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SUMMARY

The elements of a multivariate data set are often curves rather than single points. Func-
tional principal components can be used to describe the modes of variation of such curves. If
one has complete measurements for each individual curve or, asismore common, one hasmea
surements on afine grid taken at the same time pointsfor all curves, then many standard tech-
niques may be applied. However, curves are often measured at an irregular and sparse set of
time points which can differ widely across individuals. We present a technique for handling
this more difficult case using areduced rank mixed effects framework.

Some key words: Functional data analysis; Principal components; Mixed effects model; Reduced rank esti-
mation; Growth curve.

1. INTRODUCTION

1.1. Theproblem

We present atechniquefor fitting principal component functionsto data such as the growth curves
illustrated in Fig. 1(a). These dataconsist of measurementsof spinal bone mineral density for forty-
eight females taken at various ages. They are a subset of the data presented in Bachrach et al.
(1999). Even though only partia curves are available for each individual, thereis aclear trend in
thedata. The solid curve givesan estimate for the mean function. It highlightsthe rapid growth that
occurs during puberty. However, the mean function does not explain al the variability in the data.
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Figure 1. The data are measurements of spinal bone mineral density for forty-eight white females.
There are between 2 and 4 measurements per subject (160 in al) indicated by the growth curve
fragmentsin the plots. The solid linein (a) is an estimate for the popul ation mean growth curve.
Theresidualsareshownin (b). Thevariability of theresidualsissmallest in childhood and increases
dightly during the period associated with the adolescent growth spurt.

Theresidua plot, Fig. 1(b), is narrower during early childhood, thickens during puberty, and then
narrows again as adulthood approaches. It would be useful to be able to estimate both the entire
growth curve for each individual and the principal component curve or curves for the population
as awhole. Thereis an extensive literature on such problems when individuals are measured at
the same time points; for an early example involving growth curve data see Gasser et al. (1984)
and for a summary of more recent work see Ramsay & Silverman (1997). However, it is not clear
what is the best procedure when the time points vary among individuals. We present an estimation
technique that is particularly useful when the data are sparse with measurements for individuals
occurring at possibly differing time points.

1.2. Adirect approach

When aset of N curvesismeasured on afinegrid of n equally spaced pointsthe functional principal
components problem can be solved by applying standard principal componentsanaysisto the N by
nmatrix of observed data. Oftenthegridissparse or thetime-pointsare unequally spaced, although
still common to all curves. In this case, one can impose smoothness constraints on the principal
componentsin several ways. One simple approach isto represent them using a set of smooth basis
functions. This amounts to projecting the individual rows of the data matrix on to the basis and
then performing principal component analysis on the basis coefficients. Alternatively one can use
the basi s coefficientsto estimate theindividual curves, samplethe curveson afinegrid and perform
principal component analysis on the resulting ‘ data.’

When the curves are not measured at common time points one can till project each curve on




to acommon basis and then perform principal component analysis on the estimated coefficients or
curves. We call this procedure the direct method. It has two major drawbacks. First, if there are
individuals with few measurements it may not be possible to produce a unique representation for
every curve so the direct approach can’'t be used. Secondly, the direct method does not make opti-
mal use of the availableinformation because it treats estimated curvesasif they were observed. All
estimated val uesreceive equal weight despite theirregular spacing of the observed data. Intuitively
it seemsdesirableto takeinto account therel ative accuracies of the estimated points; see Rice& Sil-
verman (1991), Besse & Cardot (1996), Buckheit et al. (1997) and Besse, Cardot & Ferraty (1997)
for interesting applications, variations and extensions of the direct method.

1.3. A mixed effects approach

Mixed-effects models have been widely used in the analysis of curve data; see for instance Brum-
back & Rice (1998). Shi, Weiss & Taylor (1996) and Rice & Wu (2000) suggest using a mixed-
effects approach to solve the functional principal components problem. Their model uses a set of
smooth basis functions, by(t), ¢ =1,...,q, such as B-splines, to represent the curves. Let Yi(t) be
the value for the ith curve at timet and let b(t) = [by(t),by(t), ..., bg(t)]T be the vector of basis
functions evaluated at timet. Denote by [3 an unknown but fixed vector of spline coefficients, let y;
be a random vector of spline coefficients for each curve with population covariance matrix I, and
let & (t) be random noise with mean zero and variance 62. The resulting mixed effects model has
theform

Yi(t) =b(t)B+Db(t)yi +ei(t) i=1...,N. D

In practiceY;(t) isonly observed at afinite set of time points. Let Y; be the vector consisting of the
n; observed values, let B; be the corresponding n; by q spline basis matrix evaluated at these time
points, and |et €; be the corresponding random noise vector with covariance matrix o2l. The mixed
effects model then becomes

Yi=BiB+By+¢ i=1... N 2

The fixed-effects term B;[3 models the mean curve for the population and the random-effects term
Biy; dlows for individual variation. The principal patterns of variation about the mean curve are
referred to as functiona principal component curves. Rice & Wu (2000) suggest modelling the
patterns of variation of the basis coefficients, y;, and then transforming back to the original space.
Since [ isthe covariance matrix of they;’s, thisis achieved by multiplying the eigenvectors of I
by b(t).

A general approach to fitting mixed effects models of this form uses the EM agorithm to es-
timate 3 and I' (Laird & Ware, 1982). Given these estimates, predictions are obtained for they;’s
using best linear unbiased prediction (Henderson, 1950). For (2) above, the best linear unbiased
predictionfor vy is

¥ =(F~1/c%+B]B) 1B (Y, - Bif). €)

Using the fitted values of 3 and I one can estimate the mean and principal component curves and



ji - o — True
— 4 -=---Reduced Rank n
o ——- Mixed Effects gSO) /\
—— Mixed Effects (100) /\\
N o / \
o 3
o
o 8
— ] 7 o
(o]
o
© | o
o
<
o
o
© |
o S |
o
00 02 04 06 038 1.0 0.0 0.2 04 06 0.8 1.0
Time Time

Figure 2: (@) A dataset smulated from a mean function plus one principal component curve plus
random normal noise. Both the mean function and principal component are cubic splineswith seven
equally spaced knots. (b) Estimatesfor thefirst principal component curvefor thedatasetin (a). The
solid line isthe true principal component curve we are trying to estimate.

by combining these estimates with the prediction for y; one can also predict the individual curve
Yi(t).

The mixed effects method has many advantages over the direct method. Firgt, it estimates the
curve Y;(t) using all the observed data points rather than just those from the ith individual. This
means that the mixed effects method can be applied when there are insufficient data from each in-
dividual curve to use the direct method. Secondly, it uses maximum likelihood to estimate 3 and
I". Thusit automatically assigns the correct weight to each observation and the resulting estimators
have all the usual asymptotic optimality properties.

1.4. Some problems with the mixed effects method

If the dimension of the spline basisis g thenin fitting ' we must estimate q(q+ 1)/2 different pa-
rameters. With a sparse data set these estimates can be highly variable. This not only makes the
estimates suspect but aso means that the likelihood tendsto have many local maxima. Asaresult,
the EM algorithm will often fail to converge to the global maximum. Figure 2(a) illustrates asm-
ulated dataset of sixteen curve fragments. Each curve was generated by adding arandom multiple
of asingle principal component curve to a mean function. Random normal noise, with standard
deviation of 0.02, was added to produce the fina data. Both the mean function and principal com-
ponent curve are cubic splineswith seven equally spaced knots. Thegoal isto estimatethe principal
component curve, a difficult problem since there were only fifty-one data points in total.

The direct method can’t even be applied to thisdataset because there are too few measurements
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per curvefor estimating aseparate splinefor each. The mixed effectsmodel can be applied but, after
including aconstant term, the dimension of the spline basisiseleven. Asaresult we are attempting
to estimate sixty-six parameters using fifty-one data points and so thereis no unigue representation
of . Thisis not necessarily a problem since it is the first eigenvector of I that is of primary in-
terest. In standard principal component analysis it is often possible to estimate well the first few
eigenvectors, and hence the first few principal components, even if the fitted covariance matrix is
unstable. However, in functional principal component analysisthisis generaly not the case, asil-
lustrated in Fig. 2(b). The solid line givesthetrue principal component curvefor the dataset. There
are also three estimates, each using cubic splines with seven equally spaced knots. The two dashed
lines are estimates using the mixed effects method with fifty and one-hundred EM iterations; the
algorithm had converged after one-hundred iterations. The mixed effects method's estimates are
poor in the second half of theplot. Furthermore, thefit appearsto be deteriorating as the number of
iterations increases. This suggests that the procedure is over-fitting the data. The forth line isthe
estimate produced by the reduced rank method introduced in this paper. This method attempts to
estimate the principal component curve directly rather than estimating an entire covariance matrix
and computing the first eigenvector. Thisinvolves estimating fewer parameters and as aresult the
fitted curveislessvariable and generally more accurate. The reduced rank and mixed effects meth-
ods are compared on the growth curve datain § 2 and on moreextensive simulated datain 85.1n 83
we present the reduced rank model and compare it to the mixed effects model. § 4 motivates and
outlines the reduced rank fitting procedure. The simulationsin 8§ 5 suggest that the reduced rank
method gives superior fitsand isless sensitive to sparse data. Methods for selecting the dimension
of the spline basis, choosing the number of principal component curves, and producing confidence
intervals are given in 8 6. § 7 relates the reduced rank method to standard principal components
anaysis.

2. THE GROWTH CURVE DATA

Here we fit the reduced rank and mixed effects procedures to the growth curve data illustrated in
Fig. 1. Estimates for the mean function and first principal component using natural cubic splines
with four, nine and fourteen equally spaced knots are shown in Fig. 3(a) - (f). The two methods
produce fairly similar estimates of the principal component curves but some differences are appar-
ent. Not surprisingly, both procedures display more variability as the number of knots increases.
However, a sharp peak near the age of 13 followed by aleveling off is apparent in all three of the
reduced rank fits. Thisisconsistent with theresidual plot in Fig. 1(b). The mixed effects procedure
only displaysastrong peak for the nine-knot fit. The peak in thefour-and fourteen-knot fitsis much
lesswell defined. There isalso an anomalous dip in the nine-knot mixed effects method fit around
the age of 22. Naturally, given the sparseness of the data, one must be careful not to over-interpret
the results. Figures 3(g) and (h) give new estimates for the mean and first principal component of
the growth curve data using natural cubic splines with knots at ages 12, 14. 16 and 18, a spacing
suggested by previous experience with this data set. This givesadded flexibility during the puberty
period when variability among individualsis likely to be highest. Aswith the previous knot selec-
tion, there appears to be a peak near age 13 that is much more marked in the reduced rank fit.



0.12

Spinal Bone Density
1.0
Principal Component
0.06
~ ~

/ — Reduced Rank
© | - = Mixed Effects
S o |/
o T
10 15 20 25 10 15 20 25

Age

0.12

—— Reduced Rank ~ -7
- = Mixed Effects

0.6

Spinal Bone Density
1.0
\ |
«Q
()
Principal Component
0.06
~
N

0.0

10 15 20 25 10 15 20 25

Age

0.12

— Reduced Rank

Spinal Bone Density
1.0
\ >
«Q
[¢]
Principal Component
0.06
~

© |~ = = Mixed Effects
S =
o
10 15 20 25 10 15 20 25
Age Age
= 3
= 5 o
c
S S
@ Q
e o € o©
L o o O |
5 O o 4
fin} 3 — Reduced Rank
T s — — Mixed Effects
£ o S 9 | h
= O |
n ° ' ' TS L
10 15 20 25 10 15 20 25
Age Age

Figure 3: Threedifferent estimatesfor (a), (c) and (e) the mean function and (b), (d) and (f) thefirst
principal component using natural cubic splineswith four, nine and fourteen equally spaced knots.
(9) and (h) show mean function and first principal component, respectively, using a natural cubic
spline with knots at ages 12, 14, 16 and 18 years.

6



3. THE REDUCED RANK MODEL

Here we develop our reduced rank model and show that one can interpret the mixed effects model
in terms of this framework. In the process, the reasons for some of the mixed effects method's
defects become apparent. Let Y;(t) be the measurement at timet for the ith individual or curve.
Let u(t) be the overall mean function, let f; be the jth principal component function and let f =
(f1, fo,..., f)T. Toestimatek principa component curveswefirst define ageneral additive model

— u(t) + f<>ai+si<> i=1....N,

subject to the orthogonality constraint | f; fi = §;, the Kronecker 8. The random vector a; gives
the relative weights on the principal component functionsfor the ith individual and €;(t) is random
measurement error. The a;’s and €;’s are all assumed to have mean zero. The a;’s are taken to
have a common covariance matrix, %, and the measurement errors are assumed uncorrelated with
aconstant variance of 02, If X isdiagonal one can interpret (4) as a principal factor decomposition
of the covariance kernel of Y;(t). A more general structure, R, could be assumed for the error term
covariance matrix. This would increase the flexibility of the model but would involve estimating
extra parameters. For this paper we have opted for the smpler covariance structure.

In order to fit thismodel when the data are measured at only afinite number of time pointsit is
necessary to place some restrictions on the form of the mean and principal component curves. We
chooseto represent L and f using abasis of splinefunctions (Silverman, 1985; Green & Silverman,
1994). Let b(t) be a spline basis with dimension g. Let © and 8, be, respectively, aq by k matrix
and a g-dimensional vector of spline coefficients. Then

W) = b(t)'e,,
f()T = b(t)Te.

The resulting restricted model has the form
Yi(t) = b(t) "8+ b(t) 'Oa; +&(t), i=1....N, (5)
&i(t) ~(0,0°), i~ (0,D)
subject to

o’e—1, / b(t)Th(t)dt = 1, / / b(t)Tb(s)dtds  O. ()

The equations in (6) impose orthogonality constraints on the principal component curves. Note
that, if one does not assume a specia structure for the covariance matrix of the a;’s, @ and Z will
be confounded. Thus we restrict the covariance matrix to be diagonal and denoteit by D.

For each individual i, let tj1, tip, . . . , tin, be the possibly different time points at which measure-



ments are available. Then

Yi - (Yi(til)v"'in(tini) T7
B = (b(ti),...,b(tin)".

Note that B; isthe spline basis matrix for the ith individual. To approximate the orthogonality con-
dition in (6) we choose b(-) so that BTB = |, where B is the basis matrix evaluated on afine grid
of time points. For instance, in the growth curve example the time interval was divided into 172
periods of 1/10th of ayear each.

The reduced rank model can then be written as

Yi:Bieu—l—Bi@Gi—l—Ei, i=1,...,N, @)

0'o=1, &~(0,06%), a;~(0,D).

Fitting this model involves estimating 6,,,©,D and o?. A fitting procedure is presented in § 4. In
practice g, the dimension of the spline, and k, the number of principal components, must also be
chosen. Methods for making these choices are suggested in § 6. Note that the reduced rank model
can aso be interpreted as a mixed effects model with a rank constraint on the covariance matrix.
This latter approach dates back to Anderson (1951).

Recall that, in the mixed effects model (2), y; is a random vector with unrestricted covariance
matrix. Hence we can reparameterisey; as

0or(})

where © and a; are defined asin (7), ©* isaq by g— k dimensional matrix which is orthogonal
to ©, and o isarandom vector of length q— k with a diagonal covariance matrix. As aresult the
mixed effects model can be written as

Yi=Bi6y+Bi0a;+ BO*af +¢, i=1,...,N. (8

Thus the reduced rank model is asubmodel of the mixed effects model. 1n the reduced rank model
the o’s are set to zero and no attempt is made to estimate the additional parameters, ©*. To fit k
principal component curves using the mixed effects method Rice & Wu (2000) calculate the first k
eigenvectorsof the estimatefor I"; recall that I is the covariance matrix of they;’s. In other words,
even though ©* is estimated in the mixed effects procedure it is never used. By employing the
mixed effects method and then setting the o’ s to zero one is simply fitting the reduced rank model
using a different algorithm.

We call the likelihood obtained from the mixed effectsfit, after setting the o’ s to zero, the con-
strained mixed effects likelihood. Since the mixed effects and reduced rank methods can be con-
sidered astwo different approachesto fitting the reduced rank model, the constrained mixed effects
and reduced rank likelihoods can be meaningfully compared. For example, Table 1 provides the
loglikelihoods up to a constant term for the three different fits to the growth curve data. The re-
duced rank likelihood must be at |east aslarge asthat of the constrained likelihood. However, note
that the reduced rank likelihood isin fact strictly higher.
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Number Loglikelihood

of knots || Constrained | Reduced rank
4 380.63 389.22
9 394.75 409.81
14 399.00 411.36

Table 1: Loglikelihoods for the fitsin Fig. 3(a) through (f).

4. FITTING THE REDUCED RANK MODEL

4.1. Preamble

In afunctiona principal component analysis setting the primary goal is to estimate g and f. A
secondary goal is the prediction of the a;’s, which, when combined with the estimates of p and
f, give predictions for the individual curves. Since we are assuming a spline fit to the functions
thisis equivalent to estimating 6, and © and predicting the a;’s. Note that 6, ©, 0? and D are
al unknown parameters. The elements of D give a measure of the variability explained by each
principal component curve and o2 provides ameasure of the variability left unexplained. To derive
afitting procedure we appeal to maximum likelihood and penalised |east squaresideaswhichinthis
instance lead to the same algorithm.

4.2. Maximum likelihood
Assume that the a;’s and €;’s are normally distributed. Then
Y, ~ N(Bi8,,0% + B@DO'B[)  i=1,...,N, 9)

and the observed likelihood for the joint distribution of the Y;’sis

. ! 1 T(52 TRT -1
iIJ (2T[)ni/2|02|—I—Bi@DG)TBiT|1/2eXp{_§(Yi_Bieu) (0“1 + B;©DO B} ) (Yi_Bieu)}-

(10)

Unfortunately to maximise this likelihood over 6,,, 0, 02 and D is adifficult non-convex optimisa-
tion problem. If the a;’s were observed the joint likelihood would simplify to

N 1
il:l (Zn)(ni+k)/20ni |D|1/2

1 1 _
exp{—zT‘Z(Y. — Bieu— Bi@Gi)T(Yi — Bieu— Bi@Gi) — éaiTD 1Gi} .

(11)

Thisisamuch easier expression to maximise which suggests treating the a;’s as missing data and
employing the EM algorithm (Dempster, Laird & Rubin, 1977). Detailsof our optimization routine
can be obtained from the web site www-rcf.usc.edu/~gareth.



4-3. Penalised least squares

The same al gorithm can be motivated using penalised least squares. With thisapproach onechooses
B, © and the a;’s to minimise the sum of squared residual s between the data points and predicted
values, subject to a penalty term on the a;’s, namely minimise

N

k o2
Zl{(Yi_Bieu_Bi@ai)T(Yi_Bieu_Bi@ai)‘|‘ozz g—ljjj} (12)
i= j=1

The agorithm is as follows. Fix the values of a2, D and the a;’s, and minimise (12) with respect
to B, and O, giving valuesidentical to those from the M-step of the EM algorithm. Next minimise
(12) with respect to the a;’swhile holding all other parametersfixed. The values of the a;’swill be
identical to those from the E-step of the EM agorithm. Findly, refit 62 and D using the standard
sample variance estimates. If the same initial values are used, iterating these three steps until con-
vergence will yield the same final estimates as the maximum likelihood procedure of § 4-2. Note
that the coefficient in the penalty term is 62/Djj. Since Dj; isthe variance of the ajj’s the terms
with lower variance are penalised more heavily.

5. THE REDUCED RANK AND MIXED EFFECTS METHODS COMPARED

In 8 3 we noted that the primary difference between the reduced rank and the constrained mixed
effects methods lies in thefitting procedures. Thusit islegitimate to compare the two methods di-
rectly using likelihoods. To do this we ran two smulation studies. In order to make the ssimulated
data morerealistic and interpretable we based them on the growth curve data. In the first study the
data were generated from the mean function and principal component curve corresponding to the
reduced rank fit shown in Fig. 3(g) and (h). Forty-eight curve fragments were generated using the
same time points as the growth curve data. The mixed effects and reduced rank procedures were
fitted to ten such datasets using natural cubic splineswith the correct knot selection. The generating
curves for the second study were obtained just as in the first study except that splines with seven
equally spaced knotswereused. Sixteen curvefragmentswere generated using thetimepointsfrom
arandomly selected subset of the original forty-eight partial growth curves. The mixed effectsand
reduced rank procedures were fitted to ten such datasets again using cubic splines with the correct
knot selection. The datasetsin thissimulation were more difficult to fit because of the smaller sam-
ple size and the higher dimensionality of the splines.

Figure4(a) showstheestimatesfor the principal component from the mixed effects and reduced
rank fits on a dataset from the first smulation study. The accuracy of thefit istypical of the mixed
effects procedure. The reduced rank fit was superior to the mixed effects fit for all ten datasets.
The ratio of the true variance to the estimated variance gives a measure of goodness of fit. Figure
4(b) shows aplot of the varianceratio versus the loglikelihood. The constrained mixed effects and
reduced rank fits are represented, respectively, by squares and triangles, fits corresponding to the
same dataset being joined up. This plot illustrates two key points. First, the variance ratios for the
mixed effects fits are amost all greater than one, suggesting that the method tends to overfit the
data; the reduced rank method performs much better in this respect. Secondly, the reduced rank
procedure gives a higher likelihood on al ten datasets.

10
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Figure 4: Results from two simulation studies. Figures (a) and (c) give the first principa compo-
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simulation study. Fitsto the same dataset are joined.
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Figure 5: Crossvalidated loglikelihoods for (a) the growth curve data and (b) a dataset ssimulated
from a spline with four knots.

Figures 4(c) and (d) give the corresponding plots for the second simulation study. Once again
the reduced rank procedure has done a substantially better job at estimating the principal compo-
nent. Itisclear that the large number of parametersinvolved in estimating the full covariance ma-
trix has had a deleterious effect on the mixed effects method fit. Correspondingly, the overfitting
problem has drastically increased. The mixed effects method underestimates the variance by up
to afactor of fifty. In addition, the more the variance is underestimated the worse the correspond-
ing likelihood estimate becomes. Again, the reduced rank procedure consistently produces better
variance estimates and higher likelihoods.

6. MODEL SELECTION AND INFERENCE

6-1. Selection of the number of knotsin the spline basis

A natural approach is to calculate the crossvalidated loglikelihood for different numbers of knots
and to select the number corresponding to the maximum. All examplesin this section use ten-fold
crossvalidation, which involves removing 10% of the curves as a test s&t, fitting the model to the
remaining curves, calculating the loglikelihood on the test set, and then repeating the process nine
more times. For the growth curve data, Fig. 5(a) shows crossvalidated loglikelihood estimates for
modelsinvolving between zero and twelve evenly spaced knots. It appears that the optimal number
of knotsis between four and six, and we opted for the more parsimonious model with four knots.
To test the validity of this procedure we generated data from the model of the first ssmulation
study in 8 5 except that the random noise had a smaller standard deviation. Figure 5(b) shows that
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Figure 6: The principal component curves that result when the reduced rank method isfitted to the
growth curve datawith the optimal rank k = 2. Noticethat the second principal component models
differencesin the dopes of individual curves.

the crossvalidated likelihood is maximised for three knots with the second largest likelihood cor-
responding to the correct value of four knots. The procedure seems to be selecting approximately
the correct number of knots but this smulation illustrates that the plot should be treated as a guide
rather than an absolute rule.

Crossvalidation is a computationally expensive procedure. Rice & Wu (2000) suggest using
AlC and BIC whichrequirefewer computations. Inthe datasets they examined AlC, BIC and cross-
validation al produced qualitatively comparable results.

6:2. Sdection of therank, k

With functional principal component analysisit is particularly important to identify the number of
important principal components, k, because thefitsof the different componentsare not independent.
As examplesinvolving the mixed effects procedure have shown, choosing to fit too many principal
components can degrade the fit of them all. In this section we outline two aternative procedures
for choosing the number of principal components. Note that thisis equivalent to selecting the rank
of the covariance matrix.

A natural first approach is to calculate the proportion of variability explained by each princi-
pa component. It is difficult to compute this quantity directly in functional principal component
analysis. However, if 02 is close to zero and the curves are al measured at similar time points it
can be shown that the proportion of the total variation in the a;’s associated with each component
isagood approximation. Recall that D isthe diagonal covariance matrix of the a;’s so the desired
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proportionissimply
Djj

trace(D) (13

For the growth curve data, in view of the results of § 6-1., we fitted the reduced rank method us-
ing a cubic spline with four knots, which allows a choice of up to six principal components. The
first principal component explainsapproximately 74% of the variability. The second principal com-
ponent explains nearly all of the remaining variability, about 24%, and so may also be useful, the
remaining components are unnecessary and should not be included in the model because they may
cause over-fitting problems. Figures 6(a) and (b) show the principal components obtained when
the reduced rank method is fitted with k = 2. The first component was discussed in 8 2. Note that
the second principal component captures differencesin the dopes of individual curves, a positive
weighting for this component would indicate a curve with agreater than average sope, and a neg-
ative weighting a curve with less than average s ope.

A second procedure for estimating the number of principal components involves calculating
theloglikelihood for the reduced rank method ask varies between 0 and 6. Provided that the fitting
algorithm has converged to the global maximum, the loglikelihood is guaranteed to increase as k
increases, but the increase should level off when the optimal rank is reached. A plot of the log-
likelihood versus k for the growth curve data, not shown here, reveas a large jump in likelihood
between k = 0 and k = 1 and that the plot has clearly levelled off after k = 2. To determine whether
the jump between k = 1 and k = 2 islarge enough to warrant using the second principal component,
note that twice the difference in loglikelihoods is asymptotically x%, if truly k= 1 since the model
with k = 2 involvesfitting five extra parameters. Twice the observed differenceinloglikelihoodsis
19.28yielding a p-value of 0.002. This suggeststhat the second principal component issignificant.
However, since this dataset is sparse one should use caution when invoking an asymptotic result.

To check the accuracy of the two procedures we tested them on the ssmulated dataset from 86.1,
generated using asingle principa component curve. It turned out that thefirst procedure, which cal-
culates the proportion of variation explained, worked well; thefirst principal component explained
about 96% of the variability. However, the second procedure, using the loglikelihood, was more
ambiguous. The plot suggested that there could be anywhere from one to three principal compo-
nents and when the x? rule was applied, k = 3 was chosen. From our experience thefirst procedure
appears to be morereliable.

6-3. Confidenceintervals

The bootstrap can be used to produce pointwise confidence intervalsfor the overall mean function,
the principa componentsand theindividual curves. There are two obviousways to bootstrap curve
data. Thefirstinvolvesresampling theindividual curves. The second involvesresampling the esti-
mated a;’sand residuals and generating new partial curves based on these values. Thefirst method
has the advantage of not requiring any parametric assumptions, while the second has the advantage
that the bootstrap datasets have observations at the same time points as the original dataset. When
the data are sparse, especialy in the tails, the first procedure performs poorly, and we therefore
present results using the second procedure on the growth curve data.

We generated one-hundred bootstrap datasets and fitted the reduced rank method with k = 2 to
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Figure 7: 80% and 90% pointwise confidence intervals for the mean function (a), both principal
components (b) and (c) and an individual curve (d), for the growth curve data. The observed data
for theindividual in (d) is shown by the four circles.

15




each. Using the bootstrap percentile method (Efron & Tibshirani, 1993) we produced pointwise
confidenceintervals by takingthea /2 and 1 — a /2 quantile at each time point. Figure 7 gives 80%
and 90% confidence intervals for the mean function, the principal components and an individual
curve for the growth curve data. Despite the sparsity of the data, the intervals for the mean func-
tion are relatively narrow with some widening in the right tail where there were few observations.
The confidence intervalsfor thefirst principal component are much wider, particularly in the right
tail. The large dip in the confidence band in this region occurs because approximately 20% of the
bootstrap principal component curves exhibited an inverted U shape. There appear to be two dis-
tinctly different possible shapes for this component. Interestingly, given the variability of the first
component, theintervalsfor the second component follow the general shape of the estimated curve
quite tightly. In Fig. 7(d) the four circles show the observed data values for one of the forty-eight
individuals. As one would expect the intervals are very narrow near the observed points and fan
out as one extrapol ates.

7. COMPARISON OF THE REDUCED RANK METHOD AND CLASSICAL PRINCIPAL
COMPONENTS

We begin by considering the linear model
Xi=0u+0ai+¢, i=1...N, (14)

& ~N(0,%), aj~N(0,D),

wherethe X; are g-dimensiona datavectorsand © is an orthogonal matrix. The solutionsto factor
analysis and standard principal components can be derived fromthismodel. If Z isdiagona, fitting
(14) via maximum likelihood yields the factor analysis solution. If Z is further restricted to have
the form o?l, then the limit as a2 approaches zero of the maximum likelihood estimates gives the
classical principal components solution. Taking thislimit is equivalent to minimising

N
Y 1% — 8y — Oail . (15)
i=1

In this context, the columns of © represent the principal components and the a;’s are weightings
for the components. Recall from § 3 that the reduced rank model is

Y, =Bi8, +BOa; +¢5,  cov(g) =02l (16)

If the covariance structure of the g;’s were relaxed to be an arbitrary diagonal matrix then the re-
duced rank model would become a generalisation of the factor analysis model. However, we will
not pursue this point further. Instead we concentrate on generalizations of principal components.
Referring to (12), one seesthat if, in analogy with classical principal component analysis, 2 is sent
to zero in (16) then the procedure for fitting the reduced rank model simply minimises

IIY; — B8, — BiOaj||*. (17)

Mz

i=1
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Let § = (BTB;)"1BTY;. Notethat ¥ is the least squares estimates of the spline coefficients for the
ith curve. Then one can transform (17) into

N N
S IYi=Bi%l*+ Y 11Bi% — Bi6y — BiOu||?
=1 ' =1 (18)
=C(Y)+ > [l — eu—GO(iHE;TBi

i=1 :

Therefore, since C(Y) is a constant with respect to the parameters, to minimise (17) it is sufficient
to minimise

N
2 11%-6u- O] |3rg - (19)
i= :

Note that if B;j is not full column rank then the indeterminate parts of y; are given weight zero by
the metric BiTBi. Suppose that al curves are measured at the same set of time points. Then B; =
B is the common spline basis matrix. Without loss of generality one may assume that BTB = I,
and so minimising (19) is equivalent to performing standard principal components on the spline
coefficients. Note that this is the approach taken by the direct method of § 1-2.

Standard principal componentstakesqdimensional dataand findsthek (< q)-dimensional plane
that minimises the squared Euclidean distance to each point. As seen above, when all curves are
measured at the same time points the reduced rank method also finds the best fitting plane using
the Euclidean metric. It is apparent from (19) that when the curves are not sampled at identical
time points the reduced rank procedure still identifies the best fitting plane. However, the distance
between the plane and each data point is measured relative to the metric BiT B; which may be differ-
ent for each individual. Taking this view of the reduced rank method as a generalisation of classi-
cal principal component analysis provides some useful geometric intuition. One of the difficulties
with visualising the functional principal components problem is that the curves are points in an
infinite-dimensional space. Equation (19) shows that one can visualise the data as lying in a sin-
gle g-dimensional space at the expense of assigning each point a unique distance metric. Figure 8
provides a pictorial representation of such a non-Euclidean principal components fit.
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A APPENDIX

In this section we provide detail s of the Reduced Rank fitting algorithm. Steps 1 and 2 make up the
M-step and Step 3 makes up the E-step.
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1. Given current estimates for a;, 6, and © we estimate 6% and D as

,\2 1 N T
0" = s Elg; & Y]
1=
1 X . - . i
=<7 > El(Yi—BiBu—BiOa))" (¥ — BBy — BiOay) ]
lei:Nl (20)
~Sn Z <(Y' o Bié“ B Biéai)T(Yi - Biép— Biéai)
2Ni&

+trace[BiC:)(I5‘1+C:)TBiTBiC:)/GZ)‘léTBiT]>

~ 1) 13 (o a1, a2 A a0
Djj = Ni;E[aizj Yi] = N; <O(|21 +(D 1+@TBiTBi@/02)jjl> (21)

|
Equations (20) and (21) derive from the facts that
E(X?|Y) = (E(X|Y))2+Var(X|Y) (22)
and

oY ~ N <(02D‘1—|—G)TBiTBiG))‘1G)BiT(Yi —Bi8y), (D‘1—|—G)TBiTBiG)/02)‘1> (23)

2. Given current estimates for 02, D and a; we estimate © and 6, by minimizing
N s A A oA
ZI [(Y; — BBy — Bi©&;)T(Y; — B8y — BiOG; )] (24)
i=
Minimizing (24) involves a second iterative procedure, in which each column of © is esti-
mated separately holding al other columns fixed. First notice that

|IY; — BB, — BiOa ||?

Mz M=

||(Y; — Bi©atj) — B;y|?

so the estimate for 6y, is
6 S T T T G
eu = i; Bi Bi i; Bi (Y| - Bi@Gi) (25)
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To estimate the columns of ® we note that

N
Y |1Y — BiBy — Bi®a |2
=i
N

= 3 11(Yi — BiBu— 0tiBiB — - — 0iikBiB) — 011 Bi B ||
=i

Therefore the estimate for 61 is

-1
N N A . .
61= (Z aileiTBi> > Bl (Gi1(Y; — Bify) — 0i10i2Bi02 — - - — ai1GikBiB)  (26)
We repeat this procedure for each column of © and iterate until there is no further change.

. The E-step consists of predicting a; and aiaiT.

a; = E(a;]Y;,8,,6,6%,D) = (02D~1+ O"B'B,6)" 10T (Y, - B G (27)

aial = E(a;o [Y;,8,,0,6% D) = 6;a7 + (D1 + OB B,6/62) (28)
Both predictions make use of equations (22) and (23).
. We then return to Step 1 and repeat until we reach convergence.

. The matrix © produced by this procedure will not be orthogonal. We orthogonalize it by
producing the reduced rank estimate for I',

[ =6Do" (29)

and setting © equal to the first k eigenvectorsof I
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X1

Figure 8: A depiction of non-Euclidean principal componentsin R?. Each point has an associated
metric Z; with which to measure distance. We seek the line that minimises the sum of squared dis-
tances to the points.
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