Multi-Epoch Decentralized Collaborative Localization using 3D Mapping Aided (3DMA) GNSS and Inter-Agent Ranging

Siddharth Tanwar & Grace Xingxin Gao

ION GNSS+ 2019, Miami, FL
3D Mapping Aided Navigation

- Shadow Matching (SM)[1]
- Intelligent Urban Positioning[2]
- Multi-epoch 3DMA GNSS using a grid filter[3]

Mitigate effect of signal blockage and multipath

Position Ambiguity in SM

Ambiguity due to symmetry in building structure

Ambiguity not always resolved with inclusion of satellite ranging\(^4\)

\(^4\) Groves, Paul D. ION ‘15
Jump Discontinuities in DC-SM[5]

\textbf{Snapshot} algorithms have jump discontinuities

[5] Tanwar and Gao, ION GNSS+’18
Our Scope

Agent motion estimation with temporal correlation

Extend DC-SM algorithms to a **Multi-Epoch Algorithm**
Objectives

• **Mitigate ambiguity** and **improve accuracy** in 3DMA techniques with multi-agent cooperation in a multi-epoch fashion

• Analyze **impact of connectedness** and **scale of network** on navigation solution accuracy

• Design system to ensure operability with **scalability**, **constraints on communication** and **low computation overhead** for large networks
Contributions

- Designed a multi-agent grid-based 3DMA localization architecture that is
 - multi-epoch
 - decentralized
- Applied discrete Bayesian Filtering incorporating motion models
- Deployed a bank of Kalman Filters for velocity distribution estimation
Outline

• Multi-Epoch Decentralized Collaborative 3DMA Localization
 ▪ System Architecture
 ▪ Velocity Distribution Calculation
 ▪ Prediction Step
 ▪ Update Step

• Setup and Results
 ▪ Simulation Setup
 ▪ Results

• Summary
Overall Architecture

Agent i

- 3D Map
- GPS Receiver
- Ranging sensor

Prediction Step

Update Step

Private Update Step

Relative Update Step

Velocity Distribution Calculation

Information Exchange

Agent j

- Rel. Update Step

Agent k
Overall Architecture

- **Agent i**
 - 3D Map
 - GPS Receiver
 - Ranging sensor

- **Prediction Step**
- **Update Step**
 - **Private Update Step**
 - **Relative Update Step**
- **Velocity Distribution Calculation**

- **Agent k**

- **Agent j**
 - Information Exchange

- **Rel. Update Step**

Info. exchanged only during inter-agent ranging
Overall Architecture

- **Agent i**
 - 3D Map
 - GPS Receiver
 - Ranging sensor

 - Prediction Step
 - Update Step
 - Private Update Step
 - Relative Update Step
 - Velocity Distribution Calculation

 - Information Exchange
 - Agent j
 - Agent k

- Rel. Update Step
Velocity Distribution Calculation

For each grid point $r \in G_i$

$G_i(r)$

$V_i^t(r)$

S_i^t (Extended Kalman Filter)

V_i^{t*}
Velocity Distribution Calculation

For each grid point $r \in G_i$

$G_i(r)$

$V_i^t(r)$

S_i^t

Process Satellite Data

Satellite position, velocity, pseudorange, received SNR, pseudorange rate

V_i^{t*}

GPS Receiver

Extended Kalman Filter
Velocity Distribution Calculation

For each grid point $r \in G_i$

- $G_i(r)$
- $V_i^t(r)$

Previous velocity estimate (assumed Gaussian) for r^{th} grid coordinate

Extended Kalman Filter

Satellite position, velocity, pseudorange, received SNR, pseudorange rate

Current velocity distribution estimate over the entire grid

Process Satellite Data

S^t_i
Prediction Step

Discrete Bayesian Filter over grid of positions

For each grid point \(r \in G_i \)

\[\Lambda_i^t(r) \quad : \text{Probability distribution of position from last time step} \]

\[V_i^t(r) \quad : \text{Velocity distribution over the grid} \]

\[G_i \quad : \text{Grid Coordinates} \]

\[\Lambda_i^{t*}(r) \quad : \text{Probability distribution of position after prediction step} \]
Private Update Step

GPS Receiver

3D Map

Grid Coordinates G_i

Process Satellite Data

Intelligent Urban Positioning\cite{2}

Probability Distribution Λ_i

Hypothesis Integration

Output Probability Distribution Λ_i^*

\cite{2} Adjrad and Groves, ION GNSS+ ’16
Relative Update Step

Derives from ambiguity mitigation step in DC-SM\[^{[5]}\]

\[\Lambda^t_j \]

Agent \(j \)

\[\Lambda^t_i \]

Ranging sensor

\[G_i \]

Grid Coordinates

Output

Probability Distribution

\[\Lambda^{t+1}_i \]

\[\text{ Obtain Modes } \]

\[\text{ Find Pair } \]

\[\text{ Generate Radial Gaussian Probabilities } \]

\[\text{ Hypothesis Integration } \]

[5] Tanwar and Gao, ION GNSS+’18
Outline

• Multi-Epoch Decentralized Collaborative 3DMA Localization
 ▪ System Architecture
 ▪ Velocity Distribution Calculation
 ▪ Prediction Step
 ▪ Update Step

• Setup and Results
 ▪ Simulation Setup
 ▪ Results

• Summary
Simulation Setup – 3D Map

Search area for candidate positions

Open Street Map[6]

Illinois LiDAR Data[7]

Level of Detail (LOD)-1 3D Map

[6] www.openstreetmap.org
[7] https://clearinghouse.isgs.illinois.edu/
Simulation Setup – Specifications

- Number of Agents N: 10
- 4 vehicle agents with velocity ~ 7 m/s
- LOS and range-limited communication and ranging between agents

A scenario with 10 agents
Simulation Setup – Network

Sparsely non-singly connected network
Simulation Setup – Sensors

Pseudorange

\[
\rho_{LOS} = \| x_s - x_i \| + c \cdot b_i^t + \epsilon_{si}^t
\]
\[
\rho_{NLOS} = \| x_s - x_i \| + c \cdot b_i^t + \epsilon_{si}^t + \delta_{si}^t
\]

where

- \(b_i^t \): receiver clock bias
- \(\epsilon_{si}^t \): Additive white noise
- \(\delta_{si}^t \): Additive skew normal noise

SNR

- **N-LOS:**
 - chosen between 25-45 dB-Hz
- **LOS:**
 - chosen between 40-45 dB-Hz

Ranging

\[
d_{ij} = \| x_i - x_j \| + \psi_{ij}^t
\]

where \(\psi_{ij}^t \): Additive white noise

Sky Plot of visible SVs for clear sky
Results – Position Accuracy

Error v/s connectivity for Agent 5

Reduced localization error to ~3m

[2] Adjrad and Groves, ION GNSS+ ’16
[5] Tanwar and Gao, ION GNSS+’18
Results – Impact of Connectivity

Increased connectivity reduces localization errors
Results – Impact of Connectivity

Increased connectivity reduces localization errors
Results – Qualitative

- Ground Truth

IUP[2]
(Pseudorange + SNR)

CSM[5]
(Multi-agent Snapshot)

ME-CSM
(Proposed Method)

Error reduces as estimates get temporally correlated

[2] Adjrad and Groves, ION GNSS+ ’16
[5] Tanwar and Gao, ION GNSS+’18
Summary

• Designed an architecture to associate temporal correlations between multiple agents for grid-based 3DMA GNSS navigation

• Developed a discrete Bayesian filtering based prediction step and velocity calculation using Kalman Filter banks to augment previous work

• Validated the improvement in position accuracy for all agents in the network through an urban simulated dataset

• Analyzed the impact of network connectivity on localization error over time
Acknowledgment

This material is based upon work supported by the National Science Foundation under award number 1750864.

Special Thanks:
Matt Peretic, Shubhendra Chauhan, Tara Mina and Sriramya Bhamidipati for helping conduct the experiments.
Thank You
Results – Position Accuracy

Reduced localization error to ~3m

- **Proposed Method:**
 - Snapshot Multi-Agent
 - Intelligent Urban Positioning
 - Shadow Matching

<table>
<thead>
<tr>
<th>ME-CSM</th>
<th>CSM</th>
<th>IUP</th>
<th>SM</th>
<th>RMS error in estimation (in m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>4.7</td>
<td>5.5</td>
<td>19.7</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>5.5</td>
<td>7.9</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>9.7</td>
<td>12.6</td>
<td>20.9</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>4.3</td>
<td>7.2</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>2.9</td>
<td>3.3</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>12.1</td>
<td>9.4</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>4.6</td>
<td>7.2</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>8.2</td>
<td>9.0</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>6.0</td>
<td>5.4</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>3.2</td>
<td>18.4</td>
<td>41.7</td>
<td></td>
</tr>
</tbody>
</table>

- [2] Adjrad and Groves, ION GNSS+ ’16
- [5] Tanwar and Gao, ION GNSS+’18
Simulation Setup – Agent Motion

- \(t = 0 \) s
- \(t = 5 \) s
- \(t = 2.5 \) s
- \(t = 10 \) s
Results – Impact of Connectivity

Increased connectivity reduces localization errors
Discrete Bayes Filter - Prediction

\[\overline{\text{bel}}(x_t) = \sum_{x_{t-1}} P(x_t|x_{t-1}) \cdot \text{bel}(x_{t-1}) \]

Current Predicted Belief

Previous Belief

Prediction Probability
Discrete Bayes Filter - Prediction

\[
\overline{\text{bel}}(x_t) = \sum_{x_{t-1}} P(x_t | x_{t-1}) \cdot \text{bel}(x_{t-1})
\]

Current Predicted Belief Previous Belief

Prediction Probability

Uses motion model

\[
\frac{1}{\sqrt{(2\pi)^k|\Sigma|}} \exp \left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu) \right)
\]
Outline

• Multi-Epoch Decentralized Collaborative 3DMA Localization
 ▪ Discrete Bayes Filter - Prediction
 ▪ System Architecture
 ▪ Velocity Distribution Calculation
 ▪ Prediction Step
 ▪ Update Step

• Setup and Results
 ▪ Simulation Setup
 ▪ Results

• Summary
Outline

• Multi-Epoch Decentralized Collaborative 3DMA Localization
 ▪ Discrete Bayes Filter - Prediction
 ▪ System Architecture
 ▪ Velocity Distribution Calculation
 ▪ Prediction Step
 ▪ Update Step

• Setup and Results
 ▪ Simulation Setup
 ▪ Results

• Summary
Summary

• Designed an architecture to associate temporal correlations between multiple agents for grid-based 3DMA GNSS navigation

• Developed a discrete Bayesian filtering based prediction step and velocity calculation using Kalman Filter banks to augment previous work

• Validated the improvement in position accuracy for all agents in the network through an urban simulated dataset
Results – Impact of Connectivity

Reduced connectivity does not lead to increase in error
Results – Impact of Connectivity

Connectedness reduces localization errors
Results – Impact of Connectivity

Connectedness reduces localization errors