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Abstract

We introduce a method for learning pairwise interactions in a linear regression or logistic re-
gression model in a manner that satisfies strong hierarchy: whenever an interaction is estimated
to be nonzero, both its associated main effects are also included in the model. We motivate our
approach by modeling pairwise interactions for categorical variables with arbitrary numbers of
levels, and then show how we can accommodate continuous variables as well. Our approach
allows us to dispense with explicitly applying constraints on the main effects and interactions
for identifiability, which results in interpretable interaction models. We compare our method
with existing approaches on both simulated and real data, including a genome-wide association
study, all using our R package glinternet.
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1 Introduction

Given an observed response and explanatory variables, we expect interactions to be present if the

response cannot be explained by additive functions of the variables. The following definition makes

this more precise.

Definition 1. When a function f(x, y) cannot be expressed as g(x) + h(y) for some functions g

and h, we say that there is an interaction in f between x and y.

Interactions of single nucleotide polymorphisms (SNPs) are thought to play a role in cancer

[Schwender and Ickstadt, 2008] and other diseases. Modeling interactions has also served the

recommender systems community well: latent factor models (matrix factorization) aim to capture

user-item interactions that measure a user’s affinity for a particular item, and are the state of

the art in predictive power [Koren, 2009]. In look-alike-selection, a problem that is of interest in

computational advertising, one looks for features that most separates a group of observations from
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its complement, and it is conceivable that interactions among the features can play an important

role.

Linear models scale gracefully as datasets grow wider — i.e. as the number of variables increase.

Problems with 10,000 or more variables are routinely handled by standard software. Scalability

is a challenge when we model interactions. Even with 10,000 variables, we are already looking at

a 50 × 106-dimensional space of possible interaction pairs. Complicating the matter are spurious

correlations amongst the variables, which makes learning even harder.

Finding interactions often falls into the “p� n”regime where there are more variables than ob-

servations. A popular approach in supervised learning problems of this type is to use regularization,

such as imposing an `2 bound of the form ‖β‖22 ≤ s (ridge) or an `1 bound ‖β‖1 ≤ s (lasso) on the

coefficients. The latter type of penalty has been the focus of much research since its introduction

in [Tibshirani, 1996], and is called the lasso. One of the reasons for the lasso’s popularity is that

it does variable selection: it sets some coefficients exactly to zero. There is a group analogue to

the lasso, called the group-lasso [Yuan and Lin, 2006], that sets groups of variables to zero. The

idea behind our method is to set up main effects and interactions (to be defined later) via groups

of variables, and then we perform parameter selection via the group-lasso.

Discovering interactions is an area of active research; [Bien et al., 2013] give a good and recent

review. Other recent approaches include [Chen et al., 2011], [Bach, 2008], [Rosasco et al., 2010] and

[Radchenko and James, 2010]. In this paper, we introduce glinternet (group-lasso interaction

network), a method for learning first-order interactions that can be applied to categorical variables

with arbitrary numbers of levels, continuous variables, and combinations of the two. Our approach

uses a version of the group lasso to select interactions and enforce hierarchy.

For very large problems, we precede this with a screening step that gives a candidate set of main

effects and interactions. Our preferred screening rule is an adaptive procedure that is based on the

strong rules [Tibshirani et al, 2012] for discarding predictors in lasso-type problems. Strong rules

also lead to efficient algorithms for solving our group-lasso problems, with our without screening.

While screening potentially misses some candidate interactions, we note that our approach can

handle very large problems without any screening. In Section 7.3 we fit our model with 27K Snps

(three-level factors), 3,500 observations, and 360M candidate interactions, without any screening.
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1.1 A simulated example

As a first example and a forward peek at the results, we perform 100 simulations with 500 3-level

categorical variables and 800 observations (squared error loss with quantitative response). There

are 10 main effects and 10 interactions in the ground truth, and the noise level is chosen to give

a signal to noise ratio of one. We run glinternet without any screening, and stop after ten

interactions have been found. The average false discovery rate and standard errors are plotted as

a function of the number of interactions found in Figure 1. As we can see in the figure, the first
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Figure 1: False discovery rate vs number of discovered interactions, averaged over 100 simulations with 500

3-level factors. The ground truth has 10 main effects and 10 interactions.

10 interactions found (among a candidate set of 125,000) include 7 of the 10 real interactions, on

average.

1.2 Organization of the paper

The rest of the paper is organized as follows. Section 2 introduces the problem and notation. In

Section 3, we introduce the group-lasso and how it fits into our framework for finding interactions.

We also show how glinternet is equivalent to an overlapped group lasso. We discuss screening

in Section 4, and give several examples with both synthetic and real datasets in Section 7. We

relegate the specific details of our algorithmic implementation of the group lasso to Appendix A.3.

We conclude with a discussion in Section 8.

2 Background and notation

We use the random variables Y to denote the response, F to denote a categorical feature, and Z

to denote a continuous feature. We use L to denote the number of levels that F can take. For

simplicity of notation we will use the first L positive integers to represent these L levels, so that F
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takes values in the set {i ∈ Z : 1 ≤ i ≤ L}. Each categorical F has an associated random dummy

vector variable X ∈ RL with a 1 that indicates which level F takes, and 0 everywhere else.

When there are p categorical (or continuous) features, we will use subscripts to index them,

i.e. F1, . . . , Fp. Boldface font will always be reserved for vectors or matrices that comprise of

realizations of these random variables. For example, Y is the n-vector of observations of the

random variable Y , likewise for F and Z. Similarly, X is a n× L indicator matrix whose i-th row

consists of a 1 in the Fi-th column and 0 everywhere else. We use a n× (Li · Lj) indicator matrix

Xi:j to represent the interaction Fi : Fj . We will write

Xi:j = Xi ∗Xj

for the matrix consisting of all pairwise products of columns of Xi and Xj . For example,a b

c d

 ∗
e f

g h

 =

ae af be bf

cg ch dg dh

 .

2.1 Definition of interaction for categorical variables

To see how Definition 1 applies to this setting, let E(Y |F1 = i, F2 = j) = µij , the conditional mean

of Y given that F1 takes level i, and F2 takes level j. There are 4 possible cases:

1. µij = µ (no main effects, no interactions)

2. µij = µ+ θi1 (one main effect F1)

3. µij = µ+ θi1 + θj2 (two main effects)

4. µij = µ+ θi1 + θj2 + θij1:2 (main effects and interaction)

Note that all but the first case is overparametrized, and a common remedy is to impose sum

constraints on the main effects and interactions:

L1∑
i=1

θi1 = 0,

L2∑
j=1

θj2 = 0 (1)

and

L1∑
i=1

θij1:2 = 0 for fixed j,

L2∑
j=1

θij1:2 = 0 for fixed i. (2)

In what follows, θi, i = 1, · · · , p, will represent the main effect coefficients, and θi:j will denote

the interaction coefficients. We will use the terms “main effect coefficients” and “main effects”

interchangeably, and likewise for interactions.
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2.2 Weak and strong hierarchy

An interaction model is said to obey strong hierarchy if an interaction can be present only if both

of its main effects are present. Weak hierarchy is obeyed as long as either of its main effects are

present. Since main effects as defined above can be viewed as deviations from the global mean, and

interactions are deviations from the main effects, it rarely make sense to have interactions without

main effects. This leads us to prefer interaction models that are hierarchical. We see in Section 3

that glinternet produces estimates that obey strong hierarchy.

2.3 First order interaction model

Our model for a quantitative response Y is given by

E(Y |X) = µ+

p∑
i=1

Xiθi +
∑
i<j

Xi:jθi:j , (3)

and for a binary response, we have

logit(P(Y = 1|X)) = µ+

p∑
i=1

Xiθi +
∑
i<j

Xi:jθi:j . (4)

We fit these models by minimizing an appropriate loss function L, subject to many constraints.

Even if p is not too large, we will need to impose the identifiability constraints (1) and (2) for

the coefficients θ. But we will also want to limit ourselves to the important interactions and main

effects, while maintaining the hierarchy mentioned above. We achieve all these constraints by

adding an appropriate penalty to the loss function. We give the loss functions here, and then

develop the group-lasso penalties that achieve the desired constraints.

For a quantitative response, we typically use squared-error loss:

L(Y;µ, θ) =
1

2

∥∥∥∥∥∥Y − µ · 1−
p∑
i=1

Xiθi +
∑
i<j

Xi:jθi:j

∥∥∥∥∥∥
2

2

, (5)

and for a binary response the “logistic loss” (negative Bernoulli log-likelihood):

L(Y;µ, θ) = −

YT (µ · 1 +

p∑
i=1

Xiθi +
∑
i<j

Xi:jθi:j)

− 1T log

1 + exp(µ · 1 +

p∑
i=1

Xiθi +
∑
i<j

Xi:jθi:j)

 , (6)

where the log and exp are taken component-wise.
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2.4 Group-lasso and overlapped group-lasso

Since glinternet’s workhorse is the group-lasso, we briefly introduce it here. We refer the reader

to [Yuan and Lin, 2006] for more technical details.

The group-lasso can be thought of as a more general version of the well-known lasso. Suppose

there are p groups of variables (possibly of different sizes), and let the feature matrix for group j

be denoted by Xj . Let Y denote the vector of responses. For squared-error loss, the group-lasso

estimates {β̂j}p1 by solving

argminµ,β
1

2
‖Y − µ · 1−

p∑
j=1

Xjβj‖22 + λ

p∑
j=1

γj‖βj‖2. (7)

Note that if each group consists of only one variable, this reduces to the lasso criterion. In our

application, each indicator matrix Xj will represent a group. Like the lasso, the penalty will force

some β̂j to be zero, and if an estimate β̂j is nonzero, then all its components are typically nonzero.

Hence the group-lasso applied to the Xj ’s intuitively selects those variables that have a strong

overall contribution from all their levels toward explaining the response.

The parameter λ controls the amount of regularization, with larger values implying more reg-

ularization. The γ’s allow each group to be penalized to different extents, and should depend on

the scale of the matrices Xj . The nature of our matrices allows us to set them all equal to 1 (see

online Appendix A.2 for details). To solve (7), we start with λ just large enough that all estimates

are zero. Decreasing λ along a grid of values results in a path of solutions, from which an optimal

λ can be chosen by cross validation or some other model selection procedure.

The Karush-Kuhn-Tucker (KKT) optimality conditions for the group-lasso are simple to com-

pute and check. For group j, they are

‖XT
j (Y − Ŷ)‖2 ≤ γjλ if β̂j = 0 (8)

‖XT
j (Y − Ŷ)‖2 = γjλ if β̂j 6= 0. (9)

The group-lasso is commonly fit by iterative methods — either block coordinate descent, or some

form of gradient descent, and convergence can be confirmed by checking the KKT conditions.

Details of the algorithm we use can be found in Appendix A.3.

The overlap group-lasso [Jacob et al., 2009] is a variant of the group-lasso where the groups of

variables are allowed to have overlaps, i.e. some variables can show up in more than one group.

However, each time a variable shows up in a group, it gets a new coefficient. For example, if a
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variable is included in three groups, then it has three coefficients that need to be estimated, and

its ultimate coefficient is the sum of the three. This turns out to be critical for enforcing hierarchy.

3 Methodology and results

We want to fit the first order interaction model in a way that obeys strong hierarchy. We show

in Section 3.1 how this can be achieved by adding an overlapped group-lasso penalty to the loss

L(Y;µ, θ), in addition to the sum-to-zero constraints on the θs. We then show how this optimization

problem can be conveniently and efficiently solved via a group-lasso without overlaps, and without

the sum-to-zero constraints.

3.1 Strong hierarchy through overlapped group-lasso

Adding an overlapped group-lasso penalty to L(Y;µ, θ) is one way of obtaining solutions that

satisfy the strong hierarchy property. The results that follow hold for both squared error and

logistic loss, but we focus on the former for clarity.

Consider the case where there are two categorical variables F1 and F2 with L1 and L2 levels

respectively. Their indicator matrices are given by X1 and X2. (These results generalize trivially

to the case of pairwise interactions among more than 2 variables). We solve

argminµ,α,α̃
1

2

∥∥∥∥∥∥∥∥∥Y − µ · 1−X1α1 −X2α2 − [X1 X2 X1:2]


α̃1

α̃2

α1:2


∥∥∥∥∥∥∥∥∥
2

2

+ λ

(
‖α1‖2 + ‖α2‖2 +

√
L2‖α̃1‖22 + L1‖α̃2‖22 + ‖α1:2‖22

)
(10)

subject to

L1∑
i=1

αi1 = 0,

L2∑
j=1

αj2 = 0,

L1∑
i=1

α̃i1 = 0,

L2∑
j=1

α̃j2 = 0 (11)

and

L1∑
i=1

αij1:2 = 0 for fixed j,

L2∑
j=1

αij1:2 = 0 for fixed i. (12)

Notice that the main effect matrices Xj , j = 1, 2, each have two different coefficient vectors αj

and α̃j , creating an overlap in the penalties, and their ultimate coefficient is the sum θj = αj + α̃j .
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The
√
L2‖α̃1‖22 + L1‖α̃2‖22 + ‖α1:2‖22 term results in estimates that satisfy strong hierarchy, because

either ˆ̃α1 = ˆ̃α2 = α̂1:2 = 0 or all are nonzero, i.e. interactions are always present with both main

effects.

The constants L1 and L2 are chosen to put α̃1, α̃2, and α1:2 on the same scale. To motivate

this, note that we can write

X1α̃1 = X1:2[α̃1, . . . , α̃1︸ ︷︷ ︸
L2 copies

]T ,

and similarly for X2α̃2. We now have a representation for α̃1 and α̃2 with respect to the space

defined by X1:2, so that they are “comparable” to α1:2. We then have

‖[α̃1, . . . , α̃1︸ ︷︷ ︸
L2 copies

]‖22 = L2‖α̃1‖22

and likewise for α̃2. More details are given in Section 3.2 below.

The estimates for the actual main effects and interactions as in (3) are

θ̂1 = α̂1 + ˆ̃α1

θ̂2 = α̂2 + ˆ̃α2

θ̂1:2 = α̂1:2.

Because of the strong hierarchy property mentioned above, we also have

θ̂1:2 6= 0 =⇒ θ̂1 6= 0 and θ̂2 6= 0.

In standard ANOVA, there are a number of ways of dealing with the overparametrization for

factors, other than the sum-to-zero constraints we use here; for example, setting the coefficient for

the first or last level to zero, or other chosen contrasts. These also lead to a reduced parametrization.

While this choice does not alter the fit in the standard case, with parameter regularization it does.

Our choice (all levels in with sum-to-zero constraint) is symmetric and appears to be natural with

penalization, in that it treats all the levels as equals. It also turns out to be very convenient, as

we show in the next section.

3.2 Equivalence with unconstrained group-lasso

We now show how to solve the constrained overlapped group-lasso problem by solving an equivalent

unconstrained group-lasso problem — a simplification with considerable computational advantages.
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We need two lemmas. The first shows that because we fit an intercept in the model, the

estimated coefficients β̂ for any categorical variables in the model will have mean zero.

Lemma 1. Let X be an indicator matrix with L columns, corresponding to an L-level factor. Then

the solution β̂ to

argminµ,β
1

2
‖Y − µ · 1−Xβ‖22 + λ‖β‖2

satisfies

L∑
`=1

β̂` = 0.

The same is true for logistic loss.

Proof. Because X is an indicator matrix, each row consists of exactly a single 1 (all other entries

0), so that

X · c1 = c1

for any constant c. It follows that if µ̂ and β̂ are solutions, then so are µ̂+ c and β̂ − c1. But the

norm ‖β̂ − c1‖2 is minimized for c = 1
L

∑L
`=1 β̂`.

Note that this would be true for each of any number of Xj and βj in the model, as long as

there is an unpenalized intercept.

The next lemma states that if we include two intercepts in the model, one penalized and the

other unpenalized, then the penalized intercept will be estimated to be zero.

Lemma 2. The optimization problem

argminµ,µ̃,β
1

2
‖Y − µ · 1− µ̃ · 1−Xβ‖22 + λ

√
µ̃2 + ‖β‖22

has solution µ̃ = 0 for all λ > 0. The same result holds for logistic loss.

The proof is straightforward: we can achieve the same fit with a lower penalty by taking

µ←− µ+ µ̃.

The next theorem shows how the overlapped group-lasso in Section 3.1 reduces to a group-lasso.

The main idea boils down to the fact that quadratic penalties on coefficient vectors are rotation

invariant. This allows us to rotate from the “main-effects + interactions” representation to the

equivalent “cell-means” representation without changing the penalty.
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Theorem 1. Solving the constrained optimization problem (10) - (12) in Section 3.1 is equivalent

to solving the unconstrained problem

argminµ,β
1

2
‖Y − µ · 1−X1β1 −X2β2 −X1:2β1:2‖22

+ λ (‖β1‖2 + ‖β2‖2 + ‖β1:2‖2) . (13)

Proof. We need to show that the group-lasso objective can be equivalently written as an overlapped

group-lasso with the appropriate constraints on the parameters. We begin by rewriting (10) as

argminµ,µ̃,α,α̃
1

2

∥∥∥∥∥∥∥∥∥∥∥∥
Y − µ · 1−X1α1 −X2α2 − [1 X1 X2 X1:2]


µ̃

α̃1

α̃2

α1:2



∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+ λ

(
‖α1‖2 + ‖α2‖2 +

√
L1L2µ̃2 + L2‖α̃1‖22 + L1‖α̃2‖22 + ‖α1:2‖22

)
. (14)

By Lemma 2, we will estimate µ̃ = 0. Therefore we have not changed the solutions in any way.

Lemma 1 shows that the first two constraints in (11) are satisfied by the estimated main effects

β̂1 and β̂2. We now show that

‖β1:2‖2 =
√
L1L2µ̃2 + L2‖α̃1‖22 + L1‖α̃2‖22 + ‖α1:2‖22

where the α̃1, α̃2, and α1:2 satisfy the constraints in (11) and (12), and along with µ̃ represent an

equivalent reparametrization of β1:2.

For fixed levels i and j, we can decompose β1:2 (see [Scheffe, 1959]) as

βij1:2 = β··1:2 + (βi·1:2 − β··1:2) + (β·j1:2 − β
··
1:2) + (βij1:2 − β

i·
1:2 − β

·j
1:2 + β··1:2)

≡ µ̃+ α̃i1 + α̃j2 + αij1:2.

It follows that the whole (L1L2)-vector β1:2 can be written as

β1:2 = 1µ̃+ Z1α̃1 + Z2α̃2 + α1:2, (15)

where Z1 is a L1L2 × L1 indicator matrix of the form
1L2×1 0 · · · 0

0 1L2×1 · · · 0

0 0
. . . 0

0 0 0 1L2×1


︸ ︷︷ ︸

L1 columns
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and Z2 is a L1L2 × L2 indicator matrix of the form

L1 copies



IL2×L2

...

IL2×L2


It follows that

Z1α̃1 = (α̃1
1, . . . , α̃

1
1︸ ︷︷ ︸

L2 copies

, α̃2
1, . . . , α̃

2
1︸ ︷︷ ︸

L2 copies

, . . . , α̃L1
1 , . . . , α̃L1

1︸ ︷︷ ︸
L2 copies

)T

and

Z2α̃2 = (α̃1
2, . . . , α̃

L2
2 , α̃1

2, . . . , α̃
L2
2 , . . . , α̃1

2, . . . , α̃
L2
2 )T .

Note that α̃1, α̃2, and α1:2, by definition, satisfy the constraints (11) and (12). This can be used

to show, by direct calculation, that the four additive components in (15) are mutually orthogonal,

so that we can write

‖β1:2‖22 = ‖1µ̃‖22 + ‖Z1α̃1‖22 + ‖Z2α̃2‖22 + ‖α1:2‖22

= L1L2µ̃
2 + L2‖α̃1‖22 + L1‖α̃2‖22 + ‖α1:2‖22.

We have shown that the penalty in the group-lasso problem is equivalent to the penalty in the

constrained overlapped group-lasso. It remains to show that the loss functions in both problems

are also the same. Since X1:2Z1 = X1 and X1:2Z2 = X2, this can be seen by a direct computation:

X1:2β1:2 = X1:2(1µ̃+ Z1α̃1 + Z2α̃2 + α1:2)

= 1µ̃+ X1α̃1 + X2α̃2 + X1:2α1:2

= [1 X1 X2 X1:2]


µ̃

α̃1

α̃2

α1:2



Theorem 1 shows that we can use the group-lasso to obtain estimates that satisfy strong hier-

archy, without solving the overlapped group-lasso with constraints. The theorem also shows that
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the main effects and interactions can be extracted with

θ̂1 = β̂1 + ˆ̃α1

θ̂2 = β̂2 + ˆ̃α2

θ̂1:2 = α̂1:2.

Although this theorem is stated and proved with just two categorical variables F1 and F2, the

same results extends in a trivial way to all pairs of interactions with p variables. The only small

modification is that a main effect will potentially get contributions from more than one interaction

pair.

This equivalence has considerable impact on the computations. A primary operation in com-

puting a group-lasso solution is a matrix multiply as in (8), which is also used in the strong rules

screening (Section 4). For these operations we do not need to compute all the matrices in ad-

vance, but compute the multiplies on the fly using the stored factor variables. Furthermore, these

operations can be run in parallel on many processors.

We discuss the properties of the glinternet estimates in the next section.

3.3 Properties of the glinternet penalty

While glinternet treats the problem as a group-lasso, examining the equivalent overlapped group-

lasso version makes it easier to draw insights about the behaviour of the method under various

scenarios. Recall that the overlapped penalty for two variables is given by

‖α1‖2 + ‖α2‖2 +
√
L2‖α̃1‖22 + L1‖α̃2‖22 + ‖α1:2‖22.

We consider a noiseless scenario. If the ground truth is additive, i.e. α1:2 = 0, then α̃1 and α̃2 will

be estimated to be zero. This is because for L1, L2 ≥ 2 and a, b ≥ 0, we have√
L2a2 + L1b2 ≥ a+ b.

Thus it is advantageous to place all the main effects in α1 and α2, because doing so results in a

smaller penalty. Therefore, if the truth has no interactions, then glinternet picks out only main

effects.

If an interaction was present (α1:2 > 0), the derivative of the penalty term with respect to α1:2

is

α1:2√
L2‖α̃1‖22 + L1‖α̃2‖22 + ‖α1:2‖22

.
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The presence of main effects allows this derivative to be smaller, thus allowing the algorithm to pay

a smaller penalty (as compared to no main effects present) for making α̂1:2 nonzero. This shows

interactions whose main effects are also present are discovered before pure interactions.

3.4 Interaction between a categorical variable and a continuous variable

We describe how to extend Theorem 1 to interaction between a continuous variable and a categorical

variable.

Consider the case where we have a categorical variable F with L levels, and a continuous

variable Z. Let µi = E[Y |F = i, Z = z]. There are four cases:

• µi = µ (no main effects, no interactions)

• µi = µ+ θi1 (main effect F )

• µi = µ+ θi1 + θ2z (two main effects)

• µi = µ+ θi1 + θ2z + θi1:2z (main effects and interaction)

As before, we impose the constraints
∑L

i=1 θ
i
1 = 0 and

∑L
i=1 θ

i
1:2 = 0. We will also assume that the

observed values zi are standardized to have mean zero and variance one; see also Appendix A.2.

An overlapped group-lasso of the form

argminµ,α,α̃
1

2

∥∥∥∥∥∥∥∥∥Y − µ · 1−Xα1 − Zα2 − [X Z (X ∗ Z)]


α̃1

α̃2

α1:2


∥∥∥∥∥∥∥∥∥
2

2

+ λ

(
‖α1‖2 + |α2|+

√
‖α̃1‖22 + Lα̃2

2 + ‖α1:2‖22
)

(16)

subject to

L∑
i=1

αi1 = 0,
L∑
i=1

α̃i1 = 0,
L∑
i=1

αi1:2 = 0

allows us to obtain estimates of the interaction term that satisfy strong hierarchy. This is again

due to the nature of the square root term in the penalty. The actual main effects and interactions

can be recovered as

θ̂1 = α̂1 + ˆ̃α1

θ̂2 = α̂2 + ˆ̃α2

θ̂1:2 = α̂1:2.
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We have the following extension of Theorem 1:

Theorem 2. Solving the constrained overlapped group-lasso above is equivalent to solving

argminµ,β
1

2
‖Y − µ · 1−Xβ1 − Zβ2 − (X ∗ [1 Z])β1:2‖22

+ λ (‖β1‖2 + |β2|+ ‖β1:2‖2) . (17)

Proof. We proceed as in the proof of Theorem 1 and introduce an additional parameter µ̃ into the

overlapped objective:

argminµ,µ̃,α,α̃
1

2

∥∥∥∥∥∥∥∥∥∥∥∥
Y − µ · 1−Xα1 − Zα2 − [1 X Z (X ∗ Z)]


µ̃

α̃1

α̃2

α1:2



∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+ λ

(
‖α1‖2 + |α2|+

√
Lµ̃2 + ‖α̃1‖22 + Lα̃2

2 + ‖α1:2‖22
)

(18)

As before, this does not change the solutions because we will have ˆ̃µ = 0 (see Lemma 2).

Decompose the 2L-vector β1:2 into  η1

η2

 ,
where η1 and η2 both have dimension L× 1. Apply the ANOVA decomposition to both to obtain

ηi1 = η·1 + (ηi1 − η·1)

≡ µ̃+ α̃i1

and

ηi2 = η·2 + (ηi2 − η·2)

≡ α̃2 + αi1:2.

Note that α̃1 is a (L× 1)-vector that satisfies
∑L

i=1 α̃
i
2 = 0, and likewise for α1:2. This allows us to

write

β1:2 =

 µ̃ · 1L×1
α̃2 · 1L×1

+

 α̃1

α1:2



14



It follows that

‖β1:2‖22 = Lµ̃2 + ‖α̃1‖22 + Lα̃2
2 + ‖α1:2‖22,

which shows that the penalties in both problems are equivalent. A direct computation shows that

the loss functions are also equivalent:

(X ∗ [1 Z])β1:2 = [X (X ∗ Z)]β1:2

= [X (X ∗ Z)]

 µ̃ · 1L×1
α̃2 · 1L×1

+

 α̃1

α1:2


= µ̃ · 1 + Xα̃1 + Zα̃2 + (X ∗ Z)α1:2.

Theorem 2 allows us to accommodate interactions between continuous and categorical variables

by simply parametrizing the interaction term as X ∗ [1 Z], where X is the indicator matrix

representation for categorical variables that we have been using all along. We then proceed as

before with a group-lasso.

3.5 Interaction between two continuous variables

We have seen that the appropriate representations for the interaction terms are

• X1 ∗X2 = X1:2 for categorical variables

• X ∗ [1 Z] = [X (X ∗ Z)] for one categorical variable and one continuous variable.

How should we represent the interaction between two continuous variables? We follow the tra-

ditional approach, and use the bilinear interaction term Z1 · Z2. We can use exactly the same

framework as before:

Z1:2 = [1 Z1] ∗ [1 Z2]

= [1 Z1 Z2 (Z1 ∗ Z2)].

This is indeed the case. A linear interaction model for Z1 and Z2 is given by

E[Y |Z1 = z1, Z2 = z2] = µ+ θ1z1 + θ2z2 + θ1:2z1z2.
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Unlike the previous cases where there were categorical variables, there are no constraints on any

of the coefficients, and so no simplifications arise. It follows that the overlapped group-lasso

argminµ,µ̃,α,α̃
1

2

∥∥∥∥∥∥∥∥∥∥∥∥
Y − µ · 1− Z1α1 − Z2α2 − [1 Z1 Z2 (Z1 ∗ Z2)]


µ̃

α̃1

α̃2

α1:2



∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+ λ

(
|α1|+ |α2|+

√
µ̃2 + α̃2

1 + α̃2
2 + α2

1:2

)
(19)

is trivially equivalent to

argminµ,β
1

2
‖Y − µ · 1− Z1β1 − Z2β2 − ([1 Z1] ∗ [1 Z2])β1:2‖22

+ λ (|β1|+ |β2|+ ‖β1:2‖2) , (20)

with the β’s taking the place of the α’s. Note that we will have ̂̃µ = 0, as will be the first

element of β̂1:2. Since its coefficient is zero, we can omit the column of 1s in the interaction matrix.

4 Strong rules and variable screening

glinternet works by solving a group-lasso with p+
(
p
2

)
groups of variables. Our algorithms scale

well; we give an example in Section 7.3 where p = 27, 000, leading to a search space of 360 million

possible interactions. This is partly attributable to our use of strong rules [Tibshirani et al, 2012],

a computational hedge that we describe below.

However, for larger p (e.g. ∼ 105), we require some form of screening to reduce the dimension

of the interaction search space. We have argued that models satisfying hierarchy make sense, so it

is natural to consider screening devices that hedge on the presence of main effects. Again we use

the strong rules, but this time in adaptive fashion. In our simulation experiments we compare this

to an approach based on gradient boosting, which in the interest of space we describe in the online

Appendix A.1.

4.1 Strong rules

The strong rules [Tibshirani et al, 2012] for lasso-type problems are effective heuristics for (tem-

porarily) discarding large numbers of variables that are likely to be redundant. As a result, the

strong rules can dramatically speed up the convergence of algorithms because they can concentrate
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on a smaller strong set of variables that are more likely to be nonzero. After our algorithm has

converged on the strong set, we have to check the KKT conditions on the discarded set. Any

violators are then added to the active set, and the model is refit.This is repeated till no violators

are found. In our experience, violations rarely occur, which means we rarely have to do multiple

rounds of fitting for any given value of the regularization parameter λ.

In detail, suppose we have a solution Ŷ` at λ`, and wish to compute the solution at λ`+1 < λ`.

The strong rule for the group-lasso involves computing si = ‖XT
i (Y − Ŷ`)‖2 for every group of

variables Xi. We know from the KKT optimality conditions (see Section 2.4) that

si ≤ λ` if β̂i = 0

si = λ` if β̂i 6= 0,
(21)

(assuming the γi in (8) are all 1; if not, γi multiplies λ` in (21)). When we decrease λ to λ`+1, we

expect to enlarge the active set. The strong rule discards a group i if si < λ`+1 − (λ` − λ`+1).

We do not store all the matrices Xi in advance, particularly for those based on factor variables,

but rather compute the inner-products directly using the underlying variables. Note also that these

operations are easily run in parallel when p is large.

4.2 Adaptive screening

If p +
(
p
2

)
is too large, then we cannot accommodate all possible interactions, and instead use

a hedge (also based on the strong rules). The idea is use the strong rules to screen main-effect

variables only, and then consider all possible interactions with the chosen variables.

An example will illustrate. Suppose we have 10,000 variables (∼ 50×106 possible interactions),

but we are computationally limited to a group-lasso with 106 groups. Assume we have the fit for

λ = λ`, and want to move on to λ`+1. Let rλ` = Y − Ŷλ` denote the current residual. At this

point, the variable scores si = ‖XT
i rλ`‖2 have already been computed from checking the KKT

conditions at the solutions for λ`. We restrict ourselves to the 10,000 (main-effect) variables, and

take the 100 with the highest scores. Denote this set by T λ`+1

100 . The candidate set of variables for

the group-lasso is then given by T λ`+1

100 together with the pairwise interactions between all 10,000

variables and T λ`+1

100 . Because this gives a candidate set with about 100× 10, 000 = 106 terms, the

computation is now feasible. We then compute the group-lasso on this candidate set, and repeat

the procedure with the new residual rλ`+1.
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5 Related work and approaches

Here we describe two related approaches to discovering interactions. An earlier third approach,

logic regression [Ruczinski I, 2003] is based on Boolean combinations of variables. Since it is

restricted to binary variables, we did not include it in our comparisons.

5.1 hierNet [Bien et al., 2013]

This is a method for finding interactions, and like glinternet, imposes hierarchy via regularization.

HierNet solves the optimization problem

argminµ,β,θ
1

2

n∑
i=1

(yi − µ− xTi β −
1

2
xTi Θxi)

2 + λ1T (β+ + β−) +
λ

2
‖Θ‖1 (22)

subject to

Θ = ΘT , ‖Θj·‖1 ≤ (β+j + β−j ), β+j ≥ 0, β−j ≥ 0,

where Θj· is the jth row of Θ. The main effects are represented by β, and interactions are given

by the matrix Θ. The first constraint enforces symmetry in the interaction coefficients. β+j and β−j

are the positive and negative parts of βj , and are given by β+j = max(0, βj) and β−j = −min(0, βj)

respectively. The constraint ‖Θj·‖1 ≤ (β+j + β−j ) implies that if some components of the j-th row

of Θ are estimated to be nonzero, then the main effect βj will also be estimated to be nonzero.

Since nonzero Θij corresponds to an interaction between variables i and j, by symmetry we will

have both ‖Θi·‖1 > 0 and ‖Θj·‖1 > 0. This implies that the solutions to the hierNet objective

satisfy strong hierarchy. One can think of min[(β+i + β−i ), (β+j + β−j )] as a budget for the amount

of interactions that are allowed to be nonzero. Alternatively, a strong interaction will force the

main effects to be large, a somewhat surprising side effect.

The hierNet objective can be modified to obtain solutions that satisfy weak hierarchy (by

removing the symmetry constraint); we use both in our simulations, giving hierNet a potential

advantage. Currently, hierNet is only able to accommodate binary and continuous variables, and

is practically limited to fitting models with fewer than 1000 variables.

5.2 Composite absolute penalties [Zhao et al., 2009]

Like glinternet, this is also a penalty-based approach. CAP employs penalties of the form

‖(βi, βj)‖γ1 + ‖βj‖γ2
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where γ1 > 1. Such a penalty ensures that β̂i 6= 0 whenever β̂j 6= 0. It is possible that β̂i 6= 0

but β̂j = 0. In other words, the penalty makes β̂j hierarchically dependent on β̂i: it can only be

nonzero after β̂i becomes nonzero. It is thus possible to use CAP penalties to build interaction

models that satisfy hierarchy. For example, a penalty of the form ‖(θ1, θ2, θ1:2)‖2+‖θ1:2‖2 will result

in estimates that satisfy θ̂1:2 6= 0 =⇒ θ̂1 6= 0 and θ̂2 6= 0. We can thus build a linear interaction

model for two categorical variables by solving

argminµ,θ
1

2
‖Y − µ · 1−X1θ1 −X2θ2 −X1:2θ1:2‖22

+ λ(‖(θ1, θ2, θ1:2)‖2 + ‖θ1:2‖2) (23)

subject to (1) and (2). We see that the CAP approach differs from glinternet in that we have to

solve a constrained optimization problem which is considerably more complicated, thus making it

unclear if CAP will be computationally feasible for larger problems. The form of the penalties are

also different: the interaction coefficient in CAP is penalized twice, whereas glinternet penalizes

it once. It is not obvious what the relationship between the two algorithms’ solutions would be.

6 Simulation study

We perform simulations to see if glinternet is competitive with existing methods. hierNet is

a natural benchmark because it also tries to find interactions subject to hierarchical constraints.

Because hierNet only works with continuous variables and 2-level categorical variables, we include

gradient boosting (see Appendix A.1) as a competitor for the scenarios where hierNet cannot be

used.

6.1 False discovery rates

We simulate 4 different setups:

1. Truth obeys strong hierarchy. The interactions are only among pairs of nonzero main effects.

2. Truth obeys weak hierarchy. Each interaction has only one of its main effects present.

3. Truth is anti-hierarchical. The interactions are only among pairs of main effects that are not

present.

4. Truth is pure interaction. There are no main effects present, only interactions.
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Each case is generated with n = 500 observations and p = 30 continuous variables, with a signal to

noise ratio of 1. Where applicable, there are 10 main effects and/or 10 interactions in the ground

truth. The interaction and main effect coefficients are sampled from N(0, 1), so that the variance

in the observations should be split equally between main effects and interactions.

Boosting is done with 5000 depth-2 trees and a learning rate of 0.001. Each tree represents

a candidate interaction, and we can compute the improvement to fit due to this candidate pair.

Summing up the improvement over the 5000 trees gives a score for each interaction pair, which

can then be used to order the pairs. We then compute the false discovery rate as a function of

the number of ordered interactions included. For glinternet and hierNet, we obtain a path of

solutions and compute the false discovery rate as a function of the number of interactions discovered.

The default setting for hierNet is to impose weak hierarchy, and we use this except in the cases

where the ground truth has strong hierarchy. In these cases, we set hierNet to impose strong

hierarchy. We also set “diagonal=FALSE” to disable quadratic terms.
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Figure 2: Simulation results for continuous variables: Average false discovery rate and standard errors from

100 simulation runs.

We plot the average false discovery rate with standard error bars as a function of the number

of predicted interactions in Figure 2. The results are from 100 simulation runs. We see that

glinternet is competitive with hierNet when the truth obeys strong or weak hierarchy, and does
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Figure 3: Left: Best wall-clock time over 10 runs for discovering 10 interactions. Right: Same as left, but

on the log scale. Both packages consist of R interfaces to C code, compiled with the same options.

better when the truth is anti-hierarchical. This is expected because hierNet requires the presence

of main effects as a budget for interactions, whereas glinternet can still esimate an interaction to

be nonzero even though none of its main effects are present. Boosting is not competitive, especially

in the anti-hierarchical case. This is because the first split in a tree is effectively looking for a main

effect.

Both glinternet and hierNet perform comparably in these simulations. If all the variables

are continuous, there do not seem to be compelling reasons to choose one over the other, apart

from the computational advantages of glinternet discussed in the next section.

6.2 Feasibility

To the best of our knowledge, hierNet is the only readily available package for learning interactions

among continuous variables in a hierarchical manner. Therefore it is natural to use hierNet as

a speed benchmark. We generate data in which the ground truth has strong hierarchy as in

Section 6.1, but with n = 1000 quantitative responses and p = 20, 40, 80, 160, 320, 640 continuous

predictor variables. We set each method to find 10 interactions. While hierNet does not allow

the user to specify the number of interactions to discover, we get around this by fitting a path

of values, then selecting the regularization parameter that corresponds to 10 nonzero estimated

interactions. We then refit hierNet along a path that terminates with this choice of parameter,

and time this run. Both software packages are compiled with the same options. Figure 3 shows the

best time recorded for each method over 10 runs. These simulations were timed on a Intel Core-i7

3930K processor. We see that glinternet is faster than hierNet by a factor of about 100 on these
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smaller problems, and is not feasible for problems larger than about 1000.

7 Real data examples

We compare the performance of glinternet on several prediction problems. The competitor

methods used are gradient boosting, lasso, ridge regression, and hierNet where feasible. In all

situations, we determine the number of trees in boosting by first building a model with a large

number of trees, typically 5000 or 10000, and then selecting the number that gives the lowest

cross-validated error. We use a learning rate of 0.001, and we do not sub-sample the data since the

sample sizes are small in all the cases.

The methods are evaluated on three measures:

1. misclassification error, or 0-1 loss

2. area under the receiver operating characteristic (ROC) curve, or AUC

3. cross entropy, given by − 1
n

∑n
i=1 [yi log(ŷi) + (1− yi) log(1− ŷi)].

7.1 Spambase

This is the Spambase data taken from the UCI Machine Learning Repository. There are 4601 binary

observations indicating whether an email is spam or non-spam, and 57 integer-valued variables.

All the features are log-transformed by log(1 +x) before applying the methods, since they all tend

to be very skew, with point masses at zero. We split the data into a training set consisting of 3065

observations and a test set consisting of 1536 observations. The methods are tuned on the training

set using 10-fold cross validation before predicting on the test set. The results are shown in the

left panel in Figure 4.

7.2 Dorothea

Dorothea is one of the 5 datasets from the NIPS 2003 Feature Learning Challenge, where the goal

is to predict if a chemical molecule will bind to a receptor target. There are 100000 binary features

that describe three-dimensional properties of the molecules, half of which are probes that have

nothing to do with the response. The training, validation, and test sets consist of 800, 350, and

800 observations respectively. More details about how the data were prepared can be found at

http://archive.ics.uci.edu/ml/datasets/Dorothea.
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Figure 4: Left panel: Performance on Spambase. Right panel: Performance on Dorothea.

We ran glinternet with screening on 1000 main effects, which resulted in about 100 million

candidate interaction pairs. The validation set was used to tune all the methods. We then predict

on the test set with the chosen models and submitted the results online for scoring. The best

model chosen by glinternet made use of 93 features, compared with the 9 features chosen by

`1-penalized logistic regression (lasso). The right panel of Figure 4 summarizes the performance

for each method. (Balanced error is the simple average of the fractions of false positives and

false negatives, and is produced automatically by the challenge website.) We see that glinternet

has a slight advantage over the lasso, indicating that interactions might be important for this

problem. However, the differences are small, and boosting, glinternet and lasso all show similar

performance.

7.3 Genome-wide association study

We use the simulated rheumatoid arthritis data (replicate 1) from Problem 3 in Genetic Analy-

sis Workshop 15. Affliction status was determined by a genetic/environmental model to mimic

the familial pattern of arthritis; full details can be found in [Miller et al., 2007]. These authors

simulated a large population of nuclear families consisting of two parents and two offspring. We

are then provided with 1500 randomly chosen families with an affected sibling pair (ASP), and

2,000 unaffected families as a control group. For the control families, we only have data from one
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randomly chosen sibling. Therefore we also sample one sibling from each of the 1,500 ASPs to

obtain 1,500 cases.

There are 9,187 single nucleotide polymorphism (SNP) markers on chromosomes 1 through 22

that are designed to mimic a 10K SNP chip set, and a dense set of 17,820 SNPs on chromosome 6

that approximate the density of a 300K SNP set. Since 210 of the SNPs on chromosome 6 are found

in both the dense and non-dense sets, we made sure to include them only once in our analysis. This

gives us a total of 9187− 210 + 17820 = 26797 SNPs, all of which are 3-level categorical variables.

We are also provided with phenotype data, and we include sex, age, smoking history, and the

DR alleles from father and mother in our analysis (a collection of alleles named DRx are known to

be associated with rheumatoid arthritis). Sex and smoking history are 2-level categorical variables,

while age is continuous. Each DR allele is a 3-level categorical variable, and we combine the father

and mother alleles in an unordered way to obtain a 6-level DR variable. In total, we have 26,801

variables and 3,500 training examples.

We run glinternet (without screening) on a grid of values for λ that starts with the empty

model. The first two variables found are main effects:

• SNP6 305

• denseSNP6 6873

Following that, an interaction denseSNP6 6881:denseSNP6 6882 gets picked up. We now proceed

to analyze this result.

Two of the interactions listed in the answer sheet provided with the data are: locus A with DR,

and locus C with DR. There is also a main effect from DR. The closest SNP to the given position

of locus A is SNP16 31 on chromosome 16, so we take this SNP to represent locus A. The given

position for locus C corresponds to denseSNP6 3437, and we use this SNP for locus C. While it

looks like none of the true variables are to be found in the list above, these discovered variables

have very strong association with the true variables.

If we fit a linear logistic regression model with our first discovered pair denseSNP6 6881:denseSNP6 6882,

the main effect denseSNP6 6882 and the interaction terms are both significant:
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Df Dev Resid. Dev P(> χ2)

NULL 4780.4

denseSNP6 6881 1 1.61 4778.7 0.20386

denseSNP6 6882 2 1255.68 3523.1 <2e-16

denseSNP6 6881:denseSNP6 6882 1 5.02 3518.0 0.02508

Table 1: Analysis of deviance table for linear logistic model fitted to first interaction term that was discovered.

The Df for interaction is 1 (and not 2) because of one empty cell in the interaction table.

A χ2 test for independence between denseSNP6 6882 and DR gives a p-value of less than 1e-15,

so that glinternet has effectively selected an interaction with DR. However, denseSNP6 6881 has

little association with loci A and C. The question then arises as to why we did not find the true

interactions with DR. To investigate, we fit a linear logistic regression model separately to each of

the two true interaction pairs. In both cases, the main effect DR is significant (p-value < 1e− 15),

but the interaction term is not:

Df Dev Resid. Dev P(> χ2)

NULL 4780.4

SNP16 31 2 3.08 4777.3 0.2147

DR 5 2383.39 2393.9 <2e-16

SNP16 31:DR 10 9.56 2384.3 0.4797

NULL 4780.4

denseSNP6 3437 2 1.30 4779.1 0.5223

DR 5 2384.18 2394.9 <2e-16

denseSNP6 3437:DR 8 5.88 2389.0 0.6604

Table 2: Analysis of deviance table for linear logistic regression done separately on each of the two true

interaction terms. In the second table, the Df for interaction is 8 (and not 10) because of empty cells in the

interaction table.

Therefore it is somewhat unsurprising that glinternet did not pick these interactions.

This example also illustrates how the the group-lasso penalty in glinternet helps in discover-

ing interactions (see Section 3.3). We mentioned above that denseSNP6 6881:denseSNP6 6882 is

significant if fit by itself in a linear logistic model (Table 1). But if we now fit this interaction in

the presence of the two main effects SNP6 305 and denseSNP6 6873, it is not significant:
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Df Dev Resid. Dev P(> χ2)

NULL 4780.4

SNP6 305 2 2140.18 2640.2 <2e-16

denseSNP6 6873 2 382.61 2257.6 <2e-16

denseSNP6 6881:denseSNP6 6882 4 3.06 2254.5 0.5473

This suggests that fitting the two main effects fully has explained away most of the effect from

the interaction. But because glinternet regularizes the coefficients of these main effects, they are

not fully fit, and this allows glinternet to discover the interaction.

The ANOVA analyses above suggest that the true interactions are difficult to find in this

GWAS dataset. Despite having to search through a space of about 360 million interaction pairs,

glinternet was able to find variables that are strongly associated with the truth. This illustrates

the difficulty of the interaction-learning problem: even if the computational challenges are met,

the statistical issues are perhaps the dominant factor.

8 Discussion

In this paper we introduce glinternet, a method for learning linear interaction models that satisfy

strong hierarchy. We demonstrate that the performance of our method is comparable with past

approaches, but has the added advantage of being able to accommodate both categorical and

continuous variables, and on a much larger scale. We illustrate the method with several examples

using real and simulated data, and also show that glinternet can be applied to genome-wide

association studies.

There are many approaches for fitting a group lasso. We describe the specific algorithm used

in our implementation in Appendix A.3. glinternet is available on CRAN as a package for the

statistical software R. The functions in this package interface to our efficient C code for solving the

group lasso.

Our paper is mostly about computations, and how to finesse the big search space when dealing

with interactions. But there is an equally big statistical bottleneck: when the space of searched

interactions is very large, it is much easier to find false positives. This is not addressed in this

paper, and is an important area for further research.
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A Appendix

A.1 Screening with boosted trees

AdaBoost [Freund and Schapire, 1995] and gradient boosting [Friedman, 2001] are effective ap-

proaches for building ensembles of weak learners such as decision trees. One of the advantages of

trees is that they are able to model nonlinear effects and high-order interactions. For example, a

depth-2 tree essentially represents an interaction between the variables involved in the two splits,

which suggests that boosting with depth-2 trees is a way of building a first-order interaction model.

Note that the interactions are hierarchical, because in finding the optimal first split, the boosting

algorithm is looking for the best main effect. The subsequent split is then made, conditioned on

the first split.

If we boost with T trees, then we end up with a model that has at most T interaction pairs.

The following diagram gives a schematic of the boosting iterations with categorical variables.

F1
{1}

~~

{2,3}

��
F2

{1,2}

��

{3}

""

+ F5
{2}

~~

{1,3}

��
F7

{3}

��

{1,2}

""

(24)

In the first tree, levels 2 and 3 of F1 are not involved in the interaction with F2. Therefore

each tree in the boosted model does not represent an interaction among all the levels of the two

variables, but only among a subset of the levels. To enforce the full interaction structure, one

could use fully-split trees, but we do not develop this approach for two reasons. First, boosting is

a sequential procedure and is quite slow even for moderately sized problems. Using fully split trees

will further degrade its runtime. Second, in variables with many levels, it is reasonable to expect

that the interactions only occur among a few of the levels. If this were true, then a complete

interaction that is weak for every combination of levels might be selected over a strong partial

interaction. But it is the strong partial interaction that we are interested in.

Boosting is feasible because it is a greedy algorithm. If p is the number of variables, an

exhaustive search involves O(p2) variables, whereas boosting operates with O(p). To use the

boosted model as a screening device for interaction candidates, we take the set of all unique

interactions from the collection of trees. For example, in our schematic above, we would add F1:2
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and F5:7 to our candidate set of interactions.

In our experiments, using boosting as a screen did not perform as well as we hoped. There is

the issue of selecting tuning parameters such as the amount of shrinkage and the number of trees

to use. Lowering the shrinkage and increasing the number of trees improves false discovery rates,

but at a significant cost to speed.

A.2 Defining the group penalties γ

Recall that the group-lasso solves the optimization problem

argminβ L(Y,X;β) + λ

p∑
i=1

γi‖βi‖2,

where L(Y,X;β) is the negative log-likelihood function. This is given by

L(Y,X;β) =
1

2n
‖Y −Xβ‖22

for squared error loss, and

L(Y,X, β) = − 1

n

[
YT (Xβ)− 1T log(1 + exp(Xβ))

]
for logistic loss (log and exp are taken component-wise). Each βi is a vector of coefficients for

group i. When each group consists of only one variable, this reduces to the lasso.

The γi allow us to penalize some groups more (or less) than others. We want to choose the γi so

that if the signal were pure noise, then all the groups are equally likely to be nonzero. Because the

quantity ‖XT
i (Y − Ŷ)‖2 determines whether the group Xi is zero or not (see the KKT conditions

(8)), we define γi via a null model as follows. Let ε ∼ (0, I). Then we have

γ2i = E‖XT
i ε‖22

= tr XT
i Xi

= ‖Xi‖2F .

Therefore we take γi = ‖Xi‖F , the Frobenius norm of the matrix Xi. In the case where the Xi are

orthonormal matrices with pi columns, we recover γi =
√
pi, which is the value proposed in [Yuan

and Lin, 2006]. In our case, the indicator matrices for categorical variables all have Frobenius

norm equal to
√
n, so we can simply take γi = 1 for all i. The case where continuous variables are

present is not as straightforward, but we can normalize all the groups to have Frobenius norm one,

which then allows us to take γi = 1 for i = 1, . . . , p.
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A.3 Algorithmic details

We describe the algorithm used in glinternet for solving the group-lasso optimization prob-

lem. Since the algorithm applies to the group-lasso in general and not specifically for learning

interactions, we will use Y as before to denote the n-vector of observed responses, but X =

[X1 X2 . . . Xp] will now denote a generic feature matrix whose columns fall into p groups.

Fast iterative soft thresholding (FISTA) [Beck and Teboulle, 2009] is a popular approach for

computing the lasso estimates. This is essentially a first order method with Nesterov style accel-

eration through the use of a momentum factor. Because the group-lasso can be viewed as a more

general version of the lasso, it is unsurprising that FISTA can be adapted for the group-lasso with

minimal changes. This gives us important advantages:

1. FISTA is a generalized gradient method, so that there is no Hessian involved

2. virtually no change to the algorithm when going from squared error loss to logistic loss

3. gradient computation and parameter updates can be parallelized

4. can take advantage of adaptive momentum-restart heuristics.

Adaptive momentum restart was introduced in [O’Donoghue and Candes, 2012] as a scheme to

counter the “rippling” behaviour often observed with accelerated gradient methods. They demon-

strated that adaptively restarting the momentum factor based on a gradient condition can dramat-

ically speed up the convergence rate of FISTA. The intuition is that we should reset the momentum

to zero whenever the gradient at the current step and the momentum point in different directions.

Because the restart condition only requires a vector multiplication with the gradient (which has

already been computed), the added computational cost is negligible. The FISTA algorithm with

adaptive restart is given below.

At each iteration, we take a step in the direction of the gradient with step size s. We can get

an idea of what s should be by looking at the majorized objective function about a fixed point β0:

M(β) = L(Y,X;β0) + (β − β0)T g(β0) +
1

2s
‖β − β0‖22 + λ

p∑
i=1

‖βi‖2. (25)

Here, g(β0) is the gradient of the negative log-likelihood L(Y,X;β) evaluated at β0. Majorization-

minimization schemes for convex optimization choose s sufficiently small so that the LHS of (25) is

upper bounded by the RHS. One strategy is to start with a large step size, then backtrack until this
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Algorithm 1: FISTA with adaptive restart

input : Initialized parameters β(0), feature matrix X, observations Y, regularization

parameter λ, step size s.

output: β̂

Initialize x(0) = β(0) and ρ0 = 1.

for k = 0, 1, . . . , do

g(k) = −XT (Y −Xβ(k));

x(k+1) =
(
1− sλ

‖β(k)−sg(k)‖2

)
+

(
β(k) − sg(k)

)
;

if (β(k) − x(k+1))T (x(k+1) − x(k)) > 0 then ρk = 1;

ρk+1 = (1 +
√

1 + 4ρ2k)/2;

β(k+1) = x(k+1) + ρk−1
ρk+1

(x(k+1) − x(k));

end

condition is satisfied. We use an approach that is mentioned in [Becker et al., 2011] that adaptively

initializes the step size with

s =
‖β(k) − β(k−1)‖2
‖gk − gk−1‖2

. (26)

We then backtrack from this initialized value if necessary by multiplying s with some 0 < α <

1. The interested reader may refer to [Simon et al., 2013] for more details about majorization-

minimization schemes for the group-lasso.

glinternet is available on CRAN as a package for the statistical software R. The functions in

this package interface to our efficient C code for solving the group lasso. The user has the option of

using multiple cores/CPUs, but this requires that the package be compiled with OpenMP enabled.

The user may also benefit from compiling with a higher level of optimization (such as O3 for

gcc). For example, all our results were obtained by compiling with the following command (same

command used for hierNet):

icc -std=gnu99 -xhost -fp-model fast=2 -no-prec-div -no-prec-sqrt -ip -O3 -restrict
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