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SUMMARY

The elements of a multivariate data set are often curves rather than single points. Func-
tional principal components can be used to describe the modes of variation of such curves. If
one has complete measurements for each individual curve or, as is more common, one has mea-
surements on a fine grid taken at the same time points for all curves, then many standard tech-
niques may be applied. However, curves are often measured at an irregular and sparse set of
time points which can differ widely across individuals. We present a technique for handling
this more difficult case using a reduced rank mixed effects framework.

Some key words: Functional data analysis; Principal components; Mixed effects model; Reduced rank esti-
mation; Growth curve.

1. INTRODUCTION

1 � 1. The problem

We present a technique for fitting principal component functions to data such as the growth curves
illustrated in Fig. 1(a). These data consist of measurements of spinal bone mineral density for forty-
eight females taken at various ages. They are a subset of the data presented in Bachrach et al.
(1999). Even though only partial curves are available for each individual, there is a clear trend in
the data. The solid curve gives an estimate for the mean function. It highlights the rapid growth that
occurs during puberty. However, the mean function does not explain all the variability in the data.
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Figure 1: The data are measurements of spinal bone mineral density for forty-eight white females.
There are between 2 and 4 measurements per subject (160 in all) indicated by the growth curve
fragments in the plots. The solid line in (a) is an estimate for the population mean growth curve.
The residuals are shown in (b). The variability of the residuals is smallest in childhood and increases
slightly during the period associated with the adolescent growth spurt.

The residual plot, Fig. 1(b), is narrower during early childhood, thickens during puberty, and then
narrows again as adulthood approaches. It would be useful to be able to estimate both the entire
growth curve for each individual and the principal component curve or curves for the population
as a whole. There is an extensive literature on such problems when individuals are measured at
the same time points; for an early example involving growth curve data see Gasser et al. (1984)
and for a summary of more recent work see Ramsay & Silverman (1997). However, it is not clear
what is the best procedure when the time points vary among individuals. We present an estimation
technique that is particularly useful when the data are sparse with measurements for individuals
occurring at possibly differing time points.

1 � 2. A direct approach

When a set of N curves is measured on a fine grid of n equally spaced points the functional principal
components problem can be solved by applying standard principal components analysis to the N by
n matrix of observed data. Often the grid is sparse or the time-points are unequally spaced, although
still common to all curves. In this case, one can impose smoothness constraints on the principal
components in several ways. One simple approach is to represent them using a set of smooth basis
functions. This amounts to projecting the individual rows of the data matrix on to the basis and
then performing principal component analysis on the basis coefficients. Alternatively one can use
the basis coefficients to estimate the individual curves, sample the curves on a fine grid and perform
principal component analysis on the resulting ‘data.’

When the curves are not measured at common time points one can still project each curve on

2



to a common basis and then perform principal component analysis on the estimated coefficients or
curves. We call this procedure the direct method. It has two major drawbacks. First, if there are
individuals with few measurements it may not be possible to produce a unique representation for
every curve so the direct approach can’t be used. Secondly, the direct method does not make opti-
mal use of the available information because it treats estimated curves as if they were observed. All
estimated values receive equal weight despite the irregular spacing of the observed data. Intuitively
it seems desirable to take into account the relative accuracies of the estimated points; see Rice & Sil-
verman (1991), Besse & Cardot (1996), Buckheit et al. (1997) and Besse, Cardot & Ferraty (1997)
for interesting applications, variations and extensions of the direct method.

1 � 3. A mixed effects approach

Mixed-effects models have been widely used in the analysis of curve data; see for instance Brum-
back & Rice (1998). Shi, Weiss & Taylor (1996) and Rice & Wu (2000) suggest using a mixed-
effects approach to solve the functional principal components problem. Their model uses a set of
smooth basis functions, b ��� t �����	� 1 ��
�
�
�� q, such as B-splines, to represent the curves. Let Yi

� t � be
the value for the ith curve at time t and let b � t ����
 b1

� t ��� b2
� t ����
�
�
�� bq

� t ��� T be the vector of basis
functions evaluated at time t. Denote by β an unknown but fixed vector of spline coefficients, let γ i
be a random vector of spline coefficients for each curve with population covariance matrix Γ, and
let εi

� t � be random noise with mean zero and variance σ2. The resulting mixed effects model has
the form

Yi
� t ��� b � t � β � b � t � γi � εi

� t � i � 1 ��
�
�
�� N 
 (1)

In practice Yi
� t � is only observed at a finite set of time points. Let Yi be the vector consisting of the

ni observed values, let Bi be the corresponding ni by q spline basis matrix evaluated at these time
points, and let εi be the corresponding random noise vector with covariance matrix σ2I. The mixed
effects model then becomes

Yi � Biβ � Biγi � εi i � 1 ��
�
�
�� N 
 (2)

The fixed-effects term Biβ models the mean curve for the population and the random-effects term
Biγi allows for individual variation. The principal patterns of variation about the mean curve are
referred to as functional principal component curves. Rice & Wu (2000) suggest modelling the
patterns of variation of the basis coefficients, γi, and then transforming back to the original space.
Since Γ is the covariance matrix of the γi’s, this is achieved by multiplying the eigenvectors of Γ
by b � t � .

A general approach to fitting mixed effects models of this form uses the EM algorithm to es-
timate β and Γ (Laird & Ware, 1982). Given these estimates, predictions are obtained for the γ i’s
using best linear unbiased prediction (Henderson, 1950). For (2) above, the best linear unbiased
prediction for γi is

γ̂i � � Γ̂ � 1 � σ2 � BT
i Bi ��� 1BT

i
� Yi � Biβ̂ ��
 (3)

Using the fitted values of β and Γ one can estimate the mean and principal component curves and
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Figure 2: (a) A dataset simulated from a mean function plus one principal component curve plus
random normal noise. Both the mean function and principal component are cubic splines with seven
equally spaced knots. (b) Estimates for the first principal component curve for the dataset in (a). The
solid line is the true principal component curve we are trying to estimate.

by combining these estimates with the prediction for γi one can also predict the individual curve
Yi
� t � .

The mixed effects method has many advantages over the direct method. First, it estimates the
curve Yi

� t � using all the observed data points rather than just those from the ith individual. This
means that the mixed effects method can be applied when there are insufficient data from each in-
dividual curve to use the direct method. Secondly, it uses maximum likelihood to estimate β and
Γ. Thus it automatically assigns the correct weight to each observation and the resulting estimators
have all the usual asymptotic optimality properties.

1 � 4. Some problems with the mixed effects method

If the dimension of the spline basis is q then in fitting Γ we must estimate q � q � 1 � � 2 different pa-
rameters. With a sparse data set these estimates can be highly variable. This not only makes the
estimates suspect but also means that the likelihood tends to have many local maxima. As a result,
the EM algorithm will often fail to converge to the global maximum. Figure 2(a) illustrates a sim-
ulated dataset of sixteen curve fragments. Each curve was generated by adding a random multiple
of a single principal component curve to a mean function. Random normal noise, with standard
deviation of 0 
 02, was added to produce the final data. Both the mean function and principal com-
ponent curve are cubic splines with seven equally spaced knots. The goal is to estimate the principal
component curve, a difficult problem since there were only fifty-one data points in total.

The direct method can’t even be applied to this dataset because there are too few measurements
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per curve for estimating a separate spline for each. The mixed effects model can be applied but, after
including a constant term, the dimension of the spline basis is eleven. As a result we are attempting
to estimate sixty-six parameters using fifty-one data points and so there is no unique representation
of Γ. This is not necessarily a problem since it is the first eigenvector of Γ that is of primary in-
terest. In standard principal component analysis it is often possible to estimate well the first few
eigenvectors, and hence the first few principal components, even if the fitted covariance matrix is
unstable. However, in functional principal component analysis this is generally not the case, as il-
lustrated in Fig. 2(b). The solid line gives the true principal component curve for the dataset. There
are also three estimates, each using cubic splines with seven equally spaced knots. The two dashed
lines are estimates using the mixed effects method with fifty and one-hundred EM iterations; the
algorithm had converged after one-hundred iterations. The mixed effects method’s estimates are
poor in the second half of the plot. Furthermore, the fit appears to be deteriorating as the number of
iterations increases. This suggests that the procedure is over-fitting the data. The forth line is the
estimate produced by the reduced rank method introduced in this paper. This method attempts to
estimate the principal component curve directly rather than estimating an entire covariance matrix
and computing the first eigenvector. This involves estimating fewer parameters and as a result the
fitted curve is less variable and generally more accurate. The reduced rank and mixed effects meth-
ods are compared on the growth curve data in § 2 and on more extensive simulated data in § 5. In § 3
we present the reduced rank model and compare it to the mixed effects model. § 4 motivates and
outlines the reduced rank fitting procedure. The simulations in § 5 suggest that the reduced rank
method gives superior fits and is less sensitive to sparse data. Methods for selecting the dimension
of the spline basis, choosing the number of principal component curves, and producing confidence
intervals are given in § 6. § 7 relates the reduced rank method to standard principal components
analysis.

2. THE GROWTH CURVE DATA

Here we fit the reduced rank and mixed effects procedures to the growth curve data illustrated in
Fig. 1. Estimates for the mean function and first principal component using natural cubic splines
with four, nine and fourteen equally spaced knots are shown in Fig. 3(a) - (f). The two methods
produce fairly similar estimates of the principal component curves but some differences are appar-
ent. Not surprisingly, both procedures display more variability as the number of knots increases.
However, a sharp peak near the age of 13 followed by a leveling off is apparent in all three of the
reduced rank fits. This is consistent with the residual plot in Fig. 1(b). The mixed effects procedure
only displays a strong peak for the nine-knot fit. The peak in the four-and fourteen-knot fits is much
less well defined. There is also an anomalous dip in the nine-knot mixed effects method fit around
the age of 22. Naturally, given the sparseness of the data, one must be careful not to over-interpret
the results. Figures 3(g) and (h) give new estimates for the mean and first principal component of
the growth curve data using natural cubic splines with knots at ages 12 � 14 � 16 and 18, a spacing
suggested by previous experience with this data set. This gives added flexibility during the puberty
period when variability among individuals is likely to be highest. As with the previous knot selec-
tion, there appears to be a peak near age 13 that is much more marked in the reduced rank fit.
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Figure 3: Three different estimates for (a), (c) and (e) the mean function and (b), (d) and (f) the first
principal component using natural cubic splines with four, nine and fourteen equally spaced knots.
(g) and (h) show mean function and first principal component, respectively, using a natural cubic
spline with knots at ages 12 � 14 � 16 and 18 years.
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3. THE REDUCED RANK MODEL

Here we develop our reduced rank model and show that one can interpret the mixed effects model
in terms of this framework. In the process, the reasons for some of the mixed effects method’s
defects become apparent. Let Yi

� t � be the measurement at time t for the ith individual or curve.
Let µ � t � be the overall mean function, let f j be the jth principal component function and let f �
� f1 � f2 ��
�
�
�� fk � T. To estimate k principal component curves we first define a general additive model

Yi
� t ��� µ � t � �

k

∑
j � 1

f j
� t � αi j � εi

� t � i � 1 ��
�
�
�� N

� µ � t � � f � t � Tαi � εi
� t � i � 1 ��
�
�
�� N �

(4)

subject to the orthogonality constraint
�

f j fl � δ jl , the Kronecker δ. The random vector αi gives
the relative weights on the principal component functions for the ith individual and ε i

� t � is random
measurement error. The αi’s and εi’s are all assumed to have mean zero. The αi’s are taken to
have a common covariance matrix, Σ, and the measurement errors are assumed uncorrelated with
a constant variance of σ2. If Σ is diagonal one can interpret (4) as a principal factor decomposition
of the covariance kernel of Yi

� t � . A more general structure, R, could be assumed for the error term
covariance matrix. This would increase the flexibility of the model but would involve estimating
extra parameters. For this paper we have opted for the simpler covariance structure.

In order to fit this model when the data are measured at only a finite number of time points it is
necessary to place some restrictions on the form of the mean and principal component curves. We
choose to represent µ and f using a basis of spline functions (Silverman, 1985; Green & Silverman,
1994). Let b � t � be a spline basis with dimension q. Let Θ and θµ be, respectively, a q by k matrix
and a q-dimensional vector of spline coefficients. Then

µ � t � � b � t � Tθµ �
f � t � T � b � t � TΘ 


The resulting restricted model has the form

Yi
� t � � b � t � Tθµ � b � t � TΘαi � εi

� t ��� i � 1 ��
�
�
�� N � (5)

εi
� t ��� � 0 � σ2 ��� αi � � 0 � D �

subject to

ΘTΘ � I �
�

b � t � Tb � t � dt � 1 �
���

b � t � Tb � s � dtds � 0 
 (6)

The equations in (6) impose orthogonality constraints on the principal component curves. Note
that, if one does not assume a special structure for the covariance matrix of the αi’s, Θ and Σ will
be confounded. Thus we restrict the covariance matrix to be diagonal and denote it by D.

For each individual i, let ti1 � ti2 ��
�
�
�� tini be the possibly different time points at which measure-
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ments are available. Then

Yi � � Yi
� ti1 ����
�
�
�� Yi

� tini ��� T �
Bi � � b � ti1 ����
�
�
 � b � tini ��� T 


Note that Bi is the spline basis matrix for the ith individual. To approximate the orthogonality con-
dition in (6) we choose b � � � so that BTB � I, where B is the basis matrix evaluated on a fine grid
of time points. For instance, in the growth curve example the time interval was divided into 172
periods of 1 � 10th of a year each.

The reduced rank model can then be written as

Yi � Biθµ � BiΘαi � εi � i � 1 ��
�
�
�� N � (7)

ΘTΘ � I � εi � � 0 � σ2I ��� αi � � 0 � D ��

Fitting this model involves estimating θµ � Θ � D and σ2. A fitting procedure is presented in § 4. In
practice q, the dimension of the spline, and k, the number of principal components, must also be
chosen. Methods for making these choices are suggested in § 6. Note that the reduced rank model
can also be interpreted as a mixed effects model with a rank constraint on the covariance matrix.
This latter approach dates back to Anderson (1951).

Recall that, in the mixed effects model (2), γi is a random vector with unrestricted covariance
matrix. Hence we can reparameterise γi as


Θ � Θ ��� �
αi

α �i �
where Θ and αi are defined as in (7), Θ � is a q by q � k dimensional matrix which is orthogonal
to Θ, and α �i is a random vector of length q � k with a diagonal covariance matrix. As a result the
mixed effects model can be written as

Yi � Biθµ � BiΘαi � BiΘ � α �i � εi � i � 1 ��
�
�
�� N 
 (8)

Thus the reduced rank model is a submodel of the mixed effects model. In the reduced rank model
the α �i ’s are set to zero and no attempt is made to estimate the additional parameters, Θ � . To fit k
principal component curves using the mixed effects method Rice & Wu (2000) calculate the first k
eigenvectors of the estimate for Γ; recall that Γ is the covariance matrix of the γi’s. In other words,
even though Θ � is estimated in the mixed effects procedure it is never used. By employing the
mixed effects method and then setting the α �i ’s to zero one is simply fitting the reduced rank model
using a different algorithm.

We call the likelihood obtained from the mixed effects fit, after setting the α �i ’s to zero, the con-
strained mixed effects likelihood. Since the mixed effects and reduced rank methods can be con-
sidered as two different approaches to fitting the reduced rank model, the constrained mixed effects
and reduced rank likelihoods can be meaningfully compared. For example, Table 1 provides the
loglikelihoods up to a constant term for the three different fits to the growth curve data. The re-
duced rank likelihood must be at least as large as that of the constrained likelihood. However, note
that the reduced rank likelihood is in fact strictly higher.
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Number Loglikelihood
of knots Constrained Reduced rank

4 380 
 63 389 
 22
9 394 
 75 409 
 81

14 399 
 00 411 
 36

Table 1: Loglikelihoods for the fits in Fig. 3(a) through (f).

4. FITTING THE REDUCED RANK MODEL

4 � 1. Preamble

In a functional principal component analysis setting the primary goal is to estimate µ and f . A
secondary goal is the prediction of the αi’s, which, when combined with the estimates of µ and
f , give predictions for the individual curves. Since we are assuming a spline fit to the functions
this is equivalent to estimating θµ and Θ and predicting the αi’s. Note that θµ, Θ, σ2 and D are
all unknown parameters. The elements of D give a measure of the variability explained by each
principal component curve and σ2 provides a measure of the variability left unexplained. To derive
a fitting procedure we appeal to maximum likelihood and penalised least squares ideas which in this
instance lead to the same algorithm.

4 � 2. Maximum likelihood

Assume that the αi’s and εi’s are normally distributed. Then

Yi � N � Biθµ � σ2I � BiΘDΘTBT
i � i � 1 ��
�
�
�� N � (9)

and the observed likelihood for the joint distribution of the Yi’s is

N

∏
i � 1

1
� 2π � ni � 2 �σ2I � BiΘDΘTBT

i
� 1 � 2

exp

�
� 1

2
� Yi � Biθµ � T � σ2I � BiΘDΘTBT

i ��� 1 � Yi � Biθµ ��� 

(10)

Unfortunately to maximise this likelihood over θµ � Θ � σ2 and D is a difficult non-convex optimisa-
tion problem. If the αi’s were observed the joint likelihood would simplify to

N

∏
i � 1

1
� 2π ��� ni � k � � 2σni �D � 1 � 2

exp

�
� 1

2σ2
� Yi � Biθµ � BiΘαi � T � Yi � Biθµ � BiΘαi � � 1

2
αT

i D � 1αi � 

(11)

This is a much easier expression to maximise which suggests treating the αi’s as missing data and
employing the EM algorithm (Dempster, Laird & Rubin, 1977). Details of our optimization routine
can be obtained from the web site www-rcf.usc.edu/ � gareth.
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4 � 3. Penalised least squares

The same algorithm can be motivated using penalised least squares. With this approach one chooses
θµ � Θ and the αi’s to minimise the sum of squared residuals between the data points and predicted
values, subject to a penalty term on the αi’s, namely minimise

N

∑
i � 1 � � Yi � Biθµ � BiΘαi � T � Yi � Biθµ � BiΘαi � � σ2

k

∑
j � 1

α2
i j

D j j � 
 (12)

The algorithm is as follows. Fix the values of σ2, D and the αi’s, and minimise (12) with respect
to θµ and Θ, giving values identical to those from the M-step of the EM algorithm. Next minimise
(12) with respect to the αi’s while holding all other parameters fixed. The values of the αi’s will be
identical to those from the E-step of the EM algorithm. Finally, refit σ2 and D using the standard
sample variance estimates. If the same initial values are used, iterating these three steps until con-
vergence will yield the same final estimates as the maximum likelihood procedure of § 4 � 2. Note
that the coefficient in the penalty term is σ2 � D j j. Since D j j is the variance of the αi j’s the terms
with lower variance are penalised more heavily.

5. THE REDUCED RANK AND MIXED EFFECTS METHODS COMPARED

In § 3 we noted that the primary difference between the reduced rank and the constrained mixed
effects methods lies in the fitting procedures. Thus it is legitimate to compare the two methods di-
rectly using likelihoods. To do this we ran two simulation studies. In order to make the simulated
data more realistic and interpretable we based them on the growth curve data. In the first study the
data were generated from the mean function and principal component curve corresponding to the
reduced rank fit shown in Fig. 3(g) and (h). Forty-eight curve fragments were generated using the
same time points as the growth curve data. The mixed effects and reduced rank procedures were
fitted to ten such datasets using natural cubic splines with the correct knot selection. The generating
curves for the second study were obtained just as in the first study except that splines with seven
equally spaced knots were used. Sixteen curve fragments were generated using the time points from
a randomly selected subset of the original forty-eight partial growth curves. The mixed effects and
reduced rank procedures were fitted to ten such datasets again using cubic splines with the correct
knot selection. The datasets in this simulation were more difficult to fit because of the smaller sam-
ple size and the higher dimensionality of the splines.

Figure 4(a) shows the estimates for the principal component from the mixed effects and reduced
rank fits on a dataset from the first simulation study. The accuracy of the fit is typical of the mixed
effects procedure. The reduced rank fit was superior to the mixed effects fit for all ten datasets.
The ratio of the true variance to the estimated variance gives a measure of goodness of fit. Figure
4(b) shows a plot of the variance ratio versus the loglikelihood. The constrained mixed effects and
reduced rank fits are represented, respectively, by squares and triangles, fits corresponding to the
same dataset being joined up. This plot illustrates two key points. First, the variance ratios for the
mixed effects fits are almost all greater than one, suggesting that the method tends to overfit the
data; the reduced rank method performs much better in this respect. Secondly, the reduced rank
procedure gives a higher likelihood on all ten datasets.
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Figure 4: Results from two simulation studies. Figures (a) and (c) give the first principal compo-
nent curve for two datasets from, respectively, the first and second simulation studies. Figures (b)
and (d) give the corresponding plots of variance ratio versus loglikelihood for the datasets in each
simulation study. Fits to the same dataset are joined.
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Figure 5: Crossvalidated loglikelihoods for (a) the growth curve data and (b) a dataset simulated
from a spline with four knots.

Figures 4(c) and (d) give the corresponding plots for the second simulation study. Once again
the reduced rank procedure has done a substantially better job at estimating the principal compo-
nent. It is clear that the large number of parameters involved in estimating the full covariance ma-
trix has had a deleterious effect on the mixed effects method fit. Correspondingly, the overfitting
problem has drastically increased. The mixed effects method underestimates the variance by up
to a factor of fifty. In addition, the more the variance is underestimated the worse the correspond-
ing likelihood estimate becomes. Again, the reduced rank procedure consistently produces better
variance estimates and higher likelihoods.

6. MODEL SELECTION AND INFERENCE

6 � 1. Selection of the number of knots in the spline basis

A natural approach is to calculate the crossvalidated loglikelihood for different numbers of knots
and to select the number corresponding to the maximum. All examples in this section use ten-fold
crossvalidation, which involves removing 10% of the curves as a test set, fitting the model to the
remaining curves, calculating the loglikelihood on the test set, and then repeating the process nine
more times. For the growth curve data, Fig. 5(a) shows crossvalidated loglikelihood estimates for
models involving between zero and twelve evenly spaced knots. It appears that the optimal number
of knots is between four and six, and we opted for the more parsimonious model with four knots.

To test the validity of this procedure we generated data from the model of the first simulation
study in § 5 except that the random noise had a smaller standard deviation. Figure 5(b) shows that
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Figure 6: The principal component curves that result when the reduced rank method is fitted to the
growth curve data with the optimal rank k � 2. Notice that the second principal component models
differences in the slopes of individual curves.

the crossvalidated likelihood is maximised for three knots with the second largest likelihood cor-
responding to the correct value of four knots. The procedure seems to be selecting approximately
the correct number of knots but this simulation illustrates that the plot should be treated as a guide
rather than an absolute rule.

Crossvalidation is a computationally expensive procedure. Rice & Wu (2000) suggest using
AIC and BIC which require fewer computations. In the datasets they examined AIC, BIC and cross-
validation all produced qualitatively comparable results.

6 � 2. Selection of the rank, k

With functional principal component analysis it is particularly important to identify the number of
important principal components, k, because the fits of the different components are not independent.
As examples involving the mixed effects procedure have shown, choosing to fit too many principal
components can degrade the fit of them all. In this section we outline two alternative procedures
for choosing the number of principal components. Note that this is equivalent to selecting the rank
of the covariance matrix.

A natural first approach is to calculate the proportion of variability explained by each princi-
pal component. It is difficult to compute this quantity directly in functional principal component
analysis. However, if σ2 is close to zero and the curves are all measured at similar time points it
can be shown that the proportion of the total variation in the αi’s associated with each component
is a good approximation. Recall that D is the diagonal covariance matrix of the αi’s so the desired
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proportion is simply

D j j

trace � D �
� (13)

For the growth curve data, in view of the results of § 6 � 1., we fitted the reduced rank method us-
ing a cubic spline with four knots, which allows a choice of up to six principal components. The
first principal component explains approximately 74% of the variability. The second principal com-
ponent explains nearly all of the remaining variability, about 24%, and so may also be useful, the
remaining components are unnecessary and should not be included in the model because they may
cause over-fitting problems. Figures 6(a) and (b) show the principal components obtained when
the reduced rank method is fitted with k � 2. The first component was discussed in § 2. Note that
the second principal component captures differences in the slopes of individual curves; a positive
weighting for this component would indicate a curve with a greater than average slope, and a neg-
ative weighting a curve with less than average slope.

A second procedure for estimating the number of principal components involves calculating
the loglikelihood for the reduced rank method as k varies between 0 and 6. Provided that the fitting
algorithm has converged to the global maximum, the loglikelihood is guaranteed to increase as k
increases, but the increase should level off when the optimal rank is reached. A plot of the log-
likelihood versus k for the growth curve data, not shown here, reveals a large jump in likelihood
between k � 0 and k � 1 and that the plot has clearly levelled off after k � 2. To determine whether
the jump between k � 1 and k � 2 is large enough to warrant using the second principal component,
note that twice the difference in loglikelihoods is asymptotically χ2

5, if truly k � 1 since the model
with k � 2 involves fitting five extra parameters. Twice the observed difference in loglikelihoods is
19 
 28 yielding a p-value of 0 
 002. This suggests that the second principal component is significant.
However, since this dataset is sparse one should use caution when invoking an asymptotic result.

To check the accuracy of the two procedures we tested them on the simulated dataset from §6.1,
generated using a single principal component curve. It turned out that the first procedure, which cal-
culates the proportion of variation explained, worked well; the first principal component explained
about 96% of the variability. However, the second procedure, using the loglikelihood, was more
ambiguous. The plot suggested that there could be anywhere from one to three principal compo-
nents and when the χ2 rule was applied, k � 3 was chosen. From our experience the first procedure
appears to be more reliable.

6 � 3. Confidence intervals

The bootstrap can be used to produce pointwise confidence intervals for the overall mean function,
the principal components and the individual curves. There are two obvious ways to bootstrap curve
data. The first involves resampling the individual curves. The second involves resampling the esti-
mated αi’s and residuals and generating new partial curves based on these values. The first method
has the advantage of not requiring any parametric assumptions, while the second has the advantage
that the bootstrap datasets have observations at the same time points as the original dataset. When
the data are sparse, especially in the tails, the first procedure performs poorly, and we therefore
present results using the second procedure on the growth curve data.

We generated one-hundred bootstrap datasets and fitted the reduced rank method with k � 2 to
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Figure 7: 80% and 90% pointwise confidence intervals for the mean function (a), both principal
components (b) and (c) and an individual curve (d), for the growth curve data. The observed data
for the individual in (d) is shown by the four circles.
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each. Using the bootstrap percentile method (Efron & Tibshirani, 1993) we produced pointwise
confidence intervals by taking the α � 2 and 1 � α � 2 quantile at each time point. Figure 7 gives 80%
and 90% confidence intervals for the mean function, the principal components and an individual
curve for the growth curve data. Despite the sparsity of the data, the intervals for the mean func-
tion are relatively narrow with some widening in the right tail where there were few observations.
The confidence intervals for the first principal component are much wider, particularly in the right
tail. The large dip in the confidence band in this region occurs because approximately 20% of the
bootstrap principal component curves exhibited an inverted U shape. There appear to be two dis-
tinctly different possible shapes for this component. Interestingly, given the variability of the first
component, the intervals for the second component follow the general shape of the estimated curve
quite tightly. In Fig. 7(d) the four circles show the observed data values for one of the forty-eight
individuals. As one would expect the intervals are very narrow near the observed points and fan
out as one extrapolates.

7. COMPARISON OF THE REDUCED RANK METHOD AND CLASSICAL PRINCIPAL

COMPONENTS

We begin by considering the linear model

Xi � θµ � Θαi � εi � i � 1 ��
�
�
�� N � (14)

εi � N � 0 � Σ ��� αi � N � 0 � D ���
where the Xi are q-dimensional data vectors and Θ is an orthogonal matrix. The solutions to factor
analysis and standard principal components can be derived from this model. If Σ is diagonal, fitting
(14) via maximum likelihood yields the factor analysis solution. If Σ is further restricted to have
the form σ2I, then the limit as σ2 approaches zero of the maximum likelihood estimates gives the
classical principal components solution. Taking this limit is equivalent to minimising

N

∑
i � 1

� �Xi � θµ � Θαi
� � 2 
 (15)

In this context, the columns of Θ represent the principal components and the αi’s are weightings
for the components. Recall from § 3 that the reduced rank model is

Yi � Biθµ � BiΘαi � εi � cov � εi ��� σ2I 
 (16)

If the covariance structure of the εi’s were relaxed to be an arbitrary diagonal matrix then the re-
duced rank model would become a generalisation of the factor analysis model. However, we will
not pursue this point further. Instead we concentrate on generalizations of principal components.
Referring to (12), one sees that if, in analogy with classical principal component analysis, σ2 is sent
to zero in (16) then the procedure for fitting the reduced rank model simply minimises

N

∑
i � 1

� �Yi � Biθµ � BiΘαi
� � 2 
 (17)
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Let γ̂i � � BT
i Bi � � 1BT

i Yi. Note that γ̂i is the least squares estimates of the spline coefficients for the
ith curve. Then one can transform (17) into

N

∑
i � 1

� �Yi � Biγ̂i
� � 2 � N

∑
i � 1

� �Biγ̂i � Biθµ � BiΘαi
� � 2

� C � Y � �
N

∑
i � 1

� � γ̂i � θµ � Θαi
� � 2

BT
i Bi

(18)

Therefore, since C � Y � is a constant with respect to the parameters, to minimise (17) it is sufficient
to minimise

N

∑
i � 1

� � γ̂i � θµ � Θαi
� � 2

BT
i Bi


 (19)

Note that if Bi is not full column rank then the indeterminate parts of γ̂i are given weight zero by
the metric BT

i Bi. Suppose that all curves are measured at the same set of time points. Then Bi �
B is the common spline basis matrix. Without loss of generality one may assume that BTB � I,
and so minimising (19) is equivalent to performing standard principal components on the spline
coefficients. Note that this is the approach taken by the direct method of § 1 � 2.

Standard principal components takes q dimensional data and finds the k ��� q � -dimensional plane
that minimises the squared Euclidean distance to each point. As seen above, when all curves are
measured at the same time points the reduced rank method also finds the best fitting plane using
the Euclidean metric. It is apparent from (19) that when the curves are not sampled at identical
time points the reduced rank procedure still identifies the best fitting plane. However, the distance
between the plane and each data point is measured relative to the metric BT

i Bi which may be differ-
ent for each individual. Taking this view of the reduced rank method as a generalisation of classi-
cal principal component analysis provides some useful geometric intuition. One of the difficulties
with visualising the functional principal components problem is that the curves are points in an
infinite-dimensional space. Equation (19) shows that one can visualise the data as lying in a sin-
gle q-dimensional space at the expense of assigning each point a unique distance metric. Figure 8
provides a pictorial representation of such a non-Euclidean principal components fit.
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A APPENDIX

In this section we provide details of the Reduced Rank fitting algorithm. Steps 1 and 2 make up the
M-step and Step 3 makes up the E-step.
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1. Given current estimates for αi � θµ and Θ we estimate σ2 and D as

σ̂2 � 1

∑ni

N

∑
i � 1

E 
 εT
i εi

�Yi �

� 1

∑ni

N

∑
i � 1

E 
 � Yi � Biθ̂µ � BiΘ̂αi � T � Yi � Biθ̂µ � BiΘ̂αi � �Yi �

� 1

∑ni

N

∑
i � 1

�
� Yi � Biθ̂µ � BiΘ̂α̂i � T � Yi � Biθ̂µ � BiΘ̂α̂i �

� trace 
BiΘ̂ � D̂ � 1 � Θ̂TBT
i BiΘ̂ � σ̂2 ��� 1Θ̂TBT

i � �
(20)

D̂ j j � 1
N

N

∑
i � 1

E 
α2
i j
�Yi ��� 1

N

N

∑
i � 1

�
α̂2

i j � � D̂ � 1 � Θ̂TBT
i BiΘ̂ � σ̂2 ��� 1

j j � (21)

Equations (20) and (21) derive from the facts that

E � X2 �Y � � � E � X �Y ��� 2 � Var � X �Y � (22)

and

αi
�Yi � N

� � σ2D � 1 � ΘTBT
i BiΘ � � 1ΘBT

i
� Yi � Biθµ ��� � D � 1 � ΘTBT

i BiΘ � σ2 � � 1 � (23)

2. Given current estimates for σ2 � D and αi we estimate Θ and θµ by minimizing

N

∑
i � 1 � � Yi � Biθ̂µ � BiΘ̂α̂i � T � Yi � Biθ̂µ � BiΘ̂α̂i ��� (24)

Minimizing (24) involves a second iterative procedure, in which each column of Θ is esti-
mated separately holding all other columns fixed. First notice that

N

∑
i � 1

� �Yi � Biθµ � BiΘαi
� � 2

�
N

∑
i � 1

� � � Yi � BiΘαi � � Biθµ � � 2
so the estimate for θµ is

θ̂µ ��� N

∑
i � 1

BT
i Bi � � 1 N

∑
i � 1

BT
i
� Yi � BiΘ̂α̂i � (25)
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To estimate the columns of Θ we note that

N

∑
i � 1

� �Yi � Biθµ � BiΘαi
� � 2

�
N

∑
i � 1

� � � Yi � Biθµ � αi2Biθ2 � � � � � αikBiθk � � αi1Biθ1
� � 2

Therefore the estimate for θ1 is

θ̂1 ��� N

∑
i � 1 �α

2
i1BT

i Bi � � 1 N

∑
i � 1

BT
i
� α̂i1

� Yi � Biθ̂µ � �
�

αi1αi2Biθ̂2 � � � � �
�

αi1αikBiθ̂k � (26)

We repeat this procedure for each column of Θ and iterate until there is no further change.

3. The E-step consists of predicting αi and αiαT
i .

α̂i � E � αi
�Yi � θ̂µ � Θ̂ � σ̂2 � D̂ ��� � σ̂2D̂ � 1 � Θ̂TBT

i BiΘ̂ ��� 1Θ̂TBT
i
� Yi � Biθ̂µ � (27)

�
αiαT

i � E � αiαT
i
�Yi � θ̂µ � Θ̂ � σ̂2 � D̂ ��� α̂iα̂T

i � � D̂ � 1 � Θ̂TBT
i BiΘ̂ � σ̂2 ��� 1 (28)

Both predictions make use of equations (22) and (23).

4. We then return to Step 1 and repeat until we reach convergence.

5. The matrix Θ produced by this procedure will not be orthogonal. We orthogonalize it by
producing the reduced rank estimate for Γ,

Γ̂ � Θ̂D̂Θ̂T (29)

and setting Θ equal to the first k eigenvectors of Γ̂.
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Figure 8: A depiction of non-Euclidean principal components in R2. Each point has an associated
metric Σi with which to measure distance. We seek the line that minimises the sum of squared dis-
tances to the points.
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