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Abstract: Diamond and Mirrlees (1971) provide sufficient conditions for a second-

best Pareto efficient allocation with linear commodity taxation to require efficient

production when a finite set of consumers have continuous single-valued demand

functions. This paper considers a continuum economy allowing indivisible goods,

other individual non-convexities, and some forms of non-linear pricing for con-

sumers. Provided consumers have appropriately monotone preferences and dis-

persed characteristics, robust sufficient conditions ensure that a strictly Pareto

superior incentive compatible allocation with efficient production results when a

suitable expansion of each consumer’s budget constraint accompanies any reform

which enhances production efficiency. Appropriate cost–benefit tests can identify

small efficiency enhancing projects.
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1. Introduction

1.1. Old second-best theory. During the 1950s, much of the work in welfare

economics had become increasingly critical of what had been accomplished during

the 1930s and 40s. It was realized that, unless all distortions in the economy

could be removed, the usual first-order conditions might all become invalid. This

apparently very robust negative conclusion had already been discussed in Samuelson

(1947, pp. 252–3), but it culminated in the work of Lipsey and Lancaster (1956).

Consider any distortion in the form of an enforced departure from optimality

in at least one first-order condition. Then Lipsey and Lancaster claimed that, in

general, every other first-order condition would also have to be violated in order

to reach a constrained second-best optimum. Indeed, the irremovable presence of

just one fixed distortion, it was suggested, would make it optimal to have other

distortions prevail virtually throughout the whole economy.

Lipsey and Lancaster showed that this claim is indeed valid under particular

assumptions concerning the nature of the distortion. It implies, of course, that

marginal rates of transformation should not be equal for different producers. If so,

production should be inefficient.

This negative conclusion has far-reaching implications because, if one can estab-

lish the desirability of production efficiency, there are many important corollaries

such as gains from freer trade and from adopting a project whose benefits exceed its

costs when these are all evaluated at suitable producer prices. All these important

results risk losing their validity unless one can rely on the basic proposition that it

is desirable to arrange an efficient allocation of inputs and outputs to producers.

1.2. New second-best theory. On a personal note, the academic year 1967–8

was when I began my formal study of economics. It was also Jim Mirrlees’ last as a

lecturer in Cambridge before he moved on to a Professorship at Nuffield College in

Oxford. Thus, I was able to benefit from Jim’s lectures on optimal growth, optimal

taxation, and other topics in public economics. Also, early versions of Diamond

and Mirrlees (1971) and of Little and Mirrlees (1968) were made available. These

important publications led to a major revolution in public economics and the theory

of the second-best — a revolution whose significance I have only recently begun to
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appreciate much more fully than I did at the time. Nor I do feel alone in my

somewhat tardy recognition.

One important and practical implication of the revolution had already been set

out quite clearly in Mirrlees (1969), which begins by claiming that shadow prices

(or “accounting prices”) should be “ ‘world prices’; or more precisely and more

generally, . . . prices that might be computed as a guide to particular production

decisions, in the public sector and elsewhere”. Indeed, the application to project

evaluation was extensively explored in Little and Mirrlees (1968, 1974). Their

main message was that in a small country with no influence over border prices,

projects should have their net outputs of traded goods evaluated at border prices

(with other net outputs evaluated at producer shadow prices). This approach to

cost–benefit analysis is in marked contrast to Dasgupta, Marglin and Sen (1972),

as those authors readily recognize (p. 6). It should also be noted that Little and

Mirrlees advocate more complicated procedures for shadow wages and for discount

rates, because of market imperfections. These important concerns go beyond the

scope of this paper, however.

1.3. The argument for production efficiency. A more complete theoretical

justification for this Little/Mirrlees approach to cost–benefit analysis comes, how-

ever, in a fundamental result due to Diamond and Mirrlees (1971) — see also

Mirrlees (1986). In an economy without lump-sum transfers, but with linear taxes

or subsidies on each commodity which can be adjusted independently, they were

able to show that any second-best optimum of a Paretian social welfare function

entails efficient production.

The Diamond/Mirrlees result does rely on a careful treatment of private producer

profits which are distributed to consumers as dividends, as Stiglitz and Dasgupta

(1971) in particular soon pointed out. Specifically, there is a need to sterilize

any adverse effects on consumers’ dividend incomes which arise when inefficient

producers are shut down — see, for example, Mirrlees (1972), as well as Dasgupta

and Stiglitz (1972). Formally, moreover, the Diamond/Mirrlees proof requires that

consumers face linear budget constraints, thus excluding the non-linear taxation of

income discussed by Vickrey (1945) and Mirrlees (1971). It also assumes a finite

set of consumers with continuous single-valued demand functions — as is implied,
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for instance, if consumers’ preferences are all strictly convex. Unlike in standard

general equilibrium theory, for the Diamond/Mirrlees argument to hold, it is not

enough that each consumer merely have an upper hemi-continuous and convex-

valued demand correspondence — though actually their result does hold in this

case as well, as can be shown by an argument similar to that used in proving the

main theorem of this paper.

Accordingly, the principal aim here is to show how the Diamond/Mirrlees result is

much more robust than has generally be recognized. This will be done by confirming

its validity when several of the original assumptions have been greatly relaxed. For

reasons to be explained shortly, this is much easier to do when, as in the income

taxation model of Vickrey and Mirrlees, there is a continuum of consumers.

1.4. Corporate and public production. Following the example of Diamond and

Mirrlees (1971), the results set out below will be derived in a formal general equi-

librium framework, but allowing for an active public sector. In fact, the model used

here allows for production which is undertaken by individuals, by corporations, and

by the public sector. In the classical first-best setting with unrestricted lump-sum

redistribution, aggregate production efficiency over the whole economy is necessary

for Pareto efficiency. In a second-best setting, however, aggregate production effi-

ciency over the whole economy may not be desirable because distortionary taxes

on transactions between individuals and corporations may well be needed to re-

distribute real income or to finance public goods in order to reach a second-best

Pareto efficient allocation — as they are, for instance, in the Diamond and Mirrlees

(1971) framework. Also, shadow prices for the public sector may differ from con-

sumer prices. Nevertheless, the main proposition below concerns the desirability of

aggregate production efficiency in the corporate and public sector together, even in

the second-best setting considered here.

1.5. Incentive constraints with a continuum of consumers. The Lipsey and

Lancaster theory of second best was based on ad hoc constraints preventing the

economy from reaching a first-best allocation. Yet Vickrey (1945) and Samuelson

(1947, pp. 247–8) had already emphasized informally how private information makes

it practically impossible to arrange a system of optimal lump-sum transfers of

the kind that first-best theory requires. Indeed, this impossibility is clearly what
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motivated Diamond and Mirrlees to examine the implications of replacing lump-

sum transfers by linear commodity taxation.

After the important work on incentive compatibility during the 1970s by Hur-

wicz, Gibbard and others — including Section 3 of Mirrlees (1986), which was

originally written in 1977 — it seems quite natural now to impose explicitly the

incentive constraints that arise whenever some information is private. Yet the full

implications of doing so are hard to analyse when the number of agents is finite —

cf. Barberà and Jackson (1995), Córdoba and Hammond (1998). The difficulty is

that, when any one consumer manipulates an allocation mechanism by mimicking

some different type of consumer, this affects the apparent economic environment, as

described by the distribution of consumers’ characteristics in the population. Thus,

incentive compatible allocations in different economic environments become inex-

tricably linked through incentive constraints. One cannot avoid trading off good

allocations in some environments against good allocations in other environments.

With a continuum of agents, on the other hand, the analysis is greatly simpli-

fied — as discussed in Hammond (1979, 1987, 1999), Guesnerie (1981, 1995), etc.

Indeed, incentive compatibility with a continuum of agents is equivalent to the

existence of a common budget set, independent of any private information, which

decentralizes the allocation. Moreover, there are fairly obvious conditions under

which incentive compatibility actually requires linear commodity taxation without

lump-sum transfers — i.e., budget constraints in the form considered by Diamond

and Mirrlees. But non-linear pricing is still possible for any good which cannot

be freely and anonymously exchanged among consumers. Of course, there may

be welfare gains — even potential Pareto gains — from allowing non-linearities,

possibly in the form of rationing, into each consumer’s budget constraint. Indeed,

this is clear from the work of Mirrlees (1971, 1986) himself, as well as Dasgupta

and Hammond (1980), Guesnerie and Roberts (1984), Blackorby and Donaldson

(1988), and others. On the other hand, there are administrative and other costs

which may severely limit the use of fiscal instruments.

With these extensions and limitations in mind, this paper considers those in-

centive compatible allocations which can be decentralized by budget constraints

chosen from within a rather general one parameter family of “piecewise convex”
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sets. Moreover, as this one parameter increases, each consumer’s budget set is as-

sumed to expand — as in one case considered by Diamond and Mirrlees themselves,

where the only variable parameter is a non-negative uniform poll subsidy.

Apart from allowing a much simpler treatment of incentive constraints, having a

continuum of consumers confers several additional theoretical benefits. There is no

reason to restrict attention to convex preferences, to convex consumption or indi-

vidual feasible sets, to convex budget sets, or even to divisible goods. In principle,

the theoretical framework can include individual consumers’ decisions to migrate,

to make private investments involving set-up costs, to incur fixed transport costs

travelling to and from work each day, etc. Allowing such features adds considerably

to the practical applicability of the Diamond/Mirrlees efficiency argument. In order

to ensure that mean demand is upper hemi-continuous, however, an additional “dis-

persion” assumption is required, similar to those introduced by Mas-Colell (1977)

and Yamazaki (1978, 1981).

1.6. Outline of paper. The main theoretical task, accordingly, is to generalize the

Diamond/Mirrlees efficiency argument to a model with a continuum of consumers

and individual non-convexities. Section 2 lays out the details of a formal model

having these features, including indivisible goods. Then Section 3 explores how to

distribute to all consumers simultaneously the additional output resulting from a

gain in production efficiency in a way that generates an incentive compatible Pareto

superior allocation. These possibilities for distributing efficiency gains are assumed

to be described by a one-parameter expanding family of “piecewise convex” budget

sets. Unfortunately, these specifically exclude income tax schedules whose marginal

rate decreases smoothly to zero at the top of the income distribution — i.e., precisely

the kind of schedule required for optimality in some economic environments, as

discussed by Mirrlees (1971) and also Seade (1977). Nevertheless, though formally

excluded, any such schedule can be approximated arbitrarily closely by a piecewise

convex budget set, so the restriction seems not too severe.

After setting out the most substantive assumptions, Section 4 derives the con-

tinuity and unboundedness properties of the resulting individual demand corre-

spondence. This is followed in Section 5 similar results for the aggregate (or mean)

demand correspondence. Once these important preliminary properties have all been
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established, the main theorem on the desirability of enhanced production efficiency

is proved in Section 6. In particular, the existence of an incentive compatible Pareto

superior allocation on the frontier of the post-reform production set will be shown.

The paper concludes in Section 7, which discusses several important implications

of this result when evaluating projects or analysing some other kinds of economic

reform.

2. A Formal Model

2.1. Divisible and indivisible commodities. Let G denote a non-empty finite

set of divisible commodities, and R
G the associated finite-dimensional Euclidean

space. It is important for G to be non-empty so that local satiation can be avoided.

Also, let H denote the (possibly empty) finite set of indivisible commodities, whose

quantities must belong to Z, the set of integers. Thus, the commodity space is

R
G ×Z

H . Sometimes a vector x ∈ R
G ×Z

H will be written in the partitioned form

(xG, xH), where xG ∈ R
G and xH ∈ Z

H .

A pair a, b ∈ R
G × Z

H may satisfy one or more of the following four vector

inequalities:

a � b ⇐⇒ aj ≥ bj (all j ∈ G ∪ H)

a > b ⇐⇒ a � b and a �= b

a � b ⇐⇒ aj > bj (all j ∈ G ∪ H)

a �G b ⇐⇒ a � b and aj > bj (all j ∈ G)

Of these, the first three are standard. The last is appropriate when there is a

(possibly small) increase in every divisible good, with no decrease in any indivisible

good.

2.2. Consumption and domestic production. As explained in the introduc-

tion, it is assumed that there is a continuum of consumers. Suppose these are

labelled by numbers � that are uniformly distributed on the unit interval [0, 1] ⊂ R

— i.e., the distribution of their labels is described by the Lebesgue measure λ on

[0, 1].

Individuals can be distinguished not only by numerical labels, but also by other

identifiers such as date of birth. These identifiers can in principle be used to arrange
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discriminatory prices or taxes and subsidies, such as state pensions paid to those

born more than 65 years ago. It is assumed that the relevant identifiers i range

over a finite set I. Numerical labels �, however, are assumed to be arbitrary and

so not useful as a basis for discrimination of any kind.

Furthermore, individuals have characteristics θ ranging over a specified metric

space Θ with a Borel σ-field F of measurable sets. For obvious reasons, we restrict

attention to continuous preferences. Also, so that production efficiency would be

desirable in a degenerate economy where all consumers are known to be identical

and have the same net demand vector, we assume both free disposal and monotone

preferences, though subject to the restriction that quantities of indivisible goods

must be integers.

In order to allow for domestic production, it is easier to focus on net trade

vectors rather than on consumption and endowment vectors separately. Thus, each

consumer is supposed to have a set of feasible net trades. Though these feasible sets

may not be convex, especially if there are indivisible goods, at least they should be

“piecewise convex” — i.e., the union of a countable collection of convex sets. This

is important later on when invoking the dispersion assumption which implies that

the demand correspondence is upper hemi-continuous.

2.3. Consumer characteristics. Specifically, the first formal assumption is:

Assumption 1: There is a metric space Θ of possible consumer characteristics

such that:

1. for each θ ∈ Θ, there is a closed set Xθ ⊂ R
G×Z

H of feasible net trade vectors,

which is equal to the union of a countable collection of closed convex sets

Xθ(k) (k = 1, 2, . . . ), each of which has the restricted free disposal property

that, whenever x ∈ Xθ(k) and x′ � x with x′ ∈ R
G × Z

H , then x′ ∈ Xθ(k);

2. there exists a uniform lower bound x ∈ R
G × Z

H such that x ∈ Xθ for some

θ ∈ Θ only if x � x;

3. if the sequence θn ∈ Θ converges to θ, and if x ∈ Xθ, then there exists a

sequence satisfying xn ∈ Xθn for n = 1, 2, . . . while xn → x as n → ∞;

4. for each θ ∈ Θ, there is a (complete, reflexive, and transitive) preference

ordering �θ which is continuous on Xθ and has the restricted monotonicity
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property that, whenever x ∈ Xθ and x′ � x with x′ ∈ R
G ×Z

H , then x′ �θ x,

and x′ θ x if x′ �G x;

5. if the sequence of triples (xn, x′
n, θn) ∈ (RG ×Z

H)2 ×Θ converges to (x, x′, θ)

while satisfying xn, x′
n ∈ Xθn

and xn �θn
x′

n for n = 1, 2, . . . , then x, x′ ∈ Xθ

with x �θ x′.

Note that, because each component set Xθ(k) is convex, for each k there must

exist a unique vector of integers z(k) ∈ Z
H such that Xθ(k) ⊂ R

G × {z(k)}. But

Xθ ∩ (RG ×{z}) could still fail to be convex for one or more z ∈ Z
H , in which case

it is assumed that Xθ ∩ (RG × {z}) can be decomposed further into several convex

components.

Because the ordering �θ is assumed to be reflexive on Xθ, note that

Xθ = {x ∈ R
G × Z

H | x �θ x }

Hence, each pair (Xθ,�θ) (θ ∈ Θ) consisting of a consumption set Xθ ⊂ R
G × Z

H

and a monotone continuous preference ordering on Xθ can be identified with the

closed graph

Γθ = { (x, x′) ∈ (RG × Z
H)2 | x �θ x′ }

of that ordering. Then the space of such closed graphs can be given the metriz-

able topology of closed convergence. After identifying each (Xθ,�θ) with Γθ, the

mapping θ �→ (Xθ,�θ) should be continuous. See, for example, Hildenbrand (1974,

pp. 18–19 and 96–98) or Mas-Colell (1985, pp. 10–11) for a fuller explanation and

further details. In fact, one could take Θ as the whole space of graphs Γ corre-

sponding to pairs (X, �) satisfying parts 1, 2 and 4 of Assumption 1, and then

make θ �→ (Xθ,�θ) the identity map. Alternatively, the domain Θ of characteris-

tics that an individual can credibly claim to possess could be a compact subset of

this space. In either case, it follows from Hildenbrand that parts 3 and 5 of As-

sumption 1 are also satisfied. These two parts, however, respectively require only

that the correspondence θ �� Xθ should be lower hemi-continuous, while θ �� Γθ

should have a closed graph.

2.4. Potential consumers. Though the numerical labels � ∈ [0, 1] and identifiers

i ∈ I are assumed to be publicly observable, consumer characteristics θ ∈ Θ will

be regarded as private information. That is, the true mapping θ(�) from [0, 1] to Θ
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specifying each consumer’s private characteristic θ as a function of their label � is

completely unknown. Feasible allocations, therefore, can only depend on θ in ways

that respect incentive constraints. For this reason, it is natural to consider the entire

space A := [0, 1] × I × Θ of potential consumers, specified by a known numerical

label � ∈ [0, 1], a known identifier i ∈ I, but an unknown characteristic θ ∈ Θ.

The space A can be given its obvious product σ-field A, and it will be assumed

that the economy can be described by a probability measure α on (A,A). For any

E ∈ A, the measure α(E) should be interpreted as the proportion of individuals

whose label, identifier, and characteristic form a triple (�, i, θ) belonging to E. It

is assumed that α(V × I × Θ) = λ(V ) for every Borel set V ⊂ [0, 1]. That is, the

marginal distribution of numerical labels is the Lebesgue measure, implying that

numerical labels are indeed uniformly distributed on [0, 1].

The above formulation allows the continuum economy to be interpreted as the

limit of an expanding sequence of random finite economies in which there are n

consumers whose triples (�, i, θ) of numerical labels, identifiers, and characteristics

are independently and identically drawn at random from the probability space

(A,A, α).

3. Distributing Efficiency Gains

3.1. The status quo. The main result below shows that, relative to a status

quo allocation, any reform which enhances the overall efficiency of production in

the combined corporate and public sector can be accompanied by a fiscal reform

which will generate a strict Pareto improvement. The status quo allocation is not

necessarily an initial allocation; rather, it is what would happen in the absence

of any reform. That particular allocation is assumed to be described by some

α-integrable mapping (i, θ) �→ x̂i
θ from A to R

G ×Z
H which depends only on (i, θ).

Define the set

Ŝi := {x ∈ R
G × Z

H | ∃θ ∈ Θ : x = x̂i
θ }

as the range of the mapping θ �→ x̂i
θ as θ varies over Θ, the entire domain of relevant

individual characteristics.

The second formal assumption is:

Assumption 2: The range Ŝi is compact.
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This will be true if, for instance, the domain Θ of characteristics happens to be

compact and the mapping θ �→ x̂i
θ is continuous.

3.2. A Decentralization. Because each consumer’s characteristic θ ∈ Θ is private

information, it is natural to assume that the status quo allocation represents the

outcome of a strategyproof mechanism in the sense that, for all (i, θ) ∈ I × Θ,

the incentive constraint x̂i
θ �θ x is satisfied whenever x ∈ Xθ ∩ Ŝi. That is, no

potential consumer (i, θ) ∈ I ×Θ is able to manipulate the mechanism determining

the relevant net trade vector x̂i
θ by finding a better alternative x̂i

η ∈ Xθ∩Ŝi for some

η ∈ Θ. Because there is a continuum of agents, so no consumer can influence the

apparent distribution α on A, note that the incentive constraints are independent

of α.

Say that the set Bi ⊂ R
G × Z

H satisfies restricted free disposal if and only if

Bi ⊂ Bi − (RG × Z
H) = {x ∈ R

G × Z
H | ∃x′ ∈ Bi : x � x′ }

Under the assumptions stated so far, the decentralization result presented in

Hammond (1979) can be strengthened as follows:

Lemma 1: Any allocation (i, θ) �→ xi
θ with compact range

Si := {x ∈ R
G × Z

H | ∃θ ∈ Θ : x = x̂i
θ }

is strategyproof if and only if it is decentralizable in the sense that, for each i ∈ I,

there exists a closed budget set Bi satisfying restricted free disposal such that Si ⊂
Bi ⊂ R

G × Z
H and also xi

θ �θ x whenever x ∈ Xθ ∩ Bi.

Proof: Because Si ⊂ Bi, sufficiency is obvious.

Conversely, suppose that the allocation (i, θ) �→ xi
θ is strategyproof. Define

Bi := Si− (RG×Z
H) as the smallest set that satisfies restricted free disposal while

including Si as a subset. Because Si is assumed to be compact, the set Bi is easily

shown to be closed.

Suppose that x ∈ Xθ ∩ Bi. Then there exists η ∈ Θ such that x � xi
η. Because

xi
η ∈ R

G × Z
H , restricted free disposal implies that xi

η ∈ Xθ and restricted mono-

tonicity implies that xi
η �θ x. Because xi

η ∈ Xθ, the incentive constraints imply

that xi
θ �θ xi

η, so xi
θ �θ x because �θ is transitive.
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Of course, this construction typically results in a non-linear budget constraint.

Some significant restrictions in such a budget constraint will now be introduced.

3.3. Expanding budget sets. Define ŷ :=
∫

A
x̂i

θ dα as the mean net trade vector

of all consumers in the status quo allocation. As the mean, note that ŷ will generally

not have integer components even for indivisible goods. That is, ŷ can be a general

vector in R
G × R

H .

Consider a reform which allows the economy to reach any new mean net trade

vector in some (possibly very restricted) aggregate feasible set Y ⊂ R
G × R

H

describing the combined aggregate production possibilities of the corporate and

public sector. It will be assumed that Y is closed and allows free disposal — i.e.,

if y ∈ Y and y′ � y, then y′ ∈ Y . Also, so that the reform really does enhance

production efficiency, it is assumed that Y includes at least one y � ŷ.

In order to convert this reform into an incentive compatible allocation which

is strictly Pareto superior for consumers, the budget sets B̂i that decentralize the

status quo allocation (i, θ) �→ x̂i
θ must change in order to include at least one strictly

preferred net demand vector for each consumer. To make this possible, assume that

for each i ∈ I there is a one-parameter family Bi(m) (m ≥ 0) of budget sets, with

Bi(0) as the status quo budget set B̂i. Thus, once m has been chosen, each potential

consumer with identifier i ∈ I is constrained to choosing some net trade vector x

within the budget set Bi(m). Assume, moreover, that each set Bi(m) is closed,

allows free disposal, and that there is an upper bound x̄(m) such that x � x̄(m)

whenever x ∈ Bi(m) with x � x.

One prominent example of such a one-parameter family of budget sets appears

in Diamond and Mirrlees (1971), when the set H of indivisible goods is empty. It

is the family {x ∈ R
G | q x ≤ m } of linear budget sets, for a fixed consumer price

vector q � 0 and a variable non-negative “poll” subsidy m. An obvious extension

of this example is the family Bi(m) := {x ∈ R
G × Z

H | qi x ≤ ei(m) } of budget

sets, for fixed consumer price vectors qi � 0 and increasing functions ei(·) of m

which can both depend on i. A different example is the family Bi(m) := {x ∈
R

G × Z
H | x − ui(m) ∈ Bi } of possibly non-linear budget sets, for a collection of

increasing vector functions ui : R+ → R
G
+ × Z

H
+ of m which, for all i ∈ I, satisfy

ui(0) = 0 and ui(m′) �G ui(m) whenever m′ > m.
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Generally, then, it is assumed that:

Assumption 3: For each i ∈ I, there are closed budget sets Bi(m) (m ≥ 0)

allowing restricted free disposal while satisfying:

1. (expansion) If m′ > m then Bi(m) ⊂ Bi(m′), while for every x ∈ Bi(m)

there exists x′ �G x such that x′ ∈ Bi(m′).

2. (piecewise convexity) Each set Bi(m) is equal to the union ∪∞
j=1B

i(j, m) of a

countable family of convex sets Bi(j, m) (j = 1, 2, . . . ).

3. (continuity) For each i ∈ I and each j = 1, 2, . . . , there exists a continuous

function βi
j : R

G × Z
H → R+ such that

x ∈ Bi(j, m) ⇐⇒ βi
j(x) ≤ m

and also βi
j((1−λ)x+λx′) < βi

j(x
′) whenever 0 < λ < 1 and x, x′ ∈ R

G×Z
H

satisfy βi
j(x) < βi

j(x
′).

4. (bounded budget sets) For each m ≥ 0 there is an upper bound x̄(m) such

that x � x̄(m) whenever x ∈ ∪i∈IB
i(m) with x � x.

Here part 2 of Assumption 3 plays a similar role to the comparable part of

Assumption 1 requiring each feasible set Xθ to be the union of a countable family

of convex sets. Also, the last condition in part 3 is somewhat stronger than merely

requiring each βi
j to be quasi-convex, as already implied by the convexity of each

set Bi(j, m). Finally, part 4 plays an obvious role in ensuring that each potential

consumer (i, θ) faces a compact constraint set Xθ ∩ Bi(m).

3.4. Compact constraint sets. Next, for each i ∈ I, θ ∈ Θ and m ≥ 0, define

the collection of sets

Hi
θ(j, k, m) := Xθ(k) ∩ Bi(j, m)

for j, k = 1, 2, . . . , as well as the union

Hi
θ(m) :=

∞⋃
j=1

∞⋃
k=1

Hi
θ(j, k, m) = Xθ ∩ Bi(m)

Lemma 2: For each fixed m ≥ 0, i ∈ I and θ ∈ Θ, the set Hi
θ(m) is compact and

uniformly bounded.

Proof: By Assumption 1, if x ∈ Xθ, then x � x. So the boundedness part

of Assumption 3 implies that x � x̄(m). Hence, Hi
θ(m) is uniformly bounded.
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Because the sets Xθ and Bi(m) are assumed to be closed, so obviously is Hi
θ(m),

which is therefore compact as a closed and bounded set in R
G × Z

H .

4. Continuous and Unbounded Individual Demand

4.1. Continuous compensated demand. For each i ∈ I, define the demand

correspondence from each pair (θ, m) with θ ∈ Θ and m ≥ 0 to the set

ψi
θ(m) := {x ∈ Hi

θ(m) | x′ ∈ Hi
θ(m) =⇒ x �θ x′ }

of optimal net trade vectors within the constraint set Hi
θ(m). Because Hi

θ(m) is

non-empty and compact, while �θ is continuous, the demand set ψi
θ(m) is always

non-empty.

In classical demand theory with a Walrasian budget constraint defined by a

hyperplane, the compensated demand correspondence is upper hemi-continuous in

many situations where the ordinary Walrasian demand correspondence may not be.

A similar property applies here, with piecewise convex budget sets.

First, for each i ∈ I and x ∈ R
G × Z

H , define βi
∗(x) := inf∞j=1 βi

j(x). Then, for

each i ∈ I, define the compensated demand correspondence from each pair (θ, m)

with θ ∈ Θ and m ≥ 0 to the set

ξi
θ(m) := {x ∈ Hi

θ(m) | x′ �θ x =⇒ βi
∗(x

′) ≥ m }

This implies that ξi
θ(m) consists of all the net trade vectors within the constraint

set Hi
θ(m) which are strictly preferred to any other x′ in the same set satisfying

βi
∗(x

′) < m.

The following two lemmas show that the compensated demand correspondence

has the same key properties as in the Walrasian case.

Lemma 3: For each i ∈ I, θ ∈ Θ, and m ≥ 0, one has ψi
θ(m) ⊂ ξi

θ(m).

Proof: Suppose that x ∈ ψi
θ(m). Evidently x ∈ Hi

θ(m).

Consider any x′ ∈ Xθ with x′ θ x. Then there exists a sequence xn ∈ Xθ with

xn �G x′ (n = 1, 2, . . . ) such that xn → x′ as n → ∞. Because Assumption 1 im-

plies that preferences have the restricted monotonicity property and are transitive,

for each n it follows that xn ∈ Xθ with xn θ x. Then x ∈ ψi
θ(m) implies that

for each n one has xn �∈ Hi
θ(m) = Xθ ∩ Bi(m). It follows that xn �∈ Bi(m) and so
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βi
j(xn) > m for all j. Because each function βi

j is continuous, taking the limit as

n → ∞ gives βi
j(x

′) ≥ m for all j, so βi
∗(x

′) ≥ m. This proves that x ∈ ξi
θ(m).

Lemma 4: For each i ∈ I, the compensated demand correspondence (θ, m) ��
ξi
θ(m) is upper hemi-continuous throughout the domain of pairs (θ, m) with θ ∈ Θ

and m ≥ 0.

Proof: Consider any sequence of triples (θn, mn, xn) with xn ∈ ξi
θn

(mn) (n =

1, 2, . . . ) where (θn, mn) → (θ, m) as n → ∞. Let m∗ denote supn mn. Then

Bi(mn) ⊂ Bi(m∗) and so xn ∈ Xθn
∩ Bi(m∗) for n = 1, 2, . . . . By part 2 of

Assumption 1, it follows that each xn � x, and so xn � x̄(m∗) by the boundedness

part 4 of Assumption 3. Thus, the sequence xn is bounded, so has some convergent

subsequence with a limit x. From now on, we restrict attention to this convergent

subsequence, so xn → x as n → ∞. It remains to show that x ∈ ξi
θ(m).

Consider any x̃ ∈ Xθ with x̃ θ x. By part 3 of Assumption 1, there exists a

sequence x̃n ∈ Xθn
(n = 1, 2, . . . ) such that x̃n → x̃ as n → ∞. But then part 5

of Assumption 1 implies that x̃n θn xn for all large n. Otherwise there would

exist an infinite subsequence of triples (θnr , x̃nr , xnr ) such that xnr �θnr
x̃nr for

r = 1, 2, . . . , and taking limits as r → ∞ would give x �θ x̃, contradicting x̃ θ x.

Thus, for each large n, because each xn ∈ ξi
θn

(mn), it follows that βi
∗(x̃n) ≥ mn

and so βi
j(x̃n) ≥ mn for all j = 1, 2, . . . . But βi

j is continuous, so taking limits as

n → ∞ implies that βi
j(x̃) ≥ m for all j = 1, 2, . . . .

Finally, consider any x̂ ∈ Xθ with x̂ �θ x. Then there exists a sequence x̂n ∈ Xθ

with x̂n �G x̂ (n = 1, 2, . . . ) such that x̂n → x̂ as n → ∞. Because Assumption 1

implies that preferences have the restricted monotonicity property and are transi-

tive, for each n it follows that x̂n ∈ Xθ with x̂n θ x. The previous paragraph

shows that for all j = 1, 2, . . . one has βi
j(x̂n) ≥ m for each n. But βi

j is continuous,

so taking limits as n → ∞ implies that βi
j(x̂) ≥ m for all j = 1, 2, . . . . This proves

that βi
∗(x̂) ≥ m, so x ∈ ξi

θ(m) as required.

4.2. Critical parameter values. First, for each i ∈ I, θ ∈ Θ, and j, k = 1, 2, . . . ,

define

M i
θ(j, k) := {m ≥ 0 | Hi

θ(j, k, m) �= ∅ }
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as the set of parameter values allowing the potential consumer (i, θ) to reach the

particular convex component Hi
θ(j, k, m) = Xθ(k) ∩ Bi(j, m) of the constraint set

Hi
θ(m) = Xθ ∩ Bi(m).

Lemma 5: For each i ∈ I, θ ∈ Θ, and j, k = 1, 2, . . . , the set M i
θ(j, k) is closed.

Proof: Suppose that mn ∈ M i
θ(j, k) for n = 1, 2, . . . and mn → m∗ as n → ∞.

For each r = 1, 2, . . . , define m∗
r := supn≥r mn. Evidently m∗

r ↓ m∗ as r → ∞.

By definition of M i
θ(j, k), for each n ≥ r there exists xn ∈ Hi

θ(j, k, mn) ⊂
Hi

θ(j, k, m∗
r). In particular, xn ∈ Xθ(k). It follows from Assumption 1 that xn � x,

and then xn � x̄(m∗
r) for all n ≥ r by the boundedness part of Assumption 3. So

the sequence xn is bounded, and must have a convergent subsequence with some

limit point x∗. By Assumption 1, the set Xθ(k) is closed, implying that x∗ ∈ Xθ(k).

Furthermore, βi
j(xn) ≤ m∗

r for all n ≥ r. Because βi
j is continuous, taking limits

as n → ∞ gives βi
j(x

∗) ≤ m∗
r for r = 1, 2, . . . , implying that βi

j(x
∗) ≤ m∗ because

m∗
r ↓ m∗. It follows that x∗ ∈ Hi

θ(j, k, m∗) and so m∗ ∈ M i
θ(j, k). Hence, the set

M i
θ(j, k) is closed.

Next, let mi
θ(j, k) := minm M i

θ(j, k) be the critical parameter value which just

allows the potential consumer (i, θ) to reach the particular convex component

Hi
θ(j, k, m) of the constraint set Hi

θ(m). It follows from Lemma 5 that mi
θ(j, k)

is well defined.

For each (i, θ) ∈ I × Θ, let Ci
θ := ∪∞

j=1 ∪∞
k=1 {mi

θ(j, k) } be the set of all critical

parameter values for the potential consumer (i, θ). Clearly, Ci
θ is either finite or

countably infinite.

4.3. Continuous individual demand. The following lemma shows that the com-

pensated demand ξi
θ(m) of each potential individual (i, θ) coincides with that indi-

vidual’s demand ψi
θ(m) away from critical parameter values m ∈ Ci

θ.

Lemma 6: For each i ∈ I and θ ∈ Θ one has ψi
θ(m) = ξi

θ(m) for all m �∈ Ci
θ.

Proof: Because of Lemma 3, it is enough to prove that ξi
θ(m) ⊂ ψi

θ(m) for all

m �∈ Ci
θ. So suppose that x ∈ ξi

θ(m), where m �∈ Ci
θ. Evidently x ∈ Hi

θ(m).

Consider any x′ ∈ Xθ with x′ θ x. By definition of ξi
θ(m), one must have

βi
j(x

′) ≥ m for all j = 1, 2, . . . . Consider any k such that x′ ∈ Xθ(k) and then any
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j such that m ≥ mi
θ(j, k). The hypothesis m �∈ Ci

θ implies that m > mi
θ(j, k). So

there exists x̂ ∈ Xθ(k) ∩ Bi(j, m) such that βi
j(x̂) < m and so βi

j(x̂) < βi
j(x

′).

Let λn (n = 1, 2, . . . ) be any sequence of positive scalars satisfying λn < 1 which

converges to 0 as n → ∞. Then let xn := (1 − λn)x′ + λn x̂ for n = 1, 2, . . . ,

so xn → x′. With this construction, each xn ∈ Xθ(k) because Xθ(k) is a convex

component of Xθ. Also, because βi
j(x̂) < βi

j(x
′), part 3 of Assumption 3 implies

that βi
j(xn) < βi

j(x
′) for each n = 1, 2, . . . . But for n sufficiently large, continuity of

preferences implies that xn θ x. By definition of ξi
θ(m), one must have βi

∗(xn) ≥
m. It follows that βi

j(x
′) > βi

j(xn) ≥ βi
∗(xn) ≥ m and so βi

j(x
′) > m.

The previous two paragraphs show that βi
j(x

′) > m for all x′ θ x and all

j = 1, 2, . . . . On the other hand, if x′ ∈ Xθ ∩ Bi(m), then there exists j such that

βi
j(x

′) ≤ m, which is only possible if x �θ x′. This proves that x ∈ ψi
θ(m).

4.4. Unbounded individual demand. In the following, let q ∈ R
G∪H
++ denote

any fixed strictly positive vector.

Lemma 7: Suppose the sequence mn (n = 1, 2, . . . ) has the property that, for

some potential consumer (i, θ), the sequence infx { q (x−x) | x ∈ ψi
θ(mn) } remains

bounded as n → ∞. Then the sequence mn itself must be bounded.

Proof: By hypothesis, there exists a bound K and, for each n = 1, 2, . . . , a net

trade vector xn ∈ ψi
θ(mn) such that q (xn −x) ≤ K. Because q � 0 and because in

addition xn ∈ ψi
θ(mn) implies that xn � x, the sequence xn is bounded. So there

must exist an upper bound x∗ ∈ R
G × Z

H such that xn � x∗ for all n = 1, 2, . . . .

Let m̂ := infj{βi
j(x

∗) | j = 1, 2, . . . }. For any m > m̂, there exists j such that

βi
j(x

∗) < m, so x∗ ∈ Bi(m). Because restricted monotonicity implies that x∗ θ xn,

it follows that xn �∈ ψi
θ(m) for all m > m̂. Hence, xn ∈ ψi

θ(mn) implies, for all

n = 1, 2, . . . , that mn ≤ m̂. So the sequence mn must be bounded.

5. Continuous unbounded mean demand

5.1. Continuous mean compensated demand. Let ΨC(m) :=
∫

A
ξi
θ(m) dα de-

note the mean compensated demand correspondence.
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Lemma 8: On the domain R+, the mean demand compensated correspondence

m �� ΨC(m) is well-defined, has non-empty convex compact values, and is also

upper hemi-continuous.

Proof: By Lemma 4, for each fixed m ≥ 0, the correspondence θ �� ξi
θ(m) is

upper hemi-continuous. It follows that its graph is relatively closed and so mea-

surable. Moreover, the correspondence has uniformly bounded values because

ξi
θ(m) ⊂ Hi

θ(m), where, by Lemma 2, Hi
θ(m) is uniformly bounded. Also, the

set I is finite. Arguing as in Hildenbrand (1974, pp. 54 and 61), these conditions

guarantee that the mean compensated demand correspondence m �� ΨC(m) is well-

defined and has non-empty compact values for all m ≥ 0. Also, ΨC(m) is always

convex because the measure α has no atoms.

Suppose that the sequence mn ≥ 0 (n = 1, 2, . . . ) converges to m as n → ∞.

Suppose also that the sequence yn ∈ ΨC(mn) (n = 1, 2, . . . ). By definition, this

means that for each n = 1, 2, . . . there exists a selection (i, θ) �→ xi
nθ from the

correspondence (i, θ) �� ξi
θ(mn) such that yn =

∫
A

xi
nθ dα. But (i, θ) �→ xi

nθ is a

selection from the uniformly bounded and compact-valued correspondence (i, θ) ��
Hi

θ(mn), implying that yn belongs to
∫

A
Hi

θ(mn) dα. This in turn is a subset of the

compact set
∫

A
Hi

θ(m
∗) dα, where m∗ := supn mn. It follows that the sequence yn

is bounded, so must have a subsequence converging to a limit y∗ ∈
∫

A
Hi

θ(m
∗) dα.

Now apply Fatou’s lemma for finite dimensions (Schmeidler, 1970; Hildenbrand,

1974, Lemma 3, p. 69) to the space R
G∪H . Because the mapping (i, θ) �→ xi

nθ

is uniformly bounded for all n, this lemma implies the existence of an integrable

function (i, θ) �→ xi
θ such that y∗ =

∫
A

xi
θ dα and also, for α-almost every (�, i, θ),

some subsequence of xi
nθ converges to xi

θ. Because xi
nθ ∈ ξi

θ(mn) and, by Lemma 4,

each correspondence m �� ξi
θ(m) is upper hemi-continuous, it follows that xi

θ ∈
ξi
θ(m) for all (i, θ). But then

y∗ =
∫

A

xi
θ dα ∈

∫
A

ξi
θ(m) dα = ΨC(m)

confirming that m �� ΨC(m) is upper hemi-continuous.

5.2. Dispersion and continuous mean demand. The demand correspondence

m �� ψi
θ(m) of each potential consumer (i, θ) may fail to be upper hemi-continuous
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at any critical value m ∈ Ci
θ. To avoid these discontinuities having any signifi-

cance in the aggregate, one can introduce an additional “dispersion” assumption,

motivated in part by the dispersed needs assumption used in Coles and Hammond

(1995). Somewhat similar are Mas-Colell’s (1977) assumption that the distribution

of individuals’ endowment vectors is absolutely continuous w.r.t. Lebesgue measure,

and especially Yamazaki’s (1978, 1981) dispersed endowments assumption.

Indeed, given any m ≥ 0, define

C(m) := { (i, θ) ∈ I × Θ | m ∈ Ci
θ } = ∪i∈I ∪∞

j=1 ∪∞
k=1{mi

θ(j, k) }

as the set of all potential consumers (i, θ) who have m as a critical parameter value.

Then assume:

Assumption 4 (dispersion): For all m ≥ 0 one has α([0, 1] × C(m)) = 0.

Note that, for each i ∈ I and for j, k = 1, 2, . . . , the measure α on [0, 1] × I × Θ

and the continuous function θ �→ mi
θ(j, k) ∈ R+ together induce a measure σi(j, k)

defined on the Borel sets V ⊂ R+ by

σi(j, k)(V ) := α({ (�, i, θ) ∈ [0, 1] × I × Θ | mi
θ(j, k) ∈ V })

This is the distribution of potential consumers’ minimum wealth levels mi
θ(j, k)

that just make accessible the convex component Hi
θ(j, k, m) of Hi

θ(m). Then, as

in Mas-Colell (1977), an unnecessarily strong but plausible sufficient condition for

Assumption 4 to hold is that each measure σi(j, k) on R+ should be absolutely

continuous w.r.t. Lebesgue measure — i.e., there should be some integrable density

function µi(j, k)(m) on R+ such that σi(j, k)(V ) =
∫

V
µi(j, k)(m) dm for every

Borel set V ⊂ R+.

Dispersion has the following important implication:

Lemma 9: On the domain R+, the mean demand correspondence m �� Ψ(m) :=∫
A

ψi
θ(m) dα is well-defined, has non-empty convex compact values, and is also

upper hemi-continuous.

Proof: Lemma 6 implies that ξi
θ(m) = ψi

θ(m) for all (i, θ) �∈ C(m). Then the

dispersion Assumption 4 implies that for all m ≥ 0 one has ξi
θ(m) = ψi

θ(m) for α-

almost all (�, i, θ). So ΨC(m) =
∫

A
ξi
θ(m) dα =

∫
A

ψi
θ(m) dα = Ψ(m) for all m ≥ 0.

The result follows immediately from Lemma 8.
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5.3. Unbounded mean demand. The following result confirms that Ψ(m) is

unbounded as m → ∞.

Lemma 10: Suppose that the sequence mn (n = 1, 2, . . . ) tends to ∞ as n → ∞.

Then, given any fixed q ∈ R
G∪H
++ , the sequence miny { q (y − x) | y ∈ Ψ(mn) } also

tends to ∞.

Proof: For n = 1, 2, . . . , define gn := infy { q (y − x) | y ∈ Ψ(mn) }. But Ψ(mn) =∫
A

ψi
θ(mn) dα. From Hildenbrand (1974, Prop. 6, p. 63), it follows that

gn =
∫

A

inf
xi

θ

{ q (xi
θ − x) | xi

θ ∈ ψi
θ(mn) } dα

Suppose mn → ∞. Then Lemma 7 implies that the last integrand tends to ∞ as

n → ∞ for all pairs (i, θ), so gn → ∞.

The last assumption used in the main theorem is:

Assumption 5: The set Y (x) := { y ∈ Y | y � x } is bounded.

This expresses the obvious requirement that, because mean net inputs must be

bounded in order to satisfy y � x, mean net outputs must also be bounded.

Lemma 11: Suppose the sequence mn (n = 1, 2, . . . ) has the property that

Ψ(mn) ∩ Y �= ∅ for all n. Then mn must be bounded.

Proof: Suppose that yn ∈ Ψ(mn)∩Y (n = 1, 2, . . . ). Because of part 2 of Assump-

tion 1, one has yn � x for all n, so yn ∈ Y (x). By Assumption 5, this implies that

yn is bounded. So therefore is q (yn − x), for any q ∈ R
G∪H
++ . Because yn ∈ Ψ(mn)

for each n, the result follows from Lemma 10.

6. Main Theorem

Finally, the main theorem of the paper:

Theorem: Suppose that Assumptions 1–5 all hold, and in particular, that the

status quo allocation (i, θ) �→ x̂i
θ can be decentralized by the closed and piecewise

convex budget sets B̂i = Bi(0) (i ∈ I) which satisfy restricted free disposal within

R
G × Z

H . Given the status quo mean net trade vector ŷ :=
∫

A
x̂i

θ dα, suppose

there exists y ∈ Y such that y � ŷ. Then there exists a strictly Pareto superior

allocation which, for some m∗ > 0 such that Ψ(m∗) includes a boundary point of
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Y , is decentralized by the closed and piecewise convex budget sets Bi(m∗) (i ∈ I)

satisfying restricted free disposal.

Proof: Define m∗ := sup {m ∈ R+ | Ψ(m) ∩ Y �= ∅ }. By Lemma 11, m∗ is finite.

By definition of m∗, there must exist two corresponding sequences mn and yn

(n = 1, 2, . . . ) such that yn ∈ Ψ(mn) ∩ Y and mn ↑ m∗. By Lemma 9, the

correspondence m �� Ψ(m) is upper hemi-continuous and compact-valued, so the

sequence yn (n = 1, 2, . . . ) has a subsequence which converges to some limit y∗ ∈
Ψ(m∗). Because each yn ∈ Y and Y is closed, it follows that y∗ ∈ Ψ(m∗) ∩ Y .

Next, consider any corresponding pair of sequences mn and yn (n = 1, 2, . . . )

such that mn > m∗ and yn ∈ Ψ(mn) for all n, while mn ↓ m∗. Then each budget set

Bi(mn) (i ∈ I) is shrinking, implying that for all n = 1, 2, . . . the mean net trade

vector yn belongs to
∫

A
Hi

θ(m1) dα. By Lemma 2, this set is bounded. Therefore,

the sequence yn has a subsequence which converges to some limit ỹ. Because the

correspondence m �� Ψ(m) is upper hemi-continuous, it follows that ỹ ∈ Ψ(m∗).

But the definition of m∗ implies that yn �∈ Y for all n, so the limit ỹ is not an

interior point of Y .

Finally, let L := [y∗, ỹ] denote the closed line segment whose ends are y∗ and ỹ

respectively. By Lemma 9, Ψ(m∗) must be convex, so L ⊂ Ψ(m∗). Because Y is

closed, the set Y ∩ L is compact, and so includes a point y′ which is as close as

possible to ỹ. Of course y′ ∈ Ψ(m∗) ∩ Y . If ỹ ∈ Y , then y′ = ỹ. Otherwise L \ Y

includes a half-open line segment (y′, ỹ]. In either case, y′ must be a boundary

point of Y .

7. Implications for Policy Reform

7.1. Potential gains from enhanced production efficiency. Diamond and

Mirrlees (1971) chose to emphasize that production efficiency was necessary for

a scheme of commodity taxation to maximize any given Paretian Bergson social

welfare function. They themselves point out how there should then be no taxation

of intermediate goods — including capital held by producers, as discussed by Judd

(1999) in particular. The reason, of course, is that otherwise one would introduce

unnecessary distortions which reduce efficiency in aggregate production.
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Such distortions include those due to import tariffs and other policy measures

which protect domestic industry. Production efficiency can only be preserved if

import tariffs are restricted to goods that consumers buy directly, and if the tariffs

are made equal to the usual consumer taxes on equivalent goods produced domes-

tically. Indeed, such reasoning helps explain the results concerning second-best

potential Pareto gains from free trade and from customs unions — as summarized

in Hammond and Sempere (1995), for instance.

The proof used by Diamond and Mirrlees, however, actually demonstrates rather

more — namely, that any tax scheme leaving the economy at an interior point of

the aggregate production set can be Pareto dominated by an alternative tax scheme

involving some small change in the relevant tax parameters, and so in the budget

constraint facing each consumer. In fact, this process of finding Pareto improve-

ments can continue until the resulting mean demand vector is on the boundary of

the aggregate production set. This is what the main theorem above demonstrates.

So production efficiency is necessary, not just for optimal taxation in the sense of

Diamond and Mirrlees, but for the efficient use of any single tax instrument which

generates the kind of one parameter family of budget sets satisfying Assumption 3

in Section 3.

As the argument leading to the main theorem demonstrates, this has the follow-

ing general implication. Consider any reform which enhances production efficiency,

so that the status quo mean net output vector ŷ is an interior point of the reformed

production set Y . Then the main theorem establishes that the production reform

can be accompanied by a tax reform facing consumers with new budget sets Bi(m∗)

(i ∈ I) for some m∗ > 0 such that the mean net demand set Ψ(m∗) intersects the

boundary of Y . Moreover, the result is a strict Pareto improvement.

These results are obviously in the spirit of the Kaldor–Hicks criterion for a po-

tential Pareto improvement. Yet there is a fundamental difference. The original

Kaldor–Hicks compensation tests rely on lump-sum transfers from those who gain

from the policy reform to those who would otherwise lose. These transfers are

generally incentive incompatible, making it impossible to convert the theoretical

potential Pareto improvement into actuality. This need to respect incentive con-

straints, indeed, was the basis of the vigorous disagreement between Kemp and

Wan (1986) on one side, and Dixit and Norman (1986) on the other. Only in the
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case when the status quo is clearly determined by a centrally planned economic

system does it seem safe to neglect these incentive constraints — a case suggested

by the work of Lau, Qian and Roland (1997) analysing reform in China.

Here, by contrast, incentive constraints have been explicitly recognized, so this

kind of obstacle to finding an actual Pareto improvement cannot arise. In Hammond

and Sempere (1995) we were able to adapt previous results due to Dixit and Norman

(1980, 1986) and Grinols (1981) in particular to demonstrate second-best gains from

freer trade. The implication is that in a small country, there should be free trade

for producers, and import tariffs for consumers set equal to domestic consumption

taxes. We were also able to show that similar gains can be had from customs unions,

from enhanced competition between firms, and from adopting on a suitable scale

any project whose benefits exceed its costs when these are all evaluated at suitable

producer prices.

7.2. Project Evaluation: A Personal Statement. At first it might seem that

the efficiency result is of no relevance to project evaluation. After all, the purpose of

project evaluation is presumably to identify desirable changes in production. This

suggests that cost–benefit analysis should be explicitly designed for use when the

economy may well remain very far from a second-best optimum, or from any kind

of efficient allocation, even after any favourable project has been adopted. Then,

with no presumption of production efficiency, it would seem more useful to think

of demand or consumer prices rather than supply or producer prices as an aid to

identifying favourable projects. That is the basic argument of Hammond (1980).

One major difficulty with this “demand-side” approach, as Sen (1972) pointed

out, is that knowing just a project’s net output vector is typically insufficient.

The project’s effect on the economy as a whole, and so ultimately on consumer

welfare, depends on other policy measures like tax reform which may be needed

to re-equilibrate the economy after that project. After all, a public sector project

which earns a large surplus for the government is probably favourable, but its

effect on consumers depends crucially on how this surplus is used — what taxes are

reduced, beneficial subsidies created, or additional public goods provided. Diewert

(1983) shows how a favourable project in an open economy might benefit only

foreign consumers and earn a net surplus for the domestic government, without
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any effect at all through price changes on domestic consumers. That prompted an

investigation of how the shadow prices that should be used to evaluate projects

depend on precisely what potential tax reform or other balancing policy is seen

as most likely to accompany any favourable project — see Hammond (1986), for

example.

Later, however, came the realization that some fairly robust results on the gains

from trade do not require any kind of second-best optimality or even efficiency af-

ter trade liberalization has occurred. Such results do require, of course, that trade

liberalization brings about a potential Pareto improvement which can be converted

into an actual improvement through some compensation mechanism that transfers

real income to those who would otherwise lose. Or better, as in the case of the

Dixit and Norman (1980, 1986) scheme for freezing consumer prices, commodity

taxes are required to adjust in a way that removes any possibility at all of there

being any losers. Now, it turns out that the benefits from trade liberalization in

the Dixit/Norman setting are entirely due to improved efficiency in the interna-

tional organization of production, as countries are led to concentrate on activities

where they enjoy a comparative advantage. What is more, as discussed in Ham-

mond and Sempere (1995), the Dixit and Norman scheme allows Pareto gains to

result from general reforms which enhance production efficiency, even with limits

to redistribution. But really all such results are merely elaborations of the original

Diamond/Mirrlees argument. Or, in somewhat more general settings, of the main

theorem set out in Section 6 above.

This brings us back to project evaluation, but viewed from a different perspective.

Let us readily concede that no single project which is likely ever to be submitted

for evaluation will get us anywhere near what could be recognized as a second-best

optimum, or even near the economy’s production frontier. At best, we seem to be

contemplating relatively minor alterations to the economy’s projection possibility

set — or rather, to a severely constrained set which allows input and outputs to

be reallocated among existing firms and production activities, but which does not

pretend to describe the full production possibilities taking account of all possible

favourable projects.

So, suppose Y is interpreted as this severely constrained set, which must include

the status quo net output vector ŷ. Consider a project in the form of an incremental
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net output vector z ∈ R
G∪H , with quantities of each good measured per head of

population. Of course, if the status quo net output vector ŷ is an interior point

of Y , production efficiency can be enhanced merely by moving out to the frontier

of Y , without the need for any project. So from now on assume that ŷ is an efficient

point of Y . This restriction should be regarded as indicating how constrained Y

really must be.

If the project z is adopted, then the economy’s production set will change from

Y to Y + {z}, reflecting both the project z and the opportunities to rearrange

production within the constrained set Y . Or more exactly, since one can choose

whether or not to adopt the project, the new production set is Y ∪ (Y + {z}) =

Y + { 0, z }. For the project z to enhance production efficiency, therefore, ŷ should

be an interior point of Y + { 0, z }. That is, given that ŷ is an efficient point of

Y , there must exist some y ∈ Y for which y + z � ŷ. Equivalently, one must

have z ∈ Z := {ŷ} + R
G∪H
++ − Y . Then the Diamond/Mirrlees efficiency argument

establishes that the project z allows a potential Pareto improvement.

Viewed in this way, a cost–benefit test should be explicitly designed in order to

identify efficiency enhancing projects. Then it can serve as the basis for an itera-

tive planning procedure of accepting successive projects which pass the test. The

resulting procedure will then meet some important criteria set out by Malinvaud

(1967). That is, a project z should pass a cost–benefit test if and only if it is feasible

and enhances production efficiency. Then, provided appropriate adjustments are

made to each consumer’s budget constraint, each step of the iterative procedure

will produce a strict Pareto improvement. Moreover, the iterative procedure stops

only when the resulting allocation is at least second-best Pareto efficient, if not a

second-best welfare optimum, relative to the production set defined by combining

Y with the menu of all available projects.

7.3. Evaluating small projects. Unfortunately, however, cost–benefit tests are

not especially useful for identifying production efficiency gains in general. The

reason is that such tests do not work well unless the project is small and the

production set Y is convex or has a smooth boundary. Note that, even if Y does

meet these conditions, the new production set Y + { 0, z } = Y ∪ (Y + {z}) will

usually be non-convex and have a kinked boundary.
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Accordingly, we shall consider instead when λ z ∈ Z for all small λ > 0, so that

adopting the project z on a small enough scale will produce an efficiency gain. In

two obvious cases, there will be shadow price vectors p ∈ R
G∪H such that cost–

benefit tests of the form p z > 0 can be used to identify such favourable small

projects.

The first case is when Y has a tangent hyperplane at ŷ.

Proposition 1: Suppose there exists a shadow price vector p ∈ R
G∪H with p > 0

such that p y = p ŷ is the equation of the tangent hyperplane to Y at ŷ. Then

λ z ∈ Z for all small λ > 0 if p z > 0, and only if p z ≥ 0.

Proof: Suppose that p z > 0. Because p y = p ŷ is a tangent hyperplane and Y

admits free disposal, it follows that for all small λ > 0 the net output vector ŷ−λ z

is an interior point of Y . So for all small λ > 0, there exists y ∈ Y with y � ŷ−λ z.

It follows that λ z = ŷ + u − y for some u � 0 and y ∈ Y , as required for λ z to

belong to Z.

Conversely, suppose that λ z ∈ Z for all small λ > 0. Then there exist sequences

of scalars λk ↓ 0 and of vectors yk ∈ Y such that yk + λkz � ŷ (k = 1, 2, . . . ). For

each k one has yk � ŷ − λkz, implying that ŷ − λkz ∈ Y by free disposal. Because

λk ↓ 0 and p y = p ŷ is a tangent hyperplane, it follows that p z ≥ 0.

The second case is when Y is convex.

Proposition 2: Suppose that Y is a convex set. Let

P (ŷ) := { p ∈ R
G∪H \ {0} | y ∈ Y =⇒ p y ≤ p ŷ }

denote the (non-empty) set of price vectors which determine hyperplanes p y = p ŷ

that support Y at the boundary point ŷ. Then λ z ∈ Z for all small λ > 0 if and

only if p z > 0 for all p ∈ P (ŷ).

Proof: Suppose there exists λ > 0 such that λ z ∈ Z. Then there exist u � 0

and y ∈ Y such that λ z = ŷ + u − y. Consider any supporting price vector

p ∈ P (ŷ). Clearly p > 0 because Y admits free disposal. So p u > 0. It follows

that p (λ z) = p (ŷ + u− y) > p (ŷ − y) ≥ 0, where the last inequality holds because

y ∈ Y and p ∈ P (ŷ). This implies that p z > 0. Moreover, the same is true for

every p ∈ P (ŷ), as required.
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Conversely, consider the two sets K := {λ z | λ > 0 } and Z. Both are non-empty

and convex, with 0 as a common boundary point. If they intersect, it must be at

some point λ̄ z with λ̄ > 0. Then λ z ∈ K ∩ Z whenever 0 < λ ≤ λ̄, so λ z ∈ Z

for all small λ > 0. On the other hand, if K and Z are disjoint, then they can be

separated by a hyperplane p z′ = 0 through the origin, with p z′ ≥ 0 for all z′ ∈ Z,

but p z′ ≤ 0 for all z′ ∈ K, which implies that p z ≤ 0. In particular, for all u � 0

and all y ∈ Y one has p (ŷ + u − y) ≥ 0, so p y ≤ p (ŷ + u). This implies that

p y ≤ p ŷ for all y ∈ Y , so p ∈ P (ŷ). In other words, unless λ z ∈ Z for all small

λ > 0, there must exist p ∈ P (ŷ) such that p z ≤ 0. This is the contrapositive of

the desired conclusion.

Note that the first part of the above proof actually demonstrates:

Corollary: If Y is convex and z ∈ Z, then p z > 0 for all p ∈ P (ŷ).

In other words, when Y is convex, then even if z is a large project, the test

p z > 0 for all p ∈ P (ŷ) is necessary for z to increase production efficiency, but may

not be sufficient.

A special case is when a small country can trade some commodities at fixed

border prices, in which case the relevant marginal rates of substitution are equal

to the ratios of these border prices. Hence, for such traded commodities, shadow

prices should be set equal to border prices. That is essentially the rationale for the

Little/Mirrlees approach to shadow pricing for traded goods.

7.4. Practical Limitations. As was noted early on by Stiglitz and Dasgupta

(1971), Dasgupta and Stiglitz (1972), as well as by Mirrlees (1972) himself, the

Diamond/Mirrlees production efficiency argument faces some practical difficulties

when changes in producer prices affect producer profits and so consumer incomes in

ways that may be deleterious and hard to correct. Ideally, as assumed in Hammond

and Sempere (1995), one would like changes in profit incomes to be sterilized in

ways that freeze every consumer’s after-tax income, before a uniform poll subsidy

is paid to all consumers in order to distribute the benefits of a favourable reform.

Presumably a government which can foresee what consumer prices would have been

in the absence of any reform and can then identify and tax or subsidize any market

transaction between a firm and a consumer in order to freeze consumer prices can
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also foresee what after-tax profits would have been in the status quo and freeze

those also.

An important exception may come in small firms whose affairs are less subject

to public scrutiny. Then profit potential in the status quo will often depend on

private information, which therefore imposes incentive constraints on a truly feasible

allocation. In this paper, however, the case when a small firm is wholly owned by

just one consumer poses no problem in the main theorem because we have focused

on each consumer’s net trade vector. Thus, the inputs and outputs of such a small

firm can be traded as if they were the personal demands and supplies of its owner. It

is true that overall production efficiency may not be desirable once the production

possibilities of small firms are included in the aggregate production set. But it

does remain desirable for firms whose transactions with consumers and payments

of profits to them can both be effectively monitored and subjected to appropriate

taxes and subsidies.

A much more serious limitation is the restriction to a one parameter family of

budget sets that are all independent of producer prices. Recall that in the case of

linear commodity taxes, this formulation is based on the assumption that all com-

modity taxes can be varied in ways that sterilize all movements in producer prices,

leaving consumer prices at the values they would have reached in the status quo.

Such sterilization would seem to face at least two insuperable difficulties. Of these

the first is the sheer administrative complexity, even in an age of extraordinarily

powerful computes, of having what may be millions of different tax rates on different

commodities. Any simplification that reduces the number of tax rates introduces

the possibility that changes in some producer prices will not be fully sterilized be-

fore being passed on to consumers, some of whom may then be adversely effected.

One possible remedy, suggested by the Diamond and Mirrlees (1971) discussion of

Pareto improving tax changes, might be to try to “over-sterilize” price increases

for goods which consumers buy in order to make sure that no consumer price rises

for any such good, with the reverse holding for goods like labour which consumers

sell. However, such generous tax reforms may violate the government’s budget con-

straint even after a big increase in production efficiency. And in any case, they

certainly introduce new complications which the main theorem of the paper makes

no attempt at treating.
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The second difficulty appears even more insuperable. This is the problem in

an intertemporal economy of predicting what consumer prices would have been in

the status quo, without any efficiency enhancing reform. Without such predictions,

freezing consumer prices at what they would have been is evidently quite impossible.

Even with such predictions, disputes are likely regarding their accuracy, with some

consumers claiming that their reasonable expectations have not been met.

7.5. Concluding Assessment. Insuperable though these practical difficulties may

be, they should be regarded as illustrating how hard it is to please everybody, and

how much harder it is to make everybody admit they have been pleased. In other

words, insisting on true Pareto improvements is surely excessively restrictive.

Even so, that is no excuse for disregarding the adverse effects that enhanced

production efficiency can have on some consumers, such as those whose careers

have become closely linked to industries, firms, and techniques of production whose

continued survival is incompatible with efficiency. The Diamond/Mirrlees argument

for production efficiency relied on being able to make sure that even these consumers

would not be adversely effected because, for example, they could continue to supply

their labour services for the same after-tax wage as in the status quo. If such

compensation is not fully possible in the end, however, that may not by itself

justify abandoning the efficiency objective. Instead, it is surely enough to have

as an essential part of any efficiency enhancing reform some reasonably generous

assistance program designed to re-train workers and to help them deal with the need

to adjust their career plans. In particular, one cannot help feeling that sensitive

efficiency enhancing reform policies of this kind are likely to do much better than

policies which maintain existing inefficiencies in order to placate politically powerful

vested interests.

The main lesson to be drawn from the Diamond/Mirrlees efficiency theorem,

therefore, may not lie in the formal details. Rather, it is a reminder that the case

for enhanced production efficiency may be much more robust than had generally

been recognized — certainly more robust than the prior work of Samuelson (1947)

or of Lipsey and Lancaster (1956) had suggested, and possible a little more robust

than even careful readers of Diamond and Mirrlees (1971) might have supposed.
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