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Abstract

We address the problem of sparse selection in linear models. A number

of non-convex penalties have been proposed in the literature for this purpose,

along with a variety of convex-relaxation algorithms for finding good solutions.

In this paper we pursue a coordinate-descent approach for optimization, and

study its convergence properties. We characterize the properties of penalties

suitable for this approach, study their corresponding threshold functions, and

describe a df -standardizing reparametrization that assists our pathwise algo-

rithm. The MC+ penalty (Zhang 2010) is ideally suited to this task, and we

use it to demonstrate the performance of our algorithm. Certain technical

derivations and experiments of this article are included in the Supplementary

Materials Section.
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1 Introduction

Consider the usual linear regression set-up

y = Xβ + ǫ (1)

with n observations and p features X = [x1, . . . ,xp], response y, coefficient vector β

and (stochastic) error ǫ. In many modern statistical applications with p ≫ n, the

true β vector is often sparse, with many redundant predictors having coefficient zero.

We would like to identify the useful predictors and also obtain good estimates of their

coefficients. Identifying a set of relevant features from a list of many thousand is in

general combinatorially hard and statistically troublesome. In this context, convex

relaxation techniques such as the LASSO (Tibshirani 1996, Chen & Donoho 1994)

have been effectively used for simultaneously producing accurate and parsimonious

models. The LASSO solves

min
β

1
2
‖y −Xβ‖2 + λ‖β‖1. (2)

The ℓ1 penalty shrinks coefficients towards zero, and can also set many coefficients

to be exactly zero. In the context of variable selection, the LASSO is often thought

of as a convex surrogate for best-subset selection:

min
β

1
2
‖y −Xβ‖2 + λ‖β‖0. (3)

The ℓ0 penalty ‖β‖0 =
∑p

i=1 I(|βi| > 0) penalizes the number of non-zero coefficients

in the model.

The LASSO enjoys attractive statistical properties (Zhao & Yu 2006, Donoho

2006, Knight & Fu 2000, Meinshausen & Bühlmann 2006). Under certain regularity

conditions on X, it produces models with good prediction accuracy when the under-

lying model is reasonably sparse. Zhao & Yu (2006) established that the LASSO is
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model selection consistent: Pr(Â = A0) → 1, where A0 corresponds to the set of

nonzero coefficients (active) in the true model and Â those recovered by the LASSO.

Typical assumptions limit the pairwise correlations between the variables.

However, when these regularity conditions are violated, the LASSO can be sub-

optimal in model selection (Zhang 2010, Zhang & Huang 2008, Friedman 2008, Zou &

Li 2008, Zou 2006). Since the LASSO both shrinks and selects, it often selects a model

which is overly dense in its effort to relax the penalty on the relevant coefficients.

Typically in such situations greedier methods like subset regression and the non-

convex methods we discuss here achieve sparser models than the LASSO for the

same or better prediction accuracy, and enjoy superior variable-selection properties.

There are computationally attractive algorithms for the LASSO. The piecewise-

linear LASSO coefficient paths can be computed efficiently via the LARS (homotopy)

algorithm (Efron et al. 2004, Osborne et al. 2000). Coordinate-wise optimization

algorithms (Friedman et al. 2009) appear to be the fastest for computing the regular-

ization paths for a variety of loss functions, and scale well. One-at-a time coordinate-

wise methods for the LASSO make repeated use of the univariate soft-thresholding

operator

S(β̃, λ) = argmin
β

{

1
2
(β − β̃)2 + λ|β|

}

= sgn(β̃)(|β̃| − λ)+. (4)

In solving (2), the one-at-a-time coordinate-wise updates are given by

β̃j = S

(

n
∑

i=1

(yi − ỹji )xij, λ

)

, j = 1, . . . , p (5)

where ỹji =
∑

k 6=j xikβ̃k (assuming each xj is standardized to have mean zero and unit

ℓ2 norm). Starting with an initial guess for β̃ (typically a solution at the previous

value for λ), we cyclically update the parameters using (5) until convergence.

The LASSO can fail as a variable selector. In order to get the full effect of a
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relevant variable, we have to relax the penalty, which lets in other redundant but

possibly correlated features. This is in contrast to best-subset regression; once a

strong variable is included and fully fit, it drains the effect of its correlated surrogates.
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Figure 1: Regularization path for LASSO (left), MC+ (non-convex) penalized least-squares
for γ = 6.6 (centre) and γ = 1+ (right), corresponding to the hard-thresholding operator
(best subset). The true coefficients are shown as horizontal dotted lines. Here LASSO is
sub-optimal for model selection, as it can never recover the true model. The other two
penalized criteria are able to select the correct model (vertical lines), with the middle one
having smoother coefficient profiles than best subset on the right.

As an illustration, Figure 1 shows the regularization path of the LASSO coeffi-

cients for a situation where it is sub-optimal for model selection (The simulation setup

is defined in Section 7. Here n = 40, p = 10, SNR= 3, β = (−40,−31, 01×6, 31, 40)

and X ∼ MVN(0,Σ), where Σ = diag[Σ(0.65; 5),Σ(0; 5)].)

This motivates going beyond the ℓ1 regime to more aggressive non-convex penal-

ties (see the left-hand plots for each of the four penalty families in Figure 2), bridging

the gap between ℓ1 and ℓ0 (Fan & Li 2001, Zou 2006, Zou & Li 2008, Friedman 2008,
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Zhang 2010). Similar to (2), we minimize

Q(β) = 1
2
‖y −Xβ‖2 + λ

p
∑

i=1

P (|βi|;λ; γ), (6)

where P (|β|;λ; γ) defines a family of penalty functions concave in |β|, and λ and γ

control the degrees of regularization and concavity of the penalty respectively.

The main challenge here is in the minimization of the possibly non-convex ob-

jective Q(β). As one moves down the continuum of penalties from ℓ1 to ℓ0, the

optimization potentially becomes combinatorially hard (the optimization problems

become non-convex when the non-convexity of the penalty is no longer dominated by

the convexity of the squared error loss) .

Our contributions in this paper are as follows.

1. We propose a coordinate-wise optimization algorithm SparseNet for finding min-

ima of Q(β). Our algorithm cycles through both λ and γ, producing solution

surfaces β̂λ,γ for all families simultaneously. For each value of λ, we start at

the LASSO solution, and then update the solutions via coordinate descent as

γ changes, moving us towards best-subset regression.

2. We study the generalized univariate thresholding functions Sγ(β̃, λ) that arise

from different non-convex penalties (6), and map out a set of properties that

make them more suitable for coordinate descent. In particular, we seek conti-

nuity (in β̃) of these threshold functions for both λ and γ.

3. We prove convergence of coordinate descent for a useful subclass of non-convex

penalties, generalizing the results of Tseng & Yun (2009) to nonconvex prob-

lems. Our results go beyond those of Tseng (2001) and Zou & Li (2008);

they study stationarity properties of limit points, and not convergence of the

sequence produced by the algorithms.

4. We propose a re-parametrization of the penalty families that makes them even
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more suitable for coordinate-descent. Our re-parametrization constrains the

coordinate-wise effective degrees of freedom at any value of λ to be constant

as γ varies. This in turn allows for a natural transition across neighboring

solutions as as we move through values of γ from the convex LASSO towards

best-subset selection, with the size of the active set decreasing along the way.

5. We compare our algorithm to the state of the art for this class of problems, and

show how our approaches lead to improvements.

Note that this paper is about an algorithm for solving a non-convex optimization

problem. What we produce is a good estimate for the solution surfaces. We do not go

into methods for selecting the tuning paramaters, nor the properties of the resulting

estimators.

The paper is organized as follows. In Section 2 we study four families of non-

convex penalties, and their induced thresholding operators. We study their proper-

ties, particularly from the point of view of coordinate descent. We propose a degree

of freedom (df ) calibration, and lay out a list of desirable properties of penalties for

our purposes. In Section 3 we describe our SparseNet algorithm for finding a surface

of solutions for all values of the tuning parameters. In Section 5 we illustrate and

implement our approach using the MC+ penalty (Zhang 2010) or the firm shrink-

age threshold operator (Gao & Bruce 1997). In Section 6 we study the convergence

properties of our SparseNet algorithm. Section 7 presents simulations under a variety

of conditions to demonstrate the performance of SparseNet. Section 8 investigates

other approaches, and makes comparisons with SparseNet and multi-stage Local Lin-

ear Approximation (MLLA/LLA) (Zou & Li 2008, Zhang 2009, Candes et al. 2008).

The proofs of lemmas and theorems are gathered in the appendix.
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2 Generalized Thresholding Operators

In this section we examine the one-dimensional optimization problems that arise in

coordinate descent minimization of Q(β). With squared-error loss, this reduces to

minimizing

Q(1)(β) = 1
2
(β − β̃)2 + λP (|β|, λ, γ). (7)

We study (7) for different non-convex penalties, as well as the associated generalized

threshold operator

Sγ(β̃, λ) = argmin
β

Q(1)(β). (8)

As γ varies, this generates a family of threshold operators Sγ(·, λ) : ℜ → ℜ. The

soft-threshold operator (4) of the LASSO is a member of this family. The hard-

thresholding operator (9) can also be represented in this form

H(β̃, λ) = argmin
β

{

1
2
(β − β̃)2 + λ I(|β| > 0)

}

(9)

= β̃ I (|β̃| ≥ λ).

Our interest in thresholding operators arose from the work of She (2009), who also

uses them in the context of sparse variable selection, and studies their properties

for this purpose. Our approaches differ, however, in that our implementation uses

coordinate descent, and exploits the structure of the problem in this context.

For a better understanding of non-convex penalties and the associated threshold

operators, it is helpful to look at some examples. For each penalty family (a)–(d),

there is a pair of plots in Figure 2; the left plot is the penalty function, the right plot

the induced thresholding operator.

(a) The ℓγ penalty given by λP (t;λ; γ) = λ|t|γ for γ ∈ [0, 1], also referred to as the

bridge or power family (Frank & Friedman 1993, Friedman 2008).

(b) The log-penalty is a generalization of the elastic net family (Friedman 2008) to
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Figure 2: Non-Convex penalty families and their corresponding threshold functions. All
are shown with λ = 1 and different values for γ.

cover the non-convex penalties from LASSO down to best subset.

λP (t;λ; γ) =
λ

log(γ + 1)
log(γ|t|+ 1), γ > 0, (10)

where for each value of λ we get the entire continuum of penalties from ℓ1 (γ →

0+) to ℓ0 (γ →∞).

(c) The SCAD penalty (Fan & Li 2001) is defined via

d

dt
P (t;λ; γ) = I(t ≤ λ) +

(γλ− t)+
(γ − 1)λ

I(t > λ) for t > 0, γ > 2 (11)

P (t;λ; γ) = P (−t;λ; γ)

P (0;λ; γ) = 0
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(d) The MC+ family of penalties (Zhang 2010) is defined by

λP (t;λ; γ) = λ

∫ |t|

0

(1−
x

γλ
)+ dx

= λ(|t| −
t2

2λγ
) I(|t| < λγ) +

λ2γ

2
I(|t| ≥ λγ). (12)

For each value of λ > 0 there is a continuum of penalties and threshold opera-

tors, varying from γ →∞ (soft threshold operator) to γ → 1+ (hard threshold

operator). The MC+ is a reparametrization of the firm shrinkage operator

introduced by Gao & Bruce (1997) in the context of wavelet shrinkage.

Other examples of non-convex penalties include the transformed ℓ1 penalty (Nikolova

2000) and the clipped ℓ1 penalty (Zhang 2009).

Although each of these four families bridge ℓ1 and ℓ0, they have different proper-

ties. The two in the top row in Figure 2, for example, have discontinuous univariate

threshold functions, which would cause instability in coordinate descent. The thresh-

old operators for the ℓγ, log-penalty and the MC+ form a continuum between the soft

and hard-thresholding functions. The family of SCAD threshold operators, although

continuous, do not include H(·, λ). We study some of these properties in more detail

in Section 4.

3 SparseNet : Algorithm to Construct the Regu-

larization Surface β̂λ,γ

We now present our SparseNet algorithm for obtaining a family of solutions β̂γ,λ to

(6). The X matrix is assumed to be standardized with each column having zero

mean and unit ℓ2 norm. For simplicity, we assume γ =∞ corresponds to the LASSO

and γ = 1+, the hard-thresholding members of the penalty families. The basic

idea is as follows. For γ = ∞, we compute the exact solution path for Q(β) as a

function of λ using coordinate-descent. These solutions are used as warm-starts for
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the minimization of Q(β) at a smaller value of γ, corresponding to a more non-convex

penalty. We continue in this fashion, decreasing γ, till we have the solutions paths

across a grid of values for γ. The details are given in Algorithm 1.

Algorithm 1 SparseNet

1. Input a grid of increasing λ values Λ = {λ1, . . . , λL}, and a grid of increasing
γ values Γ = {γ1, . . . , γK}, where γK indexes the LASSO penalty. Define λL+1

such that β̂γK ,λL+1
= 0.

2. For each value of ℓ ∈ {L, L− 1, . . . , 1} repeat the following

(a) Initialize β̃ = β̂γK ,λℓ+1
.

(b) For each value of k ∈ {K,K − 1, . . . , 1} repeat the following

i. Cycle through the following one-at-a-time updates j =
1, . . . , p, 1, . . . , p, . . .

β̃j = Sγk

(

n
∑

i=1

(yi − ỹji )xij , λℓ

)

, (13)

where ỹji =
∑

k 6=j xikβ̃k, until the updates converge to β∗.

ii. Assign β̂γk,λℓ
← β∗.

(c) Decrement k.

3. Decrement ℓ.

4. Return the two-dimensional solution surface β̂λ,γ, (λ, γ) ∈ Λ× Γ

In Section 4 we discuss certain properties of penalty functions and their thresh-

old functions that are suited to this algorithm. We also discuss a particular form

of df recalibration that provides attractive warm-starts and at the same time adds

statistical meaning to the scheme.

We have found two variants of Algorithm 1 useful in practice:

• In computing the solution at (γk, λℓ), the algorithm uses as a warm start the

solution β̂γk+1,λℓ
. We run a parallel coordinate descent with warm start β̂γk,λℓ+1

,

and then pick the solution with a smaller value for the objective function. This

often leads to improved and smoother objective-value surfaces.
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• It is sometimes convenient to have a different λ sequence for each value of γ—

for example, our recalibrated penalties lead to such a scheme using a doubly

indexed sequence λkℓ.

In Section 5 we implement SparseNet using the calibrated MC+ penalty, which

enjoys all the properties outlined in Section 4.3 below. We show that the algorithm

converges (Section 6) to a stationary point of Q(β) for every (λ, γ).

4 Properties of Families of Non-Convex Penalties

Not all non-convex penalties are suitable for use with coordinate descent. Here we

describe some desirable properties, and a recalibration suitable for our optimization

Algorithm 1.
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Figure 3: The penalized least-squares criterion (8) with the log-penalty (10) for (γ, λ) =
(500, 0.5) for different values of β̃. The “*” denotes the global minima of the functions. The
“transition” of the minimizers, creates discontinuity in the induced threshold operators.
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4.1 Effect of Multiple Minima in Univariate Criteria

Figure 3 shows the univariate penalized criterion (7) for the log-penalty (10) for

certain choices of β̃ and a (λ, γ) combination. Here we see the non-convexity of Q1(β),

and the transition (with β̃) of the global minimizers of the univariate functions. This

causes the discontinuity of the induced threshold operators β̃ 7→ Sγ(β̃, λ), as shown in

Figure 2(b). Multiple minima and consequent discontinuity appears in the ℓγ, γ < 1

penalty as well, as seen in Figure 2(a).

It has been observed (Breiman 1996, Fan & Li 2001) that discontinuity of the

threshold operators leads to increased variance (and hence poor risk properties) of the

estimates. We observe that for the log-penalty (for example), coordinate-descent can

produce multiple limit points (without converging) — creating statistical instability

in the optimization procedure. We believe discontinuities such as this will naturally

affect other optimization algorithms; for example those based on sequential convex

relaxation such as MLLA. In the Supplementary Materials Section 1.4 we see that

MLLA gets stuck in a suboptimal local minimum, even for the univariate log-penalty

problem. This phenomenon is aggravated for the ℓγ penalty.

Multiple minima and hence the discontinuity problem is not an issue in the case

of the MC+ penalty or the SCAD (Figures 2(c,d)).

Our study of these phenomena leads us to conclude that if the univariate functions

Q(1)(β) (7) are strictly convex, then the coordinate-wise procedure is well-behaved

and converges to a stationary point. This turns out to be the case for the MC+ for

γ > 1 and the SCAD penalties. Furthermore we see in Section 5 in (18) that this

restriction on the MC+ penalty for γ still gives us the entire continuum of threshold

operators from soft to hard thresholding.

Strict convexity of Q(1)(β) also occurs for the log-penalty for some choices of λ

and γ, but not enough to cover the whole family. For example, the ℓγ family with

γ < 1 does not qualify. This is not surprising since with γ < 1 it has an unbounded

derivative at zero, and is well known to be unstable in optimization.
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4.2 Effective df and Nesting of shrinkage-thresholds

For a LASSO fit µ̂λ(x), λ controls the extent to which we (over)fit the data. This can

be expressed in terms of the effective degrees of freedom of the estimator. For our non-

convex penalty families, the df are influenced by γ as well. We propose to recalibrate

our penalty families so that for fixed λ, the coordinate-wise df do not change with γ.

This has important consequences for our pathwise optimization strategy.

For a linear model, df is simply the number of parameters fit. More generally,

under an additive error model, df is defined by (Stein 1981, Efron et al. 2004)

df(µ̂λ,γ) =

n
∑

i=1

Cov(µ̂λ,γ(xi), yi)/σ
2, (14)

where {(xi, yi)}
n
1 is the training sample and σ2 is the noise variance. For a LASSO fit,

the df is estimated by the number of nonzero coefficients (Zou et al. 2007). Suppose

we compare the LASSO fit with k nonzero coefficients to an unrestricted least-squares

fit in those k variables. The LASSO coefficients are shrunken towards zero, yet have

the same df ? The reason is the LASSO is “charged” for identifying the nonzero

variables. Likewise a model with k coefficients chosen by best-subset regression has

df greater than k (here we do not have exact formulas). Unlike the LASSO, these

are not shrunk, but are being charged the extra df for the search.

Hence for both the LASSO and best subset regression we can think of the effective

df as a function of λ. More generally, penalties corresponding to a smaller degree

of non-convexity shrink more than those with a higher degree of non-convexity, and

are hence charged less in df per nonzero coefficient. For the family of penalized

regressions from ℓ1 to ℓ0, df is controlled by both λ and γ.

In this paper we provide a re-calibration of the family of penalties P (·;λ; γ) such

that for every value of λ the coordinate-wise df across the entire continuum of γ

values are approximately the same. Since we rely on coordinate-wise updates in the

optimization procedures, we will ensure this by calibrating the df in the univariate
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Figure 4: [Left] The df (solid line) for the (uncalibrated) MC+ threshold operators as a
function of γ, for a fixed λ = 1. The dotted line shows the df after calibration. [Middle]
Family of MC+ threshold functions, for different values of γ, before calibration. All have
shrinkage threshold λS = 1. [Right] Calibrated versions of the same. The shrinkage thresh-
old of the soft-thresholding operator is λ = 1, but as γ decreases, λS increases, forming a
continuum between soft and hard thresholding.

thresholding operators. Details are given in Section 5.1 for a specific example.

We define the shrinkage-threshold λS of a thresholding operator as the largest

(absolute) value that is set to zero. For the soft-thresholding operator of the LASSO,

this is λ itself. However, the LASSO also shrinks the non-zero values toward zero.

The hard-thresholding operator, on the other hand, leaves all values that survive its

shrinkage threshold λH alone; in other words it fits the data more aggressively. So

for the df of the soft and hard thresholding operators to be the same, the shrinkage-

threshold λH for hard thresholding should be larger than the λ for soft thresholding.

More generally, to maintain a constant df there should be a monotonicity (increase)

in the shrinkage-thresholds λS as one moves across the family of threshold operators

from the soft to the hard threshold operator. Figure 4 illustrates these phenomena

for the MC+ penalty, before and after calibration.

Why the need for calibration? Because of the possibility of multiple station-

ary points in a non-convex optimization problem, good warm-starts are essential for

avoiding sub-optimal solutions. The calibration assists in efficiently computing the
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doubly-regularized (γ, λ) paths for the coefficient profiles. For fixed λ we start with

the exact LASSO solution (large γ). This provides an excellent warm start for the

problem with a slightly decreased value for γ. This is continued in a gradual fashion

as γ approaches the best-subset problem. The df calibration provides a natural path

across neighboring solutions in the (λ, γ) space:

• λS increases slowly, decreasing the size of the active set;

• at the same time, the active coefficients are shrunk successively less.

We find that the calibration keeps the algorithm away from sub-optimal stationary

points and accelerates the speed of convergence.

4.3 Desirable Properties for a Family of Threshold Opera-

tors

Consider the family of threshold operators

Sγ(·, λ) : ℜ → ℜ γ ∈ (γ0, γ1).

Based on our observations on the properties and irregularities of the different penalties

and their associated threshold operators, we have compiled a list of properties we

consider desirable:

1. γ ∈ (γ0, γ1) should bridge the gap between soft and hard thresholding, with the

following continuity at the end points

Sγ1(β̃, λ) = sgn(β̃)(β̃ − λ)+ and Sγ0(β̃;λ) = β̃I(|β̃| ≥ λH) (15)

where λ and λH correspond to the shrinkage thresholds of the soft and hard

threshold operators respectively.
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2. λ should control the effective df in the family Sγ(·, λ); for fixed λ, the effective

df of Sγ(·, λ) for all values of γ should be the same.

3. For every fixed λ, there should be a strict nesting (increase) of the shrinkage

thresholds λS as γ decreases from γ1 to γ0.

4. The map β̃ 7→ Sγ(β̃, λ) should be continuous.

5. The univariate penalized least squares function Q(1)(β) (7) should be convex for

every β̃. This ensures that coordinate-wise procedures converge to a stationary

point. In addition this implies continuity of β̃ 7→ Sγ(β̃, λ) in the previous item.

6. The function γ 7→ Sγ(·, λ) should be continuous on γ ∈ (γ0, γ1). This assures

a smooth transition as one moves across the family of penalized regressions, in

constructing the family of regularization paths.

We believe these properties are necessary for a meaningful analysis for any generic

non-convex penalty. Enforcing them will require re-parametrization and some restric-

tions in the family of penalties (and threshold operators) considered. In terms of the

four families discussed in Section 2:

• The threshold operator induced by the SCAD penalty does not encompass the

entire continuum from the soft to hard thresholding operators (all the others

do).

• None of the penalties satisfy the nesting property of the shrinkage thresholds

(item 3) or the degree of freedom calibration (item 2). In Section 5.1 we recal-

ibrate the MC+ penalty so as to achieve these.

• The threshold operators induced by ℓγ and Log-penalties are not continuous

(item 4); they are for MC+ and SCAD.
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• Q(1)(β) is strictly convex for both the SCAD and the MC+ penalty. Q(1)(β) is

non-convex for every choice of (λ > 0, γ) for the ℓγ penalty and some choices

of (λ > 0, γ) for the log-penalty.

In this paper we explore the details of our approach through the study of the

MC+ penalty; indeed, it is the only one of the four we consider for which all the

properties above are achievable.

5 Illustration via the MC+ Penalty

Here we give details on the recalibration of the MC+ penalty, and the algorithm that

results. The MC+ penalized univariate least-squares objective criterion is

Q1(β) = 1
2
(β − β̃)2 + λ

∫ |β|

0

(

1−
x

γλ

)

+

dx. (16)

This can be shown to be convex for γ ≥ 1, and non-convex for γ < 1. The minimizer

for γ > 1 is a piecewise-linear thresholding function (see Figure 4, middle) given by

Sγ(β̃, λ) =























0 if |β̃| ≤ λ;

sgn(β̃)

(

(|β̃|−λ

1− 1

γ

)

if λ < |β̃| ≤ λγ;

β̃ if |β̃| > λγ.

(17)

Observe that in (17), for fixed λ > 0,

as γ → 1+, Sγ(β̃, λ)→ H(β̃, λ),

as γ →∞, Sγ(β̃, λ)→ S(β̃, λ). (18)

Hence γ0 = 1+ and γ1 =∞. It is interesting to note here that the hard-threshold op-

erator, which is conventionally understood to arise from a highly non-convex ℓ0 penal-

ized criterion (9), can be equivalently obtained as the limit of a sequence {Sγ(β̃, λ)}γ>1
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where each threshold operator is the solution of a convex criterion (16) for γ > 1. For

a fixed λ, this gives a family {Sγ(β̃, λ)}γ with the soft and hard threshold operators

as its two extremes.

5.1 Calibrating MC+ for df

For a fixed λ, we would like all the thresholding functions Sγ(β̃, λ) to have the same

df ; this will require a reparametrization. It turns out that this is tractable for the

MC+ threshold function.

Consider the following univariate regression model

yi = xiβ + ǫi, i = 1, . . . , n, ǫi
iid
∼ N(0, σ2). (19)

Without loss of generality, assume the xi’s have sample mean zero and sample variance

one (the xi’s are assumed to be non-random). The df for the threshold operator

Sγ(·, λ) is defined by (14) with

µ̂γ,λ = x · Sγ(β̃, λ) (20)

and β̃ =
∑

i xiyi/
∑

x2
i . The following theorem gives an explicit expression of the df.

Theorem 1. For the model described in (19), the df of µ̂γ,λ (20) is given by:

df(µ̂γ,λ) =
λγ

λγ − λ
Pr(λ ≤ |β̃| < λγ) + Pr(|β̃| > λγ) (21)

where these probabilities are to be calculated under the law β̃ ∼ N(β, σ2/n)

Proof. We make use of Stein’s unbiased risk estimation (Stein 1981, SURE) result.

It states that if µ̂ : ℜn → ℜn is an almost differentiable function of y, and y ∼
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N(µ, σ2In), then there is a simplification to the df(µ̂) formula (14)

df(µ̂) =

n
∑

i=1

Cov(µ̂i, yi)/σ
2

= E(∇ · µ̂), (22)

where ∇ · µ̂ =
∑n

i=1 ∂µ̂i/∂yi. Proceeding along the lines of proof in Zou et al.

(2007), the function µ̂γ,λ : ℜ → ℜ defined in (20) is uniformly Lipschitz (for every

λ ≥ 0, γ > 1), and hence almost everywhere differentiable. The result follows easily

from the definition (17) and that of β̃, which leads to (21).

As γ →∞, µ̂γ,λ → µ̂λ, and from (21), we see that

df(µ̂γ,λ) −→ Pr(|β̃| > λ) (23)

= E (I(|β̃| > 0))

which corresponds to the expression obtained by Zou et al. (2007) for the df of the

LASSO in the univariate case.

Corollary 1. The df for the hard-thresholding function H(β̃, λ) is given by

df(µ̂1+,λ) = λφ∗(λ) + Pr(|β̃| > λ) (24)

where φ∗ is taken to be the p.d.f. of the absolute value of a normal random variable

with mean β and variance σ2/n.

For the hard threshold operator, Stein’s simplified formula does not work, since

the corresponding function y 7→ H(β̃, λ) is not almost differentiable. But observing

from (21) that

df(µ̂γ,λ)→ λφ∗(λ) + Pr(|β̃| > λ), and Sγ(β̃, λ)→ H(β̃, λ) as γ → 1+ (25)

we get an expression for df as stated.
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These expressions are consistent with simulation studies based on Monte Carlo

estimates of df. Figure 4[Left] shows df as a function of γ for a fixed value λ = 1 for

the uncalibrated MC+ threshold operators Sγ(·, λ). For the figure we used β = 0 and

σ2 = 1.

5.1.1 Re-parametrization of the MC+ Penalty

We argued in Section 4.2 that for the df to remain constant for a fixed λ and varying

γ, the shrinkage threshold λS = λS(λ, γ) should increase as γ moves from γ1 to γ0.

Theorem 3 formalizes this observation.

Hence for the purpose of df calibration, we re-parametrize the family of penalties

as follows:

λP ∗(|t|;λ; γ) = λS(λ, γ)

∫ |t|

0

(

1−
x

γλS(λ, γ)

)

+

dx. (26)

With the re-parametrized penalty, the thresholding function is the obvious mod-

ification of (17):

S∗
γ(β̃, λ) = argmin

β
{1
2
(β − β̃)2 + λP ∗(|β|;λ; γ)}

= Sγ(β̃, λS(λ, γ)) (27)

Similarly for the df we simply plug into the formula (21)

df(µ̂∗
γ,λ) =

γλS(λ, γ)

γλS(λ, γ)− λS(λ, γ)
Pr(λS(λ, γ) ≤ |β̃| < γλS(λ, γ)) + Pr(|β̃| > γλS(λ, γ))

(28)

where µ̂∗
γ,λ = µ̂γ,λS(λ,γ)

.

To achieve a constant df, we require the following to hold for λ > 0:

• The shrinkage-threshold for the soft threshold operator is λS(λ, γ = ∞) = λ

and hence µ̂∗
λ = µ̂λ ( a boundary condition in the calibration).

• df(µ̂∗
γ,λ) = df(µ̂λ) ∀ γ > 1.
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The definitions for df depend on β and σ2/n. Since the notion of df centers around

variance, we use the null model with β = 0. We also assume without loss of generality

that σ2/n = 1, since this gets absorbed into λ.

Theorem 2. For the calibrated MC+ penalty to achieve constant df, the shrinkage-

threshold λS = λS(λ, γ) must satisfy the following functional relationship

Φ(γλS)− γΦ(λS) = −(γ − 1)Φ(λ), (29)

where Φ is the standard normal cdf and φ the pdf of the same.

Theorem 2 is proved in the Supplementary Materials Section 1.2, using (28) and

the boundary constraint. The next theorem establishes some properties of of the

map (λ, γ) 7→ (λS(λ, γ), γλS(λ, γ)), including the important nesting of shrinkage

thresholds.

Theorem 3. For a fixed λ,

(a) γλS(λ, γ) is increasing as a function of γ.

(b) λS(λ, γ) is decreasing as a function of γ

Note that as γ increases, we approach the LASSO; see Figure 4 (right). Both

these relationships can be derived from the functional equation (29). Theorem 3 is

proved in the Supplementary Materials Section 1.2.

5.1.2 Efficient Computation of shrinkage thresholds

In order to implement the calibration for MC+, we need an efficient method for

evaluating λS(λ, γ)—i.e. solving equation (29). For this purpose we propose a simple

parametric form for λS based on some of its required properties: the monotonicity

properties just described, and the df calibration. We simply give the expressions

21



here, and leave the details for the Supplementary Materials Section 1.3:

λS(λ, γ) = λH(
1− α∗

γ
+ α∗) (30)

where

α∗ = λ−1
H Φ−1(Φ(λH)− λHφ(λH)), λ = λHα

∗ (31)

The above approximation turns out to be a reasonably good estimator for all practical

purposes, achieving a calibration of df within an accuracy of five percent, uniformly

over all (γ, λ). The approximation can be improved further, if we take this estimator

as the starting point, and obtain recursive updates for λS(λ, γ). Details of this ap-

proximation along with the algorithm are explained in the Supplementary Materials

Section 1.3. Numerical studies show that a few iterations of this recursive computa-

tion can improve the degree of accuracy of calibration up to an error of 0.3 percent;

Figure 4 [Left] was produced using this approximation. Figure 5 shows a typical

pattern of recalibration for the example we present in Figure 7 in Section 8.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1
2

5
10

20
50

γ

λS(γ, λ)

Figure 5: Recalibrated values of λ via λS(γ, λ) for the MC+ penalty. The values of λ at
the top of the plot correspond to the LASSO. As γ decreases, the calibration increases the
shrinkage threshold to achieve a constant univariate df.

As noted below Algorithm 1 this leads to a lattice of values λk,ℓ.
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6 Convergence Analysis

In this section we present results on the convergence of Algorithm 1. Tseng & Yun

(2009) show convergence of coordinate-descent for functions that can be written as

the sum of a smooth function (loss) and a separable non-smooth convex function

(penalty). This is not directly applicable to our case as the penalty is non-convex.

Denote the coordinate-wise updates βk+1 = Scw(β
k), k = 1, 2, . . . with

βk+1
j = argmin

u
Q(βk+1

1 , . . . , βk+1
j−1 , u, β

k
j+1, . . . , β

k
p ), j = 1, . . . , p. (32)

Theorem 4 establishes that under certain conditions, SparseNet always converges to

a minimum of the objective function; conditions that are met, for example, by the

SCAD and MC+ penalties (for suitable γ).

Theorem 4. Consider the criterion in (6), where the given data (y,X) lies on a

compact set and no column of X is degenerate (ie multiple of the unit vector). Sup-

pose the penalty λP (t;λ; γ) ≡ P (t) satisfies P (t) = P (−t), P ′(|t|) is non-negative,

uniformly bounded and inft P
′′(|t|) > −1; where P ′(|t|) and P ′′(|t|) are the first and

second derivatives (assumed to exist) of P (|t|) wrt |t|.

Then the univariate maps β 7→ Q(1)(β) are strictly convex and the sequence of

coordinate-updates {βk}k converge to a minimum of the function Q(β).

Note that the condition on the data (y,X) is a mild assumption (as it is necessary

for the variables to be standardized). Since the columns of X are mean-centered, the

non-degeneracy assumption is equivalent to assuming that no column is identically

zero.

The proof is provided in Appendix A.1. Lemma 1 and Lemma 2 under milder

regularity conditions, establish that every limit point of the sequence {βk} is a sta-

tionary point of Q(β).
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Remark 1. Note that Theorem 4 includes the case where the penalty function P (t)

is convex in t.

7 Simulation Studies

In this section we compare the simulation performance of a number of different meth-

ods with regard to a) prediction error, b) the number of non-zero coefficients in the

model, and c) “misclassification error” of the variables retained. The methods we

compare are SparseNet, Local Linear Approximation (LLA) and Multi-stage Local

Linear Approximation (MLLA) (Zou & Li 2008, Zhang 2009, Candes et al. 2008),

LASSO, forward-stepwise regression and best-subset selection. Note that SparseNet,

LLA and MLLA are all optimizing the same MC+ penalized criterion.

We assume a linear model Y = Xβ + ε with multivariate Gaussian predictors X

and Gaussian errors. The Signal-to-Noise Ratio (SNR) and Standardized Prediction

Error (SPE) are defined as

SNR =

√

βTΣβ

σ
, SPE =

E(y − xβ̂)2

σ2
(33)

The minimal achievable value for SPE is 1 (the Bayes error rate). For each model,

the optimal tuning parameters — λ for the penalized regressions, subset size for

best-subset selection and stepwise regression—are chosen based on minimization of

the prediction error on a separate large validation set of size 10K. We use SNR=3 in

all the examples.

Since a primary motivation for considering non-convex penalized regressions is to

mimic the behavior of best subset selection, we compare its performance with best-

subset for small p = 30. For notational convenience Σ(ρ;m) denotes a m×m matrix

with 1’s on the diagonal, and ρ’s on the off-diagonal.

We consider the following examples:

S1: n = 35, p = 30, ΣS1 = Σ(0.4; p) and βS1 = (0.03, 0.07, 0.1, 0.9, 0.93, 0.97, 01×24).
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S1: small p
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Figure 6: Examples S1 and M1. The three columns of plots represent prediction
error, recovered sparsity and zero-one loss (all with standard errors over the 25 runs).
Plots show the recalibrated MC+ family for different values of γ (on the log-scale)
via SparseNet, LLA, MLLA, LASSO (las), step-wise (st) and best-subset (bs) (for S1

only)

M1: n = 100, p = 200, ΣM1 = {0.7|i−j|}1≤i,j≤p and βM1 has 10 non-zeros such that

βM1

20i+1 = 1, i = 0, 1, . . . , 9; and βM1

i = 0 otherwise.

In example M1 best-subset was not feasible and hence was omitted. The starting
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point for both LLA and MLLA were taken as a vector of all ones (Zhang 2009).

Results are shown in Figure 6 with discussion in Section 7.1. These two examples,

chosen from a battery of similar examples, show that SparseNet compares very fa-

vorably with its competitors.

We now consider some larger examples and study the performance of SparseNet

varying γ.

M1(5): n = 500, p = 1000, ΣM1(5) = blockkdiag(ΣM1 , . . . ,ΣM1) and βM1(5) =

(βM1, . . . ,βM1) (five blocks).

M1(10): n = 500, p = 2000 (same as above with ten blocks instead of five).

M2(5): n = 500, p = 1000, ΣM2(5) = blockdiag(Σ(0.5, 200), . . . ,Σ(0.5, 200)) and

βM2(5) = (βM2, . . . ,βM2) (five blocks). Here βM2 = (β1, β2, . . . , β10, 01×190) is

such that the first ten coefficients form an equi-spaced grid on [0, 0.5].

M2(10): n = 500, p = 2000, and is like M2(5) with ten blocks.

The results are summarized in Table 1, with discussion in Section 7.1.

7.1 Discussion of Simulation Results

In both S1 and M1, the aggressive non-convex SparseNet out-performs its less ag-

gressive counterparts in terms of prediction error and variable selection. Due to the

correlation among the features, the LASSO and the less aggressive penalties estimate

a considerable proportion of zero coefficients as non-zero. SparseNet estimates for

γ ≈ 1 are almost identical to the best-subset procedure in S1. Step-wise performs

worse in both cases. LLA and MLLA show similar behavior in S1, but are inferior to

SparseNet in predictive performance for smaller values of γ. This shows that MLLA

and SparseNet reach very different local optima. In M1 LLA/MLLA seem to show

similar behavior across varying degrees of non-convexity. This is undesirable behav-

ior, and is probably because MLLA/LLA gets stuck in a local minima. MLLA does

perfect variable selection and shows good predictive accuracy.
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log(γ) values Average
Example: M1(5) 3.92 1.73 1.19 0.10 std error
SPE 1.6344 1.3194 1.2015 1.1313 5.648× 10−4

% of non-zeros [5] 16.3 13.3 8.2 5.000 0.0702
0− 1 error 0.1137 0.0825 0.0319 0.0002 8.508× 10−4

Example: M2(5)
SPE 1.3797 1.467 1.499 1.7118 2.427× 10−3

% of non-zeros [5] 21.4 9.9 6.7 2.5 0.1037
0− 1 error 0.18445 0.08810 0.0592 0.03530 1.118× 10−3

Example: M1(10)
SPE 3.6819 4.4838 4.653 5.4729 1.152× 10−2

% of non-zeros [5] 23.0 12.0 8.5 6.2625 0.066
0− 1 error 0.1873 0.0870 0.0577 0.0446 1.2372× 10−3

Example: M2(10)
SPE 1.693 1.893 2.318 2.631 1.171× 10−2

% of non-zeros [5] 15.5 8.3 5.7 2.2 0.0685
0− 1 error 0.1375 0.0870 0.0678 0.047 0.881× 10−3

Table 1: Table showing standardized prediction error (SPE), percentage of non-
zeros and zero-one error in the recovered model via SparseNet, for different problem
instances. The last column shows the averaged standard errors, across the four γ
values. The true number of non-zero coefficients in the model are in square braces.
Results are averaged over 25 runs.

In M1(5), (n = 500, p = 1000) the prediction error decreases steadily with de-

creasing γ, the variable selection properties improve as well. In M1(10) (n = 500, p =

2000) the prediction error increases overall, and there is a trend reversal — with the

more aggressive non-convex penalties performing worse. The variable selection prop-

erties of the aggressive penalties, however, are superior to its counterparts. The

less aggressive non-convex selectors include a larger number of variables with high

shrinkage, and hence perform well in predictive accuracy.

In M2(5) and M2(10), the prediction accuracy decreases marginally with increas-

ing γ. However, as before, the variable selection properties of the more aggressive

non-convex penalties are far better.

In summary, SparseNet is able to mimic the prediction performance of best subset

regression in these examples. In the high-p settings, it repeats this behavior, mim-

icking the best, and is the out-right winner in several situations since best-subset
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regression is not available. In situations where the less aggressive penalties do well,

SparseNet often reduces the number of variables for comparable prediction perfor-

mance, by picking a γ in the interior of its range. The solutions of LLA and MLLA are

quite different from the SparseNet and they often show similar performances across

γ (as also pointed out in Candes et al. (2008) and Zou & Li (2008)).

It appears that the main differences among the different strategies MLLA, LLA

and SparseNet lie in their roles of optimizing the objective Q(β). We study this

from a well grounded theoretical framework in Section 8, simulation experiments

in Section 8.1 and further examples in Section 1.4 in the Supplementary Materials

Section.

8 Other Methods of Optimization

We shall briefly review some of the state-of-the art methods proposed for optimization

with general non-convex penalties.

Fan & Li (2001) used a local quadratic approximation (LQA) of the SCAD penalty.

The method can be viewed as a majorize-minimize algorithm which repeatedly per-

forms a weighted ridge regression. LQA gets rid of the non-singularity of the penalty

at zero, depends heavily on the initial choice β0, and is hence suboptimal (Zou &

Li 2008) in searching for sparsity.

The MC+ algorithm of Zhang (2010) cleverly tracks multiple local minima of the

objective function and seeks a solution to attain desirable statistical properties. The

algorithm is complex, and since it uses a LARS-type update, is potentially slower

than coordinate-wise procedures.

Friedman (2008) proposes a path-seeking algorithm for general non-convex penal-

ties. Except in simple cases, it is unclear what criterion of the form “loss+penalty”

it optimizes.

Multi-stage Local Linear Approximation. Zou & Li (2008), Zhang (2009) and
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Candes et al. (2008) propose majorize-minimize (MM) algorithms for minimization

of Q(β) (6), and consider the re-weighted ℓ1 criterion

Q(β;βk) = Constant + 1
2
‖y−Xβ‖2 + λ

p
∑

j=1

P ′(|β̂k
j |;λ; γ)|βj| (34)

for some starting point β1. If βk+1 is obtained by minimizing (34)— we denote the

update via the map βk+1 := Mlla(β
k). There is currently a lot of attention payed

to MLLA in the literature, so we analyze and compare it to our coordinate-wise

procedure in more detail.

We have observed (Sections 8.1 and 1.4.1) that the starting point is critical; see

also Candes et al. (2008) and Zhang (2010). Zou & Li (2008) suggest stopping at k = 2

after starting with an “optimal” estimator, for example, the least-squares estimator

when p < n. Choosing an optimal initial estimator β1 is essentially equivalent to

knowing a-priori the zero and non-zero coefficients of β. The adaptive LASSO of Zou

(2006) is very similar in spirit to this formulation, though the weights (depending

upon a good initial estimator) are allowed to be more general than derivatives of the

penalty (34).

Convergence properties of SparseNet and MLLA can be analyzed via properties

of fixed points of the maps Scw(·) and Mlla(·) respectively. If the sequences produced

by Mlla(·) or Scw(·) converge, they correspond to stationary points of the function Q.

Fixed points of the maps Mlla(·) and Scw(·) correspond to convergence of the sequence

of updates.

The convergence analysis of MLLA is based on the fact that Q(β;βk) majorizes

Q(β). If βk is the sequence produced via MLLA, then {Q(βk)}k≥1 converges. This

does not address the convergence properties of {βk}k≥1 nor properties of its limit

points. Zou & Li (2008) point out that if the map Mlla satisfies Q(β) = Q(Mlla(β))

for limit points of the sequence {βk}k≥1, then the limit points are stationary points of

the function Q(β). It appears, however, that solutions of Q(β) = Q(Mlla(β)) are not
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easy to characterize by explicit regularity conditions on the penalty P . The analysis

does not address the fate of all the limit points of the sequence {βk}k≥1 in case the

sufficient conditions of Proposition 1 in Zou & Li (2008) fail to hold true. Our analysis

in Section 6 for SparseNet addresses all the concerns raised above. Fixed points of

the map Scw(·) are explicitly characterized through some regularity conditions of the

penalty functions as described in Section 6. Explicit convergence can be shown under

additional conditions — Theorem 4.

Furthermore, a fixed point of the map Mlla(·) need not be a fixed point of Scw(·)

– for specific examples see Section 1.4 in the Supplementary Materials Section. Every

stationary point of the coordinate-wise procedure, however, is also a fixed point of

MLLA.

The formal framework being laid, we proceed to perform some simple numerical

experiments in Section 8.1. Further discussions and comparisons between coordinate-

wise procedures and MLLA can be found in Section 1.4 in the Supplementary Mate-

rials Section.

8.1 Empirical Performance and the Role of Calibration

In this section we show the importance of calibration and the specific manner in

which the regularization path is traced out via SparseNet in terms of the quality

of the solution obtained. In addition we compare the optimization performance of

LLA/MLLA versus SparseNet.

In Figure 7 we consider an example with n = p = 10, Σ = {0.8|i−j|}, 1 ≤ i, j,≤ p,

SNR=1, β1 = βp = 1, all other βj = 0. We consider 50 values of γ and 20 values of

λ, and compute the solutions for all methods at the recalibrated pairs (γ, λS(γ, λ));

see Figure 5 for the exact λk,ℓ values used in these plots.

We compare SparseNet with

Type (a) Coordinate-wise procedure that computes solutions on a grid of λ for

every fixed γ, with warm-starts across λ (from larger to smaller values). No df
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Figure 7: Top row: objective function for SparseNet compared to other coordinate-
wise variants — Type (a), (b) and MLLA Type (c) — for a typical example. Plots
are shown for 50 values of γ (some are labeled in the legend) and at each value of γ,
20 values of λ. Bottom row: relative increase I(γ, λ) in the objective compared to
SparseNet, with the average Ī reported at the top of each plot.

calibration is used here.

Type (b) Coordinate-wise procedure “cold-starting” with a zero vector (She 2009)

for every pair (λ, γ).

Type (c) MLLA with the starting vector initialized to a vector of ones (Zhang 2009).

In all cases SparseNet shows superior performance. For each (γ, λ) pair we compute

the relative increase I(γ, λ) = [Q(β∗) + 0.05]/[Q(βs) + 0.05], where Q(β∗) denotes

the objective value obtained for procedure ∗ (types (a), (b) or (c) above), and Q(βs)

represents SparseNet. These values are shown in the second row of plots. They are

also averaged over all values of (γ, λ) to give Ī (shown at the top of each plot). This

is one of 24 different examples, over 6 different problem set-ups with 4 replicates in

each. Figure 8 summarizes Ī for these 24 scenarios. Results are shown in Figure 7
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Figure 8: Boxplots of Ī over 24 different examples. In all cases SparseNet shows superior
performance.

(We show the curves of the objective values, as in Figure 7, for all 24 scenarios in the

Supplementary Materials Section.) The figure shows clearly the benefits of using the

proposed calibration in terms of optimization performance. MLLA appears to get

“stuck” in local optima, supporting our claim in section 7.1. For larger values of γ

the different coordinate-wise procedures perform similarly, since the problem is close

to convex.

A Appendix

A.1 Convergence Analysis for Algorithm 1

To prove Theorem 4 we require Lemma 1.

Lemma 1. Suppose the data (y,X) lies on a compact set. In addition, we assume the

following

1. The penalty function P (t) (symmetric around 0) is differentiable on t ≥ 0; P ′(|t|)

is non-negative, continuous and uniformly bounded, where P ′(|t|) is the derivative of

P (|t|) wrt |t|.

2. The sequence generated {βk}k is bounded

3. For every convergent subsequence {βnk}k ⊂ {β
k}k the successive differences converge

to zero: βnk − βnk−1 → 0
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If β∞ is any limit point of the sequence {βk}k, then β∞ is a minimum for the function

Q(β); i.e. for any δ = (δ1, . . . , δp) ∈ ℜ
p

lim inf
α↓0+

{

Q(β∞ + αδ)−Q(β∞)

α

}

≥ 0 (35)

In the Supplementary Materials Section 1 we present the proof of Lemma 1. We also

show via Lemma 1 that assumption 2 is by no means restrictive. Lemma 2 gives a sufficient

condition under which assumption 3 of Lemma 1 is true.

It is useful to note here that assumptions 2, 3 of Lemma 1 follow from the assumptions

of Theorem 4 (we make a further note of this in the proof below).

We are now in a position to present the proof of Theorem 4:

Proof. Proof of Theorem 4 We will assume WLOG that the data is standardized.

For fixed i and (β1, . . . , βi−1, βi+1, . . . , βp), we will write χi
(β1,...,βi−1,βi+1,...,βp)

≡ χ(u) for

the sake notational convenience.

The sub-gradient(s) (Borwein & Lewis 2006) of χ(u) at u are given by

∂χ(u) = ∇if((β1, . . . , βi−1, u, βi+1, . . . , βp)) + P ′(|u|) sgn(u) (36)

Also observe that

χ(u+ δ) − χ(u) = {f((β1, . . . , βi−1, u+ δ, βi+1, . . . , βp))−

f((β1, . . . , βi−1, u, βi+1, . . . , βp))} + {P (|u+ δ|)− P (|u|)} (37)

= {∇if((β1, . . . , βi−1, u, βi+1, . . . , βp))δ +
1
2∇

2
i fδ

2}

+ {P ′(|u|)(|u + δ| − |u|) + 1
2P

′′(|u∗|)(|u+ δ| − |u|)2} (38)

Line (38) is obtained from (37) by a Taylor’s series expansions on f (wrt to the ith coordi-

nate) and |t| 7→ P (|t|). ∇2
i f is the second derivative of the function f wrt the ith coordinate

and equals 1 as the features are all standardized; |u∗| is some number between |u+ δ| and
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|u|. The rhs of (38) can be simplified as follows:

∇if((β1, . . . , βi−1, u, βi+1, . . . , βp))δ +
1
2∇

2
i fδ

2

+P ′(|u|)(|u + δ| − |u|) + 1
2P

′′(|u∗|)(|u + δ| − |u|)2

= 1
2∇

2
i fδ

2 + {∇if((β1, . . . , βi−1, u, βi+1, . . . , βp))δ + P ′(|u|) sgn(u)δ}+

{P ′(|u|)(|u + δ| − |u|) − P ′(|u|) sgn(u)δ} + 1
2P

′′(|u∗|)(|u+ δ| − |u|)2

(39)

Since χ(u) is minimized at u0; 0 ∈ ∂χ(u0). Thus using (36) we get

∇if((β1, . . . , βi−1, u0, βi+1, . . . , βp))δ + P ′(|u0|) sgn(u0)δ = 0 (40)

if u0 = 0 then the above holds true for some value of sgn(u0) ∈ [−1, 1].

By definition of sub-gradient of x 7→ |x| and P ′(|x|) ≥ 0 we have

P ′(|u|)(|u + δ| − |u|)− P ′(|u|) sgn(u)δ = P ′(|u|) ((|u+ δ| − |u|)− sgn(u)δ) ≥ 0 (41)

Using (40,41) in (39,38) at u = u0 we have

χ(u0 + δ)− χ(u0) ≥
1
2∇

2
i fδ

2 + 1
2P

′′(|u∗|)(|u0 + δ| − |u0|)
2 (42)

Observe that (|u0 + δ| − |u0|)
2 ≤ δ2. If P ′′(|u∗|) ≤ 0 then 1

2P
′′(|u∗|)(|u0 + δ| − |u0|)

2 ≥

1
2P

′′(|u∗|)δ2. If P ′′(|u∗|) ≥ 0 then 1
2P

′′(|u∗|)(|u0 + δ| − |u0|)
2 ≥ 0.

Combining these two we get

χ(u0 + δ) − χ(u0) ≥
1
2δ

2
(

∇2
i f +min{P ′′(|u∗|), 0}

)

(43)

By the conditions of this theorem, (∇2
i f + infx P

′′(|x|)) > 0. Hence there exists a θ > 0,

θ = 1
2{∇

2
i f +min{inf

x
P ′′(|x|), 0}} = 1

2{1 + min{inf
x
P ′′(|x|), 0}} > 0

which is independent of (β1, . . . , βi−1, βi+1, . . . , βp), such that

χ(u0 + δ)− χ(u0) ≥ θδ2 (44)
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(For the MC+ penalty, infx P
′′(|x|) = − 1

γ
; γ > 1. For the SCAD, infx P

′′(|x|) =

− 1
γ−1 ; γ > 2.)

In fact the dependence on u0 above in (44) can be further relaxed. Following the above

arguments carefully, we see that the function χ(u) is strictly convex (Borwein & Lewis 2006)

as it satisfies:

χ(u+ δ)− χ(u)− ∂χ(u)δ ≥ θδ2 (45)

We will use this result to show the convergence of {βk} . Using (44) we have

Q(βm−1
i )−Q(βm−1

i+1 ) ≥ θ(βm−1
i+1 − βm

i+1)
2

= θ‖βm−1
i − βm−1

i+1 ‖
2
2 (46)

where βm−1
i := (βm

1 , . . . , βm
i , βm−1

i+1 , . . . , βm−1
p ). (46) shows the boundedness of the sequence

βm, for every m > 1 since the starting point β1 ∈ ℜp.

Using (46) repeatedly across every coordinate, we have for every m

Q(βm+1)−Q(βm) ≥ θ‖βm+1 − βm‖22 (47)

Using the fact that the (decreasing) sequence Q(βm) converges, it is easy to see from (47),

that the sequence βk cannot cycle without convergence ie it must have a unique limit point.

This completes the proof of convergence of βk.

Observe that, (47) implies that assumptions 2 and 3 of Lemma 1 are satisfied. Hence

using Lemma 1, the limit of βk is a minimum of Q(β) — this completes the proof.

Supplementary Materials

Title: Supplementary Materials Some details of technical derivations and experiments

are available in the Supplementary Materials Section. Please include the file

jasa_MHF_suppl

here.
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