com-
puted for χ(yP ) = 1. The computation of integral (5) for
specific functions χ and φ is discussed in Section IV-B.

For special case of φ(·) = 1, integral (2), (3) is
encountered in the stochastic calculus of pricing options.
If we take , φ(·) = 1, A = 1, and χ(·) = exp(·)
in (3), then f(yP , yπ) = (eyP − B)+ gives pricing of
a European call option for the log-price variable yP
and strike price B. If, further, yP follows a Gaussian
distribution, we get the celebrated Black-Scholes model
[2]. Most of the existing work related to derivatives
pricing assumes Gaussian distributions of the prices.

This paper extends the stochastic integral (2) to a
general non-parametric probability distribution model.
Such model of the joint probability distribution for the
amount and the price can be acquired directly from the
data. The paper estimates the non-parametric model and
uses it for computing (2).

Figure 1 overviews the proposed methodology for
stochastic pricing. First, historical data is used for Model
Estimation. The obtained Distribution Model is then used
in Stochastic Pricing to compute Contract Pricing (2).

Fig. 1. Overview of the data-driven stochastic pricing approach.

The next sections describe the detail of the approach.
The Model Estimation is discussed in Section III. Com-
putation of Stochastic Pricing (2) is discussed in Sec-
tion IV. Section V demonstrates example applications
related to the electricity market.

III. ESTIMATING THE PROBABILISTIC MODEL

The distribution p(yP , yπ|Z) in (2) is modeled from
data (1) using multiple quantile regression. The non-
parametric model provides a flexible description of the
distribution shape. The constructed model can be then
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used in the stochastic integral. This section describes the
proposed data-driven modeling method.

A. Single Quantile Regression

As a starting point, consider a special case of the
dataset D (1) with one scalar dependent variable yi.

Dqr = {Zi, yi}Ni=1, (6)

where vectors Zi are the same as in (1). It is as-
sumed the data (6) are i.i.d. and follow an unknown
conditional multivariate distribution with the probability
density function p(y|Zi). We are trying to estimate the
probability density p(y|Zi) from data (6) .

We assume that the distribution p(y|Z) for (6) is
described by the following quantile regression model

P (y ≤ y(q)|Z) = q, (7)
y(q) = Zβ(q) + α(q), (8)

where q ∈ (0, 1) is the quantile level; β ∈ <n and α ∈ <
are the quantile regression hyperplane parameters.

For a given q, model (7) can be estimated by solving
a LP (linear programming) problem, see [38]. This LP
problem can be compactly written as

minimize
α,β

h(Y − Zβ − α1N ; q),

h(Y ; q) =
1

2
‖Y ‖1 +

(
q − 1

2

)
1TNY,

(9)

where vector Y = [y1 . . . yN ]T ∈ <N×1, matrix
Z = [Z1 . . . ZN ]T ∈ <N×n, and 1N ∈ <N is a
column vector of ones. In the case of q = 1/2, quantile
regression is the well-known median regression. Quantile
regression (9) uses pinball loss function h(Y ; q) and
provides estimate that differs from the ordinary least
squares (OLS) regression with squared loss ‖Y ‖22.

The quantile regression can be used for estimation of
the entire generating distribution in (6). The distribution
can be estimated through a non-parametric model of
the cumulative density function P(y|Z) in (7). The pre-
dictive power of such non-parametric model estimated
using quantile regression is limited by two issues. The
first issue is that if there are few data points on one
side of the quantile hyperplane, solution (9) might have
very large variance. This issue is with the distribution
tails: the left tail quantile levels q � 1 and the right tail
quantile levels, 1−q � 1. This issue is discussed below
in Subsection III-E.

The second issue is that the quantile regression hyper-
planes for different quantiles are generally not parallel to
each other. This means they intersect, at which point the
estimated quantiles loose their ordering. This is known as

the quantile crossing problem. The issue of the quantile
crossing is discussed in Subsection III-D.

B. Multiple Quantile Regression

We need a model of the form (7), where α = α(q) and
β = β(q) are smooth functions that can be differentiated
to compute the probability density. Solving individual
quantile regression problems (9) for many different val-
ues q might not give the desired result. To get a better
solution, we solve a multiple quantile regression problem
on the grid of m quantiles qj

0 < q1 < . . . < qm < 1. (10)

These multiple quantile regression problems are solved
as a joint optimization problem with a smoothing penalty

minimize
{αi,βi}mi=1

m∑
j=1

h(Y − Zβj − αj1N ; qj)

+ λ

m∑
j=2

||βj − βj−1||22

+ µ

m−1∑
j=2

(αj+1 + αj−1 − 2αj)
2
,

subject to βL = βi, (i = 1, . . . , L),

βR = βi, (i = R, . . . ,m),

(11)

where h(Y, q), Y , Z, and 1N are defined in (9); λ is a
penalty on the first difference on βj ; µ, on the second
difference of αj . The reasoning behind the introduction
of the smoothing penalties and selection of parameters λ
and µ is presented in Subsection III-D. The constraints
on βj in (11) are introduced because for the low and the
high quantiles there is not enough data on one side of the
hyperplane to get accurate estimates of both regression
slope βj and its intercept αj . The tail modeling is further
discussed in Subsection III-E.

C. Solving the Multiple Quantile Regression

Convex optimization problem (11) is a quadratic pro-
gramming (QP) problem. For small to moderate problem
size, it can be solved with many available QP solvers.
Large problem sizes for large training data sets (6)
and large dimension of the regressor vector Z require
a specialized convex optimization approach. The large
problem sizes are encountered in the practical appli-
cations of the described quantile regression modeling
methods. A scalable approach to solving problem (11)
is discussed in our paper [35], where more detail can be
found. This convex optimization problem can be solved
by using the block splitting formulation of the alternating
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direction method of multipliers (ADMM) [39]. The
ADMM solution is scalable and parallelizable in the
number of data points and the number of regressors. It
has been demonstrated for N = 21, 696 data points with
4,455 decision parameters in [35]. For a problem with
N = 106 data points and 105 decision parameters the
solution took 15 minutes to compute on a quad-core PC.

D. Quantile Crossing Problem

The quantile crossing issue is brought up in the end
of Subsection III-A. It is examined here in more depth.

The multi-quantile model is obtained by solving (11).
The solution is the set of the slopes βj and intercepts
αj (11) on the quantile grid (10). This set describes the
functions α(q) and β(q) in (7). The probability density
p(y) = dq

dy can be obtained by differentiating y = Zβ +
α. In practice, a secant method of differentiation can be
employed using βj and αj .

The quantile crossing is avoided if dq
dy > 0. This is

equivalent to dy
dq > 0, which can be expressed as

Z
dβ(q)

dq
+
dα(q)

dq
> 0. (12)

We will use an equivalent form of (12)

−
(
ZM−1

)
· d (Mβ(q))

dq
·
[
dα(q)

dq

]−1

≤ 1, (13)

where M is a preconditioner matrix. Consider the re-
gressor scatter matrix ZTZ, where Z = [Z1 . . . ZN ], for
data set (6). Preconditioner M can be selected such that
the matrix M−1(ZTZ)M−1 is well conditioned.

Consider the following use case. Model (7) is esti-
mated (trained) for a set of past data (6). It is then
exploited in some on-line algorithm for new data points.
Will quantile crossing be an issue? The quantile hy-
perplanes intersect somewhere in the regressor space,
unless β(q) is constant. This means one can always find
a regressor Z∗ such that model has quantile crossing.

Below is a sufficient condition that there is no quantile
crossing for a given regressor Z. Taking matrix norms of
ZM−1 and the remaining multiplier in (13), maximizing
over q, and dividing by the second norm yields

‖ZM−1‖2 ≤ Ξ, (14)

Ξ = max
q

∥∥∥∥∥M dβ(q)

dq
·
[
dα(q)

dq

]−1
∥∥∥∥∥
−1

2

, (15)

where Ξ is the radius of the scaled regressors ball where
the model is guaranteed to have no crossing.

The derivatives dβ(q)/dq and dα(q)/dq in (15) can
be numerically estimated by the secant method for a

solution of (11) computed on the grid (10) to evaluate
Ξ in (15). The smoothing parameters λ and µ in (11)
should be tuned such that condition (14), holds for all
(or almost all) data points. The numerical analysis of
these quantile crossing conditions and of the smoothing
parameter tuning for the problem closely related to the
examples in Section V can be found in [35].

E. Tail Modeling

The described smoothed quantile regression model
(7), (8), (10), (11) interpolates the available data. The
distribution tails, i.e., the extreme values of response
variables y have to be modeled separately. The stochastic
model for the last (or the first) quantile can be extrap-
olated beyond the data range if its parametric form is
known. Extreme Value Theory (EVT) predicts that in
many cases the distribution tails follow a Pareto (power
law) or exponential distribution [40]. The EVT methods
for tail estimation are peaks over threshold (POT) and the
block maxima. This paper uses the POT method because
it employs all data in the last (or the first) quantile.

The application examples of Section V, use log-
variables. In log-coordinates, the Pareto distribution be-
comes an exponential distribution. The exponential tails
can be estimated as a separate step, after the solution to
(11) has been computed. The first qL = q1 and the last
qR = qm quantile levels on the quantile grid in (10) are
used as the tail thresholds. The POT exceedances are

eL,j = yj − Zjβ1 − α1, j ∈ JL, (16)
eR,k = yk − Zkβm − αm, k ∈ JR, (17)

where JL ≡ {j : yj < Zjβ1 + α1} and JR ≡ {k : yk >
Zkβm + αm}.

We assume the tail probability distributions to be

Zβ1 + α1 − y|y < Zβ1 + α1 ∼ Exp(θL), (18)
y − Zβm − αm|y > Zβm + αm ∼ Exp(θR). (19)

These distributions are conditional on the POT ex-
ceedance events in (18) and (19), which have proba-
bilities qL = P(y < Zβ1 + α1) and qR = P(y <
Zβm+αm). The Maximum Likelihood Estimates of the
tail rate parameters θL in (18) and θR in (19) are

θ−1
L = −mean(eL,j |j ∈ JL), (20)
θ−1
R = mean(eR,k|k ∈ JR). (21)

F. Quantile Model of the Distribution

The numerical calculation of the stochastic integral
(2) requires expressing the probability density p(y|Z)
through the data-driven probabilistic model of the form
(7), (8), (10), (11), (18), (19).
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Model (7) defines the cumulative density function
(CDF): P (y ≤ y(q)|Z) = Fy|Z(y) = q. Model (8)
can be then considered as the inverse CDF (quantile
function) y = F−1

y|Z(q), where q is the quantile level.
The quantile regression model (8), (11) is estimated

at the quantile grid points (10). We extended this model
to the entire (0, 1) quantile interval as

y(s|Z) =

m∑
j=1

(Zβj + αj)Kj(s), (22)

where kernel functions Kj(s) are such that Kj(qj) = 1,
and Kj(qk) = 0 for k 6= j. Model (22) does linear inter-
polation between the grid nodes (10) and extrapolation
for the tails in accordance with (18), (19). We use

Kj(s) = Bj,2(s) for qL ≤ s ≤ qR, (23)

K1(s) = θ−1
L log

s

qL
for 0 < s < qL, (24)

Km(s) = −θ−1
R log

1− s
1− qR

for qR < s < 1, (25)

where Bj,2(s) are the second-order (triangular) B-spline
kernels with knots (10). The log terms in (24) and (25)
come from the quantile functions (inverse CDFs) of the
tail exponential distributions (18) and (19).

G. Bivariate Distribution in Quantile Variables

The bivariate distribution p(yP , yπ|Z) in (2) can be
expressed using the conditional probability formula

p(yP , yπ|Z) = p(yπ|Z, yP ) · p(yP |Z). (26)

We model p(yπ|Z, yP ) and p(yP |Z) through the re-
spective inverse CDFs of the form (22)–(25). The inverse
CDF model for p(yP |Z) can be expressed as

yP (s|Z) =

m∑
j=1

(ZβP,j + αP,j)Kj(s), (27)

where the model parameters for yP , such as βP,j and
αP,j , are obtained according to (8), (10), (11), (18), (19).

The inverse CDF model for p(yπ|Z, yP ) in (26) ex-
plicitly depends on yP , which is an additional regressor
parameter. Similar to quantile model (27), we have

yπ(r|Z, yP ) =

m∑
j=1

(Zβπ,j+γπ,jyP +απ,j)Kj(r). (28)

IV. NUMERICAL STOCHASTIC INTEGRATION

This section presents a method for numerical computa-
tion of the stochastic integral (5) using the nonparametric
probability distribution model of the form (27), (28). In
this section the regression variable vector Z is given and

fixed. Therefore, the explicit dependence on Z is omitted
to make the explanation clearer.

A. Probability Integral Transform

Models (27), (28) expressed in terms of the quantile
levels allow to formulate integral (5) using the prob-
ability integral transform. The joint pdf in (5) can be
expressed through quantile models (27), (28) by using
(26), where in accordance with (7)

p(yP (q)) =
dFyP
dyP

=

[
∂yP (q)

∂q

]−1

, (29)

p(yπ(r)|yP ) =
dFyπ|yP
dyπ

=

[
∂yπ(r|yP )

∂r

]−1

. (30)

To compute integral (5), consider the transformation of
integration variables to the quantile level variables(

yP = yP (q)
yπ = yπ(r|yP (q))

)
→
(
q
r

)
, (31)

where yP (q) is given by (27) and yπ(r|yP (q)) is given
by (28) with yP (q) substituted for yP . In the (q, r) vari-
ables, the first two integrand multipliers in (5) become

ψ(q) = χ(yP (q)), (32)
ϕ(r, q) = φ(yπ(r|yP (q))). (33)

Using (26), (29), and (30), the probability density mul-
tiplier in (5) can be expressed as

p(yP (q), yπ(r|yP (q))) =

[
∂yP (q)

∂q

]−1 [
∂yπ(r|yP )

∂r

]−1

.

The integration variable change formula requires to in-
clude an additional transformation determinant multiplier

det

[
∂(yP , yπ)

∂(q, r)

]
=
∂yP
∂q
· ∂yπ
∂r

.

This holds because yP (q) does not depend on r.
The last two multipliers cancel each other, their prod-

uct is unity. Thus, integral (5) can be computed as

Ψ(yP (q∗);ϕ,ψ) =

∫ 1

0

∫ 1

q∗

ϕ(r, q) · ψ(q) dqdr, (34)

where q∗ solves yP (q∗) = y∗ with y∗ from (5), ϕ(·) is
given by (27), (32) and ψ(·) by (27), (28), and (33).

B. Numerical Integration Approach

The evaluation of Ψ(q∗) in (5) is illustrated in Table I
that shows partitioning of the 2-D [0, 1]× [0, 1] integra-
tion domain into nine subdomains. The double integral
Ψ(q∗) is a sum of the integrals over these subdomains,
which are annotated in Table I.
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[0, rL] [rL, rR] [rR, 1]
[qR, 1] FL,R(q∗) ρR(q∗) FR,L(q∗)
[qL, qR] ΓL(q∗) Γ(q∗) ΓR(q∗)
[0, qL] FL,L(q∗) ρL(q∗) FR,L(q∗)

TABLE I
INTEGRATION DOMAIN PARTITIONING FOR INTEGRAL (5)

The middle block in Table I does not include singular-
ities and can be computed using numerical quadrature.
For simplicity, assume that the same uniform quantile
grid of the form (10) is used for building both models
(27) and (28), where qj − qj−1 = ∆q. The quadrature
using linear interpolation (trapezoidal rule) is, then (as-
suming that q∗ < qR)

Γ(q∗) = (∆q)2
m∑

i=1,j=j∗

w
(1)
i w

(j∗)
j ϕ(ri, qj)ψ(qj), (35)

j∗ = arg min
j
{|q∗ − qj |}, (36)

w
(j∗)
j =

 0, j < j∗
1/2, j = j∗, j = m

1, otherwise
. (37)

For q∗ ≥ qR, we have Γ(q∗) = 0.

When computing integral (4), special care should be
taken of the distribution tails that correspond to the
eight edge blocks in Table I. Functions ψ (27) and φ
(28) include logarithms at the integration domain edges
that have singularities at 0 and 1 respectively. These
logarithmic singularities describe the quantile behavior
of the exponential distribution tails. Because of the
singularities, the integrals for all eight edge blocks in
Table I are not amenable to the numerical quadrature and
must be computed analytically. The obtained analytical
expressions for the eight edge block integrals given
below can be used in the numerical computation of
integral (4). Each of the eight tail integrals depends on
the tail behaviors for the two the integration variables, q
and r, and on the inner integral limit q∗ in (34).

The tail integrals for the eight edge blocks can be
expressed through the following auxiliary functions

ΩL(r, q∗) =

∫ qL

min(q∗,qL)

ϕ(r, q) · ψ(q)dq, (38)

ΩR(r, q∗) =

∫ 1

max(q∗,qR)

ϕ(r, q) · ψ(q)dq, (39)

gL(q) =

∫ rL

0

ϕ(r, q)dr, (40)

gR(q) =

∫ 1

rR

ϕ(r, q)dr. (41)

Using notation (38)–(41) we have

FL,L(q∗) =

∫ rL

0

ΩL(r, q∗)dr, (42)

FL,R(q∗) =

∫ rL

0

ΩR(r, q∗)dr, (43)

FR,L(q∗) =

∫ 1

rR

ΩL(r, q∗)dr, (44)

FR,R(q∗) =

∫ 1

rR

ΩR(r, q∗)dr, (45)

ΓL(q∗) = ∆q

m∑
i=1

w
(1)
i ΩL(ri, q∗), (46)

ΓR(q∗) = ∆q

m∑
i=1

w
(1)
i ΩR(ri, q∗), (47)

ρL(q∗) = ∆q

m∑
j=j∗

w
(j∗)
j gL(qj)ψ(qj), (48)

ρR(q∗) = ∆q

m∑
j=j∗

w
(j∗)
j gR(qj)ψ(qj). (49)

Integrals (38)–(45) can be evaluated for specific func-
tions ϕ(r, q) and ψ(q). This is done below.

C. Tail Integrals for Exponential Function

In the motivating example of Section V, logarithms of
the variables yP and yπ are used in the estimated model.
Computing the expectation of the forward contract price
in (3) requires the inverse, exponential, transformations.
This means in (32), (33) we have

φ(yπ) = exp(ν · yπ), (50)
χ(yP ) = exp(κ · yP ), (51)

where ν and κ are fixed exponent parameters.
Auxiliary functions (38)–(41) are then computed as

ΩL(r, q∗) = Ωe(r, qL,min(q∗, qL), qL, σL), (52)
ΩR(r, q∗) = Ωe(r, qR,max(qR, q∗), 1,−σR),(53)

gL(q) = ϕ(rL, q)h(rL, θπL), (54)
gR(q) = ϕ(rR, q)h(1− rR,−θπR), (55)

where

σL = (νγπ(r) + κ)/θPL, (56)
σR = (νγπ(r) + κ)/θPR, (57)

Ωe(r, q, q∗, a, σ) = ϕ(r, q) · ψ(q) (58)
·m(q)−σ · |m(a)σ+1 −m(q∗)

σ+1|/(σ + 1),

h(r, θ) = r/ (1 + ν/θ) , (59)
m(x) = min(x, 1− x), (60)
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and γπ(r) in (56), (57) is defined through (23), (25) as

γπ(r) =

m∑
j=1

γπ,j ·Kj(r). (61)

The tail integrals (42)–(45) in Table I are

FL,L(q∗) = ΩL(rL, q∗) · h(rL, θπL), (62)
FL,R(q∗) = ΩL(rL, q∗) · h(1− rR,−θπR), (63)
FR,L(q∗) = ΩR(rL, q∗) · h(rL, θπL), (64)
FR,R(q∗) = ΩR(rL, q∗) · h(1− rR,−θπR). (65)

Integrals (46)–(49) in Table I are expressed through ΩL
in (52) and ΩR in (53). To evaluate Ψ(q∗;ϕ, 1) in the
case of χ = 1 one can set κ = 0 in (51), (56), and (57).

V. APPLICATION EXAMPLES

The motivating example for this paper is the stochastic
pricing of the day-ahead electricity procurement con-
tracts entered by a distribution utility. We consider the
following stylized problem. The distribution utility is
buying electrical power at the advance bulk electricity
market. This happens every midnight, when the utility
enters into 24 forward contracts for each hour of the
next 24-hour day. As the day goes on, at each hour,
the utility must fulfill the aggregate demand of the
retail customers. This power load demand is unknown
in advance. Possible shortages of the forward contract
are filled by procuring the deficit amount at the spot
electrical power market, which can be rather volatile. If
the forward contract provides a surplus of the power, the
overpayment cannot be recovered.

This section applies the developed methodology to a
few problems related to the described day-ahead elec-
tricity procurement setup. Subsection V-A applies the
modeling approach of Section III to data sets for a major
US utility, PJM. The result is the data-driven stochas-
tic models for the power loads and spot prices. The
obtained models allow using the numerical stochastic
pricing approach of Section IV for the forward contract
pricing. As a simple example of the method usage,
Subsection V-C evaluates the risk of the forward contract
in fulfilling the power load demand. Subsection V-D
provides forward contract pricing for a given hour of the
day. This contract pricing is then applied to demonstrate
procurement policy optimization in Subsection V-E.

A. Model for Day-ahead Forward Contract

Let Pt be the load demand and πt the spot price at
hour t. The response variables yP,t and yπ,t in the dataset

(1) are indexed by the number of hours t elapsed since
the start of the data collection and are

yP,t = log (Pt/P0) , (66)
yπ,t = log (πt/π0) , (67)

where the log-load is normalized by P0 = 1 GW and
the log-price by π0 = $1/MWh. Regressors Zt in (66),
(67) include 6 indicators for week days, 11 for calendar
months, and 3 for holidays, as well as 24-hour lagged
log-load and log-spot price for a total of 23 regressors.
For more discussion on the regressors see [35], [36].

This work uses a data set from the PJM utility, which
is described in [41], [42]. The total system load Pt is
used in the examples below. The range of the loads
is 51 to 158 GW, with the average load of 88 GW.
The data covers a time range from January 2011 to
December 2013 with sampling interval of one hour,
N = 26, 280 samples at all. The dataset also includes the
spot electricity prices. The prices range from $0/MWh
to $768/MWh, with the average around $37/MWh. The
price is sampled at an hourly rate, the same as the load.
We split up the dataset into two parts, the training and
test set. The training set includes the data from January
2011 to December 2012, the total of 17,520 samples.
It is used to estimate the data-driven stochastic models
of Section III for the log power loads and log spot
prices. The test set from January 2013 to December
2013, which contains 8,760 time samples, is used for
validating the model Section V-B and the model-based
policies in Sections V-C and V-E.

The data-driven methods of Section III were applied
to estimate two probabilistic models from the data: the
model of the form (27) for the log load yP,t (66) and the
model (28) for the log price yπ,t (67). The models use
quantile grid (10) with m = 99 and spacing ∆q = 0.01
spanning from qL = rL = 0.01 to qR = rR = 0.99.

Selection of smoothing parameters λ and µ is dis-
cussed in Section III-D. More detail on parameter tuning
for a closely related application example can be found
in [35]. In both data fit problems (11), for (66) and
(67), the smoothing parameters were set to λ = 5 · 105,
µ = 5 · 105 for 2, 3, and 6-hour ahead forecasts and
λ = 106, µ = 5 ·105 for all other hours. Cross validation
of these parameters based on Pearson’s chi square test
statistics is discussed in Section V-B.

Figure 2 illustrates overall modeling logic. The model
training is based on Data Set (6), which is the input into
the Optimal Fit of Smoothed QR procedure (11). The
output is Distribution Model on quantile grid (10) de-
scribed by Quantile Regression parameters {βj , αj}mj=1

in (11), and tail rate parameters (20) and (21).
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Fig. 2. Quantile regression model building logic.

The fit of the estimated models (27), (28) is illustrated
by using them for forecasting the data in the training
dataset. Overall, 24 models of the form (27) for the
log loads at each of the 24 hours of the next day were
estimated along with the 24 models of the form (28) for
the log prices. At each midnight point, forecasts for the
next 24 hours were computed and then compared to the
actually realized values.
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Fig. 3. Plot of quantile regression load forecast.

Figure 3 illustrates the load forecasts for a 101 hour
segment (just over 4 days) computed for quantile levels
q = 0.1, 0.5, 0.9 in the models of the form (27), (66).
The 24 hourly forecasts for the 24 trained models are
stitched together in the figure. The actual load demand
curve is plotted along with the quantile level forecasts.

Figure 4 illustrates the quantile forecasts for the spot
prices. The format is the same as in Figure 3.
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Fig. 4. Plot of quantile regression price forecast.

B. Statistical Validation of the Model
After the probability integral transform (31), the orig-

inal distribution (26) becomes a uniform distribution in

[0, 1]× [0, 1] square in the quantile variables (q, r), see
[43]. Following [43], [44], the statistical validation of
the estimate of distribution (26) is equivalent to testing
the uniform distribution hypothesis in the transformed
variables (q, r). This is done by dividing the [0, 1]×[0, 1]
square into 100 cells of 0.1 × 0.1 size. Each cell has a
probability mass of 0.01.
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Fig. 5. Joint distribution histogram.

Figure 5 shows percentages of the test set data points
in the 100 quantile cells for the estimated 20-hours ahead
forecast model. As expected, the results are around 1%
(the average of 3.65 data points). The Pearson’s chi-
squared test of the goodness of fit can be computed for
the binned data in Figure 5 with 99 degrees of freedom,
e.g., see [43], [44]. The test does not reject the uniform
distribution hypothesis with significance of 99%.
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Fig. 6. Chi squared test value compared to the 99% critical value.

The chi-squared test results for all estimated models
are shown in Figure 6. The dashed line shows the 99%
critical value of the distribution. The bars show the chi-
squared statistics for the 24 forecast hours. They are all
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below the dashed line, which means the null hypothesis
holds. These are results for the test set with the model
estimated from the training set. The chi-squared statistics
for the training set are substantially smaller.

Figures 5 and 6 characterize the goodness of fit of
models (27) and (28) for the distribution body. The
distribution tails describe rare extreme events that are
not seen in these figures and not covered by the tests.
The exponential model fit for the right tails of quantile
functions (27) and (28) in log-variables (66), (67) is
illustrated by the QQ plots in Figure 7. The errors of
the 8am (8-hour ahead) forecast for the training set are
plotted. The QQ plots show that the tail models fit the
data very well. These log-exponential (Pareto) models
have the best fit by far compared to the alternatives. More
discussion on selecting and estimating tail distribution
models for electrical load and price data, as well as
further references can be found in [33], [35], [45].
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Fig. 7. QQ plots for the right tails: load (left), spot price (right).

C. Forward Contract Risk Estimation

The models built in Subsection V-A can be used for
estimating the risk of the forward contract for electricity
delivery. The probabilistic evaluation of risk is important
because load volatility is increasing with the on-going
proliferation of the renewable generation. The most
important risk factor is that the required amount of the
electricity cannot be procured at the spot market, because
the stand-by generation capacity is insufficient.

Consider a stylized formulation, which resembles
empirical approach used by some ISOs (Independent
Systems Operators) for operational provisioning of the
generating capacity, see [46]. Assume that power amount
in the day-ahead electricity procurement contract is
determined by utility using the Ordinary Least Squares
(OLS) forecast of the form similar to (8)

ŷP,t = ZtβOLS + αOLS , (68)

where αOLS and βOLS are determined by solving OLS
data fit problem. Using the notation in (9), the OLS
problem for dataset (6) is

{αOLS , βOLS} = arg min
α,β
‖Y − Zβ − α1N‖2. (69)

The ISO ensures that the generation capacity for the
power procured by the utility is available with a 10%
operating reserve margin. If the actual demand exceeds
the operating reserve, it cannot be fully satisfied, no
matter the price. This means some hard load must be
shed, which is called a Loss of Load (LOL) event. The
risk of the LOL events is controlled by the regulator,
NERC. The LOL expectation (LOLE) is required to be
less than of 1 day in 10 years, which corresponds to
LOL probability (LOLP) of less than 0.0027.

In accordance with (66), the reserved capacity is P ∗t =
1.1 · P0 exp(ŷP,t). The risk of the LOL event is Rt =
P(yP,t > log 1.1 + ŷP,t|Zt). It can be estimated using
formula (4) and stochastic integral (5), where ϕ(r, q) =
1, ψ(q) = 1, A = 1, B = 0, and y∗ = log 1.1+ ŷP,t. The
parts of integral (34) shown in Table I can be computed
in accordance with (35), (42)–(45), and (46)–(49), (52),
(53), where φ = 1 is obtained by setting ν = 0 in (50)
and χ = 1 for κ = 0 in (51). Alternatively, the risk
Rt can be obtained from the numerical quantile model
yP (s|Z) (27); Rt = 1 − st, where st is a solution to
yP (st|Zt) = log 1.1 + ŷP,t.
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Fig. 8. Risk estimation of the current load.

To illustrate the risk estimation, 24 risk values are
computed at each midnight for the 24 OLS forecasts
for each hour of the next day. Forecast for each hour
is using its own OLS model (68), (69) for the log
loads yP . The model is trained based on the data set
described in Subsection V-A. The risk estimates for 24
hours of each day in the training dataset have been
stitched together to provide coverage for each hour of
the data. Figure 8 shows risk Rt computed for a 101
hour (about 4-day) segment of the data. The minimum
of the risk estimate is less than 10−5 and mostly less
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than 0.01. This means evaluation of the risk relies on
the tail part of the data-driven probabilistic model of
Subsection V-A. The horizontal dashed line in Figure 8
is the LOLP=0.0027 mandated by NERC. One can see
that the common approach of using the OLS forecast
plus 10% margin does not provide the required LOLP
at all times. Figure 8 shows that using the OLS forecast
provides average log-risk that looks reasonable; however
the average risk is much higher than the required LOLP.

An alternative approach is to use the data-driven prob-
abilistic model (27), (28) described in Subsection V-A to
achieve the risk Rt = r∗ = 0.0027 at all times by using
quantile regression forecast ŷP,t = yP (r∗|Zt). This risk
corresponds to the horizontal dashed line in Figure 8.

D. Forward Contract Pricing

In this subsection, the data-driven probabilistic model
of Subsection V-A is used for forward pricing of the
electricity procurement contract.

We consider the day-ahead forward contract entered
at the midnight for the electricity delivery at given hour
t of the next day. With the regressor vector Zt known,
the conditional quantile models of the form yP (q) (27)
for log-load (66) and of the form yπ(r) (28) for the log-
prices (67) can be used. The quantile model (27) and
inverse of (66) can be used to parametrize the advance
power order Pa(t) though a quantile level variable s as
Pa(t) = P0e

yP (s). Note that s → Pa(t) is a one-to-one
transformation since both (27) and (66) are monotonic
functions.

The forward contract cost Ct depends on the future
log-load yP,t and log-spot price yπ,t, which are both
random variables. Its expectation can be expressed as

E[Ct(s)] = E

([
P0e

yP,t − P0e
yP (s)

]
+
π0e

yπ,t

)
.

(70)

To compute expected forward contract cost (70), we
need to evaluate stochastic integral (2) with exponential
functions (50), (51) in integrand function f(yP,t, yπ,t)
(3). Integral (70) is obtained by setting A = P0, B =
P0e

yP (s) in (3) and ν = κ = 1 in (50), (51). We then
used formulas (4) and (5). The parts of integral (34)
shown in Table I were evaluated in accordance with (35),
(42)–(45), (46)–(49), (52), (53).

E. Contract Cost Optimization

The forward contract pricing in Subsection V-D can
be used as a basis for optimizing the procurement
policy. This subsection considers optimization of the
total expected cost that is the sum of the advance cost and

the expected forward contract price. These costs depend
on the advance power order Pa(t).

The advance cost is the deterministic value
πadv,t−1Pa(t). Using the same quantile parametrization
as in Subsection V-D, we have

At(s) = πadv,t−1P0e
yP,t(s), (71)

where πadv,t is the advance price at time t. The advance
price data from PJM utility is described in [42]. The
advance prices range between $0/MWh and $313/MWh,
with the average of $37/MWh.

The total cost Tt(s) at a given time t is

Tt(s) = At(s) + E[Ct(s)], (72)

where the expected forward contract cost E[Ct(s)] (70)
is computed as the stochastic integral, see Subsec-
tion V-D. Based on (71), the advance cost At(s) is a
non-decreasing function of s. The expected spot cost
E[Ct(s)] is a non-increasing positive function of s. The
optimal trade-off between the advance cost and the spot
cost that minimizes total cost Tt(s) (72) can be found
numerically by computing Tt(s) on a grid of quantile
levels s ∈ (0, 1).

Figure 9 illustrates the total cost Tt(s) for 12 pm on
July 19th, 2013 computed from E[Ct(s)] (70), At(s)
(71), and (72) on the grid of the quantile levels s. Its
minimum is achieved near so = 0.81. For s < so, Tt(s)
is dominated by E[Ct(s)] and for s > s∗, by At(s) .
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Fig. 9. The total cost and the minimizer quantile level so.

In backtesting, the historical data ahead in time of the
contract allows computing the actual realized cost for an
advance log-power procurement ȳP,t as

Ut(ȳP,t) = πadv,tP0e
ȳP,t + πtP0

(
eyP,t − eȳP,t

)
+
,

(73)

where yP,t is the actual log power load that realized
at the contract exercise time. We compute the actual
realized cost Ut for the procured log power ȳP,t =
yP (so(t)), where so(t) minimizes the total cost Tt(s)
in (72). We compare it with the results for the baseline
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advance procurement policy ȳP,t = ŷP,t that is based
on the OLS forecast (68), (69). The comparison of these
two actual realized costs is summarized in Table II. The
optimized actual realized cost Ut(yP (so)) shows 1.11%
savings, which is $153,000 for the chosen hour.

TABLE II
COST RESULTS ($/MILLION)

Strategy/Model Optimized OLS Forecast
1-hour Cost 13.60 13.75
Optimal s 0.81 n/a

We backtest the optimized procurement policy ȳP,t =
yP (so(t)) and the baseline OLS forecast procurement
policy ȳP,t = ŷP,t. The two actual realized costs (73)
are computed for each hour of the test set (the year of
2013). Figure 10 illustrates the backtesting logic.

Fig. 10. Backtesting logic.

The backtesting results are shown in Figure 11 for a
selected 61 hour period (about 1.5 days). It can be seen
that most of the time the optimized policy has lower cost
than the OLS forecast policy. Figure 11 shows that main
savings come at the peak load times. This is because
the developed non-parametric model describes the tails
much more accurately than the normal distribution model
implied in the OLS. The full year actual cost results are
summarized in Table III. The yearly savings are 2.08%
or $641 million for the utility.
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Fig. 11. Hourly cost comparison for a 61 hour period.

TABLE III
BACKTESTING RESULTS: TOTAL ACTUAL COST FOR A FULL YEAR

Strategy/Model Optimized OLS Forecast
1-year Cost ($B) 30.1 30.8

Percentage Savings 2.08% 0%

VI. CONCLUSION

This paper has developed a numerical stochastic pric-
ing method for forward procurement contracts using
non-parametric long tail probabilistic models acquired
directly from historical data. The method has been
demonstrated in application to electricity procurement in
day-ahead bulk markets. One example is risk estimation,
another example is forward contract pricing and opti-
mization. Backtesting of the optimized policy based on
the developed data-driven method using electric utility
data has demonstrated savings of 2.08% or $641 million.
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