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INTRODUCTION

Apart from its inherent scientific interest, under-
standing the distributional patterns of individual species,
communities and ecosystems is essential to robust
conservation management. Such information is required
not only for the identification of priority sites for protec-
tion (Ward et al. 1999), but also for monitoring the
impacts of human activities, particularly in systems
subject to recurrent harvesting of natural resources as in
the oceans (e.g. Colloca et al. 2003). Unfortunately,
comprehensive inventories of species distributions are
rarely available when conservation-management issues
require resolution over extensive geographic areas. This

is particularly so in the oceans where sampling at
depth over large areas is not only difficult and expensive,
but is often also constrained by lack of taxonomic
expertise (Solbrig 1991). Several approaches have been
developed to overcome this lack of comprehensive
data, including the analysis of existing data to identify
zones of high species richness (e.g. Ponder et al. 2001,
Shackell & Frank 2003) and the identification of species
whose status can be used as indicators of wider eco-
system health (e.g. Diaz et al. 2004). Alternatively,
abiotic data are used either to construct frameworks for
management (e.g. T. H. Snelder et al. 2006) or to predict
the distributions of biological properties from scattered
samples (e.g. Ferrier et al. 2002). 
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Geographic variation in species richness has long
been explored in both terrestrial (Rohde 1992, Huston
1994) and marine settings (Grassle & Maciolek 1992,
Rex et al. 1993, Roy et al. 1998, Gray 2001, 2002), and
it has become the subject of increased interest with
recognition of the global imperative for biodiversity
conservation. In marine studies, the search for evi-
dence of declining species richness with progression
from equatorial to polar environments, a change that
would parallel terrestrial patterns, has been a domi-
nant theme (Gray 2001). However, although evidence
of declining diversity with increasing latitude has been
found in several Northern Hemisphere studies, mostly
of benthic organisms (Stehli et al. 1967, Rex et al. 1993,
Roy et al. 1998), results from Southern Hemisphere
studies have been much less convincing (Clarke 1992,
Gray et al. 1997). There is also conflicting evidence
about relationships between species richness and
depth. Although Levington (1995) argues for a general
increase in species richness with depth, reaching a
maximum about the continental slope and declining
thereafter, results from quantitative studies of fish
species richness are generally inconsistent except for
their demonstration of declining richness in abyssal
waters (McClatchie et al. 1997). Similarly, after review-
ing evidence for trends of marine benthic diversity
along depth gradients, Gray (2001) concluded ‘there
is no clear trend in increasing species richness from
coasts to deep sea’. Here we present results of an ana-
lysis of relationships between fish species richness and
a comprehensive set of functionally based environ-
mental predictors, using an extensive set of trawl
data collected from the oceans surrounding New Zea-
land. Our aims were to model species richness with
a method capable of revealing important ecological
relationships, while also producing a map of predicted
species richness that could be used in conservation
planning. 

Boosted regression trees

The majority of our analyses in this study are carried
out using the relatively new statistical technique of
gradient-boosted regression trees (Friedman 2001),
sometimes referred to as stochastic gradient boosting.
Along with other model-averaging (ensemble) meth-
ods, this differs fundamentally from conventional
regression based techniques such as generalised
additive models (GAM – Hastie & Tibshirani 1990).
Whereas the latter seek to fit the single most parsimo-
nious model that best describes the relationship
between a response variable and some set of predic-
tors, ensemble methods fit a large number of relatively
simple models whose predictions are then combined to

give more robust estimates of the response. In boosted
regression trees (BRT) each of the individual models
consists of a simple classification or regression tree,
i.e. a rule-based classifier that partitions observations
into groups having similar values for the response
variable, based on a series of binary rules (splits)
constructed from the predictor variables (Hastie et al.
2001). The boosting algorithm uses an iterative method
for developing a final model in a forward stage-wise
fashion, progressively adding trees to the model, while
re-weighting the data to emphasize cases poorly pre-
dicted by the previous trees. A BRT model can there-
fore be seen as a regression model in which each of the
individual model terms is a simple regression tree
(Friedman et al. 2000). 

Advantages offered by a BRT model include its
ability to accommodate both different types of predic-
tor variables and missing values, its immunity to the
effects of extreme outliers and the inclusion of irrele-
vant predictors, and its facility for fitting interactions
between predictors (Friedman & Meulman 2003).
Fitting of interaction effects is controlled by varying
the size of the individual regression trees. Where the
individual tree terms consist of a single rule con-
structed using just 1 predictor variable, no interaction
effects are fitted, and the final model is likely to
approximate closely one fitted using any conventional
regression technique that allows the fitting of non-
linear responses, e.g. a GAM. However, where the
individual trees consist of 2 or more rules, the function
fitted for any one predictor may vary depending on the
value taken by another predictor, with the potential
complexity of these interaction effects increasing as
the size of the individual tree terms increases.

While these features of a BRT model make it a poten-
tially powerful tool for analysing complex ecological
datasets, it also poses a number of challenges for which
we demonstrate possible solutions. In particular, trees
can continue to be added to a BRT model until, eventu-
ally, all observations are perfectly explained, i.e. the
model becomes over-fitted to the training data. Given
that our objective is to produce a model having a high
level of generality (Hastie et al. 2001), some procedure
is required to identify an optimal number of trees that
maximises the ability of a model to make accurate pre-
dictions to new, independent sites while avoiding
excessive model complexity. Care is also required with
BRT models where the tree size is 2 or greater, be-
cause of their capacity to automatically fit interactions
between predictor variables. Given that such effects
are only fitted where required by the data, and given
the complexity of a BRT model, the contribution of
these interaction effects can be difficult to detect.
In addition, care is required when interpreting the
functions fitted for predictor variables, as their shapes
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can vary dramatically depending on the
values taken by other predictors. 

Given its relatively recent advent, there
are only a few published examples of the
use of boosting (Friedman & Meulman
2003, Kuhnert et al. 2003, Lawrence et al.
2004), particularly with ecological data
(Cappo et al. 2005, Kawakita et al. 2005,
Elith et al. 2006). Because of this we also
fit parallel GAM models, where feasible,
to allow evaluation of the comparative
performance of BRT. GAMs were chosen
for comparison because they are regularly
used in ecology (e.g. Guisan & Zimmer-
man 2000), due to their ability to fit non-
linear relationships between a response
variable and its predictors. This is gener-
ally advantageous when analysing the
complex relationships typically found in
ecological datasets (e.g. Olden & Jackson
2002). 

STUDY AREA AND METHODS

Study area. Although New Zealand has
a relatively small land area, with its off-
shore islands it extends across a wide
latitudinal range (~30 to 55° S, Fig. 1), and
the oceans that surround it encompass a
diverse range of environmental condi-
tions (e.g. Heath 1985, Bradford-Grieve et
al. 1991, in press). The dominant feature
of these waters is the Subtropical Front
(STF), which separates warm, saline and
nutrient-poor waters of subtropical origin
in the north, from colder, low-salinity but
nutrient-rich waters of subantarctic origin
to the south. The STF is deflected to the
south from its normal latitudes by the
New Zealand landmass, but returns to the north imme-
diately east of the South Island, and then to the east
along the Chatham Rise. Strong current flows occur
along this front, particularly along the Southland coast,
and form several relatively stable gyres mostly to the
east of New Zealand (Bradford-Grieve et al. in press).
The continental shelf surrounding New Zealand is
generally narrow, but extensive submarine plateaus
occur to the northwest and southeast. The most promi-
nent and economically important of these is the
Chatham Rise, which extends east from Banks Penin-
sula to the Chatham Islands and forms a bathymetric
anchor for the STF. Deeper abyssal waters occur close
to the south-western coast of the South Island along
the Puysegur Trench, and to the northeast of the North

Island along the Kermadec Trench. Descriptions of the
demersal fish assemblages in these waters are con-
tained in Bull et al. (2001), Kendrick & Francis (2002),
Beentjes et al. (2002) and Francis et al. (2002)

Data. Species richness data used in this analysis
were drawn from an extensive collection of research
bottom trawls carried out over the period from 1979 to
1997 (Francis et al. 2002) and sampling most of the
waters around New Zealand (Fig. 1). To minimise the
effect of variation among vessels and gear types in
species catchability, only data from 3 research vessels
were included (RVs ‘James Cook’, ‘Kaharoa’ and
‘Tangaroa’). A total of 16 946 records were used in the
analysis, after discarding a number of records either
that lacked associated attribute data or for which there
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Fig. 1. Broad features of the oceans surrounding New Zealand. Bathymetric
contours are shown only to a depth of 2000 m. The 500, 1000, 1500 and
2000 m isobaths are given. Locations of trawl sites are indicated by dots,
and the approximate position of the subtropical front (STF) is shown by

diagonal hatching
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was a substantial mismatch between the recorded
trawl depth and the average depth in that general lo-
cation, suggesting inaccurate geo-referencing. Abun-
dances (catch weights) were recorded in the database
for all demersal species occurring in at least of 1% of all
trawls, with a total of 126 species recorded overall, in-
cluding both commercial and non-commercial species.
Species richness was calculated for each trawl by tally-
ing the number of species recorded as present, which
we interpret as a measure of point or alpha-diversity as
defined by Whittaker (1972). 

Eight environmental predictors (Table 1) were
selected for their likely functional relevance to varia-
tion in the distributions of individual fish species, and
hence species richness. Selection of variables was
influenced in part by results from previous analyses of
fish species richness, including one New Zealand
study (McClatchie et al. 1997). The average depth of
each trawl (AvgDepth in Table 1) was included as
a surrogate for the environmental changes that occur
with increasing depth, i.e. increasing pressure, de-
creasing light and temperature, and variation in
salinity. The average depth across all trawls was
537 m, but the distribution of values was bimodal, with

many coastal trawls, a second peak of trawls at around
800 to 900 m, and very few trawls deeper than 1500 m. 

Estimates of the average temperature and salinity on
an annual basis were derived for each trawl location
from the CSIRO Atlas of Regional Seas (CARS – Ridge-
way et al. 2001). As this provides estimates for half-
degree grid cells at fixed depth intervals, we extracted
the relevant depth profile for each trawl site and used
a spline interpolation routine to estimate the tempera-
ture and salinity at the specific depth at which trawling
was carried out. To avoid problems in fitting the subse-
quent richness model arising from strong correlations
among depth, temperature and salinity, we applied
transformations to both temperature and salinity esti-
mates. First, we adjusted our temperature estimates
for depth by fitting a non-linear regression (Fig. 2a)
describing the average relationship between depth
and temperature. We then used the residuals from this
regression as a predictor (TempResid), these indicating
for any site the deviation from the average tempera-
ture expected at its depth. Positive values indicate
waters of subtropical origin and occur at depths down
to approximately 700 to 800 m to the west and north of
New Zealand, but in the east occur only as far south as
the northern flanks of the Chatham Rise (see Fig. 1).
Negative values indicate cool waters of subantarctic
origin and are widespread east of the southern South
Island and on the southern flanks of the Chatham Rise,
also to depths of around 800 m. Similarly, we fitted a
regression relating salinity to both depth (Fig. 2b) and
temperature, and we used the residuals from this (Sal-
Resid ) to describe variation in salinity, given the depth
and temperature at any site. Negative values indicate
lower salinity than expected given the depth and tem-
perature and occur mostly at inshore sites around the
western and southern South Island and the south-
eastern North Island, while positive values occur both
in shallow waters around the Chatham and sub-
antarctic islands, and in deep southern waters around
the margins of the Campbell Plateau. 

Because the distributions of many fish species are
likely to be influenced by overall ecosystem productiv-
ity (e.g. Bakun 1996), we overlaid the locations of trawl
sites onto satellite-image-derived layers describing
concentrations of chlorophyll (chl) a and sea-surface-
temperature gradients. Estimates of chl a concentra-
tion (Chla), which gives a broad indication of primary
productivity, were derived from remotely sensed data
from 6 visible wavebands, collected between Septem-
ber 1997 and July 2001 by the Sea-Viewing Wide-
Field-of-view Sensor (SeaWiFS) (Murphy et al. 2001).
Values in oceanic waters typically range between 0.1
and 0.8 ppm, while those in many coastal waters are
inflated by the confounding effects of suspended
sediments, mainly of terrestrial origin. The data layer
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Variable Derivation Mean (range)

AvgDepth Average depth as 537 m 
recorded during trawling (5–1700)

TempResid Residuals from a GLM 0.0°C 
relating temperature to (–5.3–3.9)
depth using natural splines

SalResid Residuals from a GLM 0.0 psu 
relating salinity to depth (–0.28–0.28)
and temperature using 
natural splines

Chla Satellite-image based estimate  0.579 ppm 
of chl a concentrations (0–4.87)

SstGrad Spatial gradient of mean 0.11ºC km–1

annual sea-surface temperature (0–0.52)

TidalCurr Maximum, depth-averaged 0.19 m s–1

tidal current velocity (0–1.6)

OrbVel Mean orbital velocity, 3.59 m s–1

derived from a wave (1–38.9)
climatology – log10- (after trans-
transformed after formation)
adding a value of 1

Slope Seabed slope derived 0.96°
from bathymetric layer (0–13.3)

Speed Average trawl speed 3.2 knots 
(0.2–5.7)

Dist Trawl distance 2.43 n miles 
(0.1–26.4)

CodEndSize Mesh size of the 75.0 mm 
trawl codend (38–140)

Table 1. Predictors used in the analyses. GLM: Generalised
Linear Model. n miles: nautical miles
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describing variation in sea-surface-temperature gradi-
ents (SstGrad) indicates locations in which frontal
mixing of different water bodies is occurring. It was
derived from estimates of the mean annual sea-surface
temperature as measured from imagery with a spatial
resolution of approximately 9 km, averaged over the
period from 1993 to 1997 (Uddstrom & Oien 1999).
These values were smoothed, and the magnitude of
the spatial gradient for each grid cell was calculated by
centred differencing. 

Two variables were included to assess the effects of
variation in more local scale mixing, predominantly in
coastal waters. The first of these (TidalCurr) describes
maximum depth-averaged flows from tidal currents
and was calculated from a tidal model for New
Zealand waters (Walters et al. 2001). The second (Orb-
Vel) estimates the average mixing at the sea floor as a
consequence of orbital wave action, and it was cal-
culated from a wave climatology derived from a 20 yr
hindcast (1979 to 1998) of swell-wave conditions in the
New Zealand region (Gorman et al. 2003). Bed orbital
velocities were assumed to be zero where the depth is
greater than 200 m. Finally, the sea-floor slope (Slope)
was calculated from a 1 km bathymetry layer using
standard GIS routines, and it was included to allow
testing of the suggestion by McClatchie et al. (1997)
that there is a positive association between slope and
fish diversity. Three variables were used to describe
the trawl characteristics. These were the average trawl
speed (Speed), the distance towed (Dist), and the cod-
end mesh size (CodendSize). 

Model fitting and evaluation. All GAM models were
fitted in S-Plus (v6.1, Insightful) assuming a Poisson
error distribution. All predictors were fitted using
smooth terms with 4 degrees of freedom, and each pre-
dictor was tested for possible simplification of the fitted
function or exclusion from the model. When an initial
model was fitted, the functions for Dist and Codend-
Size were both clearly inconsistent with our knowl-
edge of the behaviour of trawl gear, i.e. maximum spe-
cies richness was predicted to occur at intermediate

values for both variables. By contrast, we expect a
monotonic decrease in richness with progression to
coarse mesh sizes, as these allow smaller species
greater chance of escape, and a monotonic increase in
richness with increasing trawl distance, gradually
reaching a plateau at longer distances. Closer inspec-
tion of the raw data indicated that analysis outcomes
for these 2 predictors were being confounded by the
patchy spatial and environmental distribution of some
mesh sizes and distances. In particular, almost all
trawls using very fine mesh sizes were in shallow
northern waters, where species richness is generally
lower than at comparable depths further south; almost
no trawls were taken in these waters with coarse mesh
sizes. Similarly, the majority of longer trawls were
undertaken in deep environments, where both the
total catch and species richness is generally low. We
therefore refitted the model, specifying the terms for
these variables so that the function fitted for distance
was constrained to allow only a monotonic increase,
and that for cod-end mesh size was constrained to a
monotonic decrease. A second model was then fitted in
which interaction terms were added using a forwards-
step-wise procedure, with candidate terms consisting
of those pair-wise interactions that were frequently fit-
ted in a BRT model allowing for first-order interactions
(see below). 

All BRT models were fitted in R (v2.0.1, www.R-
project.org; R Development Core Team 2004) using the
‘gbm’ library (Ridgeway 2004). Fitting a BRT model
requires specification of 2 main parameters. The learn-
ing rate controls the rate at which model complexity
is increased, with smaller values resulting in the fitting
of a larger number of trees, each of lower individual
influence and generally giving superior predictive
performance in the ensemble model (Friedman 2001).
The size (number of splits) of the individual trees is
controlled by a parameter termed the interaction depth
in the ‘gbm’ library. A value for this parameter of 1
indicates that each tree consists of a single node or
decision rule (a decision ‘stump’), a depth of 2 indicates
that 2 nodes are used in each tree, allowing for 2-way
interactions, and so on. As use of trees with 2 or more
nodes only results in the fitting of interaction effects if
required by the data, we view use of the term ‘inter-
action depth’ as potentially misleading, as even large
trees are capable of fitting simple additive effects. We
therefore prefer to describe this parameter as setting
the ‘tree size’ of the model. Other settings were left at
the defaults recommended in ‘gbm’.

Three BRT models were fitted using a learning rate
of 0.05 and with tree sizes of 1, 2 and 5 respectively. In
each of these models, the fitted function for Dist was
constrained to allow only a monotonic increase, and
that for CodendSize was constrained to a monotonic
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decrease, as for the GAM model. Ten-fold cross-vali-
dation was used to identify the optimal number of trees
to use for each model and to subsequently assess the
predictive performance of both GAM and BRT models
(Hastie et al. 2001). The importance of predictor
variables in BRT models was evaluated using a script
in ‘gbm’ that calculates the contribution to model fit
attributable to each predictor, averaged across all trees
(Friedman 2001, Friedman & Meulman 2003). Purpose-
written scripts were used to graph the fitted functions
from both the GAM and non-interaction BRT models,
with bootstrap re-sampling used to calculate con-
fidence intervals around these fitted functions. We
also wrote scripts to identify important interactions
between predictors in those BRT models fitted with a
depth of 2 and 5, and to calculate and graph values
predicted in relation to major variables, while other
variables were either held constant or varied in steps. 

Predictions in geographic space were made in R
using a set of spatial data describing the environmen-
tal attributes of cells on a 4 km grid across the waters
surrounding New Zealand. Cells with depths greater
than 1600 m were excluded, as were those with
latitudes greater than 54°S, for which satellite-image-
based data were not available. Predictions were
formed using a script available in ‘gbm’, with values
for predictors describing trawl characteristics set at
their respective means in the trawl database. To obtain
an estimate of the error associated with these predic-
tions, we took repeated bootstrap samples, to which
we fitted a BRT model and used this to make a separate
prediction for the spatial data. Once these had been
accumulated we identified the 5- and 95-percentile
values for each grid cell as an estimate of the confi-
dence intervals around our predictions. A detailed
description of all methods used in the fitting and
evaluation of BRT models is provided in Appendix 1.

RESULTS

Non-interaction models of species richness

Species richness averaged 12.7 across all trawls, and
it ranged from a minimum of 0 to maximum of 38. All
variables were retained as significant terms in the
GAM model relating species richness to environment
and trawl characteristics, and the non-interaction BRT
model also made use of all variables. Contributions of
predictors to model fit in the non-interaction BRT
model were greatest for trawl distance and depth,
followed by chl a concentration, temperature, and sea-
surface-temperature gradient (Table 2). Comparable
statistics were not available for the GAM model.
Comparison of the respective performance statistics for

these models indicated that the BRT model had
greater predictive power, explaining 6% more de-
viance than the GAM model when making predictions
for independent sites (Table 3a). 

Relationships fitted by the non-interaction GAM and
BRT models, both of which can be displayed as uni-
variate functions, were broadly similar (Figs. 3 & 4).
They indicated that greatest variation in species rich-
ness occurred with change in depth, trawl distance,
trawl speed and salinity. More muted variation oc-
curred in relation to temperature, salinity and chl a.
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Variable Tree size Average
1 2 5

Dist 32.6 24.8 24.6 27.3
AvgDepth 29.6 24.4 21.5 25.2
Chla 8.7 10.1 11.1 10.0
TempResid 5.0 10.4 12.6 9.3
SstGrad 7.8 6.9 5.7 6.8
CodendSize 5.9 6.2 6.3 6.1
Speed 3.7 5.8 6.2 5.2
SalResid 3.7 5.5 4.9 4.7
TidalCurr 1.4 2.2 2.8 2.1
Slope 0.7 2.3 2.6 1.9
OrbVel 0.9 1.3 1.7 1.3

Table 2. Contributions of predictor variables to boosted
regression tree (BRT) models relating demersal fish species
richness to environment and trawl characteristics, using
varying tree sizes. Variables are sorted in order of decreasing 

contribution, averaged across the 3 models

Method Comp- No. of Model Cross- D2

lexity trees residual validated  
deviance residual

deviance (SE)

(a) GAM 1 – 1.630 1.637 (0.074) 0.45
BRT 1 1312 1.524 1.558 (0.021) 0.48

(b) GAM 2 – 1.420 1.456 (0.063) 0.51
BRT 2 3476 1.142 1.281 (0.014) 0.57

(c) BRT 5 1252 1.000 1.195 (0.021) 0.60

Table 3. Predictive performance of GAM (generalised addi-
tive model) and BRT models relating demersal fish species
richness to environment and trawl characteristics. Table val-
ues indicate, for each model method: degree of complexity
(1 = no interaction, 2 = 10 pair-wise interactions for GAM
model, and a tree size of 2 for BRT model, and 5 = tree size
of 5 for BRT models only); the number of trees fitted (boosted
models); the mean residual deviance of the model; the mean
residual deviance and its SE, calculated using 10-fold cross-
validation repeated 5 times (Appendix 1); and the cross-
validated proportion of the total deviance explained (D2).

The mean deviance for a null model is 2.971
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Predicted species richness had an approximately bell-
shaped relationship with depth, with high values
occurring over a wide range of intermediate depths
(ca. 400 to 1100 m) that are of average temperature and
less saline than expected, given their depth. High
species richness was predicted for waters with chl a
concentrations of around 0.8, a value typical of oceanic
sites of high primary productivity, e.g. along the
Chatham Rise. A second peak of richness at sites with
chl a concentrations of 4 to 5 should be regarded with
caution, given the problems with suspended sediments
described earlier, a feature that is reflected in the wide
confidence limits. Higher richness was predicted for
waters with moderate spatial gradients in sea-surface
temperature, i.e. where mixing of different water

masses is occurring, mostly along the STF.
Species richness was predicted to show a
slight decline as tidal currents and orbital
velocities increase. While both models
showed similar predictions of declining
species richness with increasing trawl
speed, they differed subtly in the nature
of the constrained functions fitted for Dist
and CodendSize. 

Interaction models of species richness

Addition of simple interaction terms
improved both the deviance explained
and the predictive performance of the
GAM and BRT models by 13 and 19%,
respectively, compared to the non-inter-
action models (Table 3b), indicating the
importance of interactions between pre-
dictor variables in explaining variation in
species richness in this dataset. While
only second-order interactions could be
added to the GAM model, expansion of
the BRT model to allow a tree size of 5
brought about a further increase in per-
formance compared with the boosted
model using a tree size of 2 (Table 3c).
Given this superior performance, we
focus on results from the BRT interaction
model with a tree size of 5 for the remain-
der of this paper.

With progression to a tree size of 5, the
contributions of predictor variables al-
tered subtly (Table 2), with trawl distance
and depth declining in importance and
the contributions of several other variables
increasing, particularly those for chl a and
temperature. These latter changes pre-
sumably reflected the more frequent in-

clusion of these variables in the more complex individ-
ual regression trees fitted by this interaction model.
The strongest interaction effects involved the predic-
tors AvgDepth and TempResid, AvgDepth and Chla,
AvgDepth and SstGrad, and AvgDepth and Codend-
Size. Although relationships between species richness,
environment and trawl characteristics predicted by the
depth 5 BRT model were broadly similar to those pre-
dicted from the non-interaction models (e.g. Fig. 4),
they showed greater subtlety, which reflected the
inclusion of interaction effects. In general, richness
was predicted to increase with depth from about 15
species at 100 m to a maximum of about 22 at depths of
around 1000 m but declined steeply thereafter (Fig. 5).
However, the fitting of interaction effects resulted in
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Fig. 3. Variation in demersal fish species richness predicted by a non-
interaction GAM model using environment and trawl characteristics as
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the relationship between species richness and depth
varying with temperature – for deep trawls, richness
predicted for cold waters was approximately 20%
lower than for trawls from waters with average or
warm temperatures, but in shallow waters this trend
reverses, with richness predicted to be up to 50%
higher in cool (southern) waters than in warm
(northern) waters (Fig. 5a). Similarly, species richness
was predicted to be higher in waters of lower-than-
expected salinity (Fig. 5b), where it also showed a
more pronounced peak of maximum richness at depths
of around 800 m. Predicted species richness also
increased with increasing chl a concentrations (Fig. 5c),
although interaction effects resulted in this response
being muted in shallow waters. Finally, richness was
predicted to be higher in areas of mixing of different
water bodies, as indicated by high values for SstGrad

(Fig. 5d), but again this was pronounced
only in depths greater than 400 m. 

The constrained function fitted for trawl
distance by this model indicated a gradual
increase in richness up to a distance of
about 3 km, after which it effectively
reached a plateau (Fig. 6a). Similarly, rich-
ness was predicted to remain relatively
constant across a range of finer mesh
sizes, but was predicted to be lower with
mesh sizes of 100 mm of more (Fig. 6b).
Highest species richness was associated
with intermediate trawl speeds (Fig. 6c),
and the decline in richness with increasing
speed is greater in deeper than in shallow
water. 

Spatial predictions of species richness

Spatial predictions derived from the BRT
model with a tree size of 5 and using envi-
ronment and trawl characteristics as pre-
dictors, are shown in Fig. 7a, along with an
estimate of uncertainty (the width of the
5 to 95% confidence intervals estimated us-
ing bootstrap re-sampling, Fig. 7b). While
the predicted species richness ranged from
3.9 to 33 species per  trawl, estimated con-
fidence interval widths were 3 or less over
approximately 80% of the area for which
predictions are made, but reached moder-
ate levels of uncertainty (3 to 5) both in
shallow waters around the South Island
and southern North Island coast, and to-
wards the shelf slope in the north. Wide
confidence intervals occurred mostly in
offshore regions that are inadequately

sampled (cf. Figs. 1 & 7b), e.g. steep slopes around the
margins of the Campbell and Bounty plateaus, on the
Challenger Plateau, off the northeast North Island, and
along the Kermadec and Norfolk ridges. 

In geographic terms, highest species richness was
predicted to occur along the northern flanks of the
Chatham Rise and around the northern end of the
Solander Trough (Fig. 7a). These are locations that
combine depths of 800 to 1000 m with high primary
productivity associated with the mixing of subtropical
and subantarctic waters along the subtropical front.
High richness was also predicted for Tasman Bay, and
a narrow strip of water around the continental slope off
the coast of Westland, Otago, and from Kaikoura north
along the east coast of New Zealand to the Bay of
Plenty. Moderately high species richness was pre-
dicted for large areas with depths between 500 m and
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1000 m on the Chatham Rise and Challenger Plateau,
but richness was predicted to decrease with progres-
sion to greater depths, averaging a little over 6 species
per trawl at depths of 1500 m across a wide geographic
range. However, in the shallow waters of the continen-
tal shelf there was a little more variation, with lower
richness predicted for waters north of about 38° S than
for the continental-shelf waters around the east and
south of the South Island. Richness predicted for the
shallow waters around the subantarctic islands was
low, while the shallow waters around the Chatham
Islands were predicted to have similar richness to those
around central New Zealand. 

DISCUSSION

Links between species richness and environment

Our results indicate that there is a high level of pre-
dictability in the relationship between demersal fish
species richness and environment , with depth, factors
related to productivity, and temperature (both as tem-
perature anomalies and as SST gradient) identified as
the most important predictors. Depth is the strongest
predictor of species richness, with predicted richness
peaking at mid depths (800 to 1000 m) before tailing off
in abyssal waters, a pattern that is consistent both with
results from several site-specific studies elsewhere (e.g.
Colloca et al. 2003) and with the more general descrip-
tion of Levington (1995). However, at any given depth
there is a strong positive association between species
richness and primary productivity, with maximum
richness concentrated in the zone of high productivity
associated with the mixing of waters of subtropical and
subantarctic origins along the STF. Surface concentra-
tions of chl a had the second highest environmental
contribution to overall model outcomes (ignoring trawl
characteristics). These are closely linked to primary
productivity, and there are also strong functional links
between surface primary productivity and biological
activity at the sea floor through the episodic deposition
of particulate material. This is demonstrated in studies
both in the waters surrounding New Zealand, including
the Chatham Rise (e.g. Nodder et al. 2003), and in other
global locations (e.g. Honjo et al. 1995, Beet et al. 2001).
In addition, declines in the amount of particulate matter
reaching the sea floor in abyssal regions have been
suggested as a likely explanation of the declines in
species richness there (Gray 2002). 

Regional-scale variation in salinity played a more
muted role, as indicated by the smaller contributions of
the residuals that describe departures from the overall
average relationship with depth. Depth-independent
variation in temperature and salinity mostly occurs in

waters of shallow-to-moderate depth away from the
STF, and these variables provide broad discrimination
between waters of subtropical and subantarctic ori-
gins. Results indicate that richness is generally lower
in warmer and/or more-saline waters than in cooler
less-saline waters, provided that the latter occur in
reasonable proximity to zones of water mixing. Similar
differences in regional-scale richness were described
for meso-pelagic organisms in the waters north and
south of the STF by Robertson et al. (1978). 

A positive association is also indicated between
species richness and zones of mixing of water bodies of
contrasting origins, with the variable describing sea-
surface-temperature gradients making the fourth-high-
est contribution to model outcomes. In functional terms
we interpret this as reflecting the important role these
zones play in the concentration of nutrients, productiv-
ity and food resources (e.g. Bakun 1996). However, cur-
rents also play a role in the horizontal displacement of
organic particles during their vertical descent from the
surface to the sea floor, which may result in the deposi-
tion of food resources at locations away from sites of
high surface primary production (Nodder et al. 2003). 

Relationships between slope and species richness
suggested by McClatchie et al. (1997) are not sup-
ported by the results from our analysis. In fact, variables
describing slope, tidal currents and wave-induced
seabed stress had a low contribution overall, and our
models consistently predicted a decline in species rich-
ness at sites with steeper slopes. However, this latter re-
sult should be regarded with caution, as few samples
were available from areas with higher slopes, and vari-
ation in substrate has been shown to be an important
correlate of varying fish diversity in other studies (e.g.
Kendall et al. 2004). In addition, slope probably has
only limited ability to act as a surrogate for habitat vari-
ation, and while it is easily calculated, inclusion of a
variable explicitly describing variation in seabed con-
ditions would have been preferable had reliable data
been available across the entire study region.

Spatial variation in species richness

Our analyses revealed large-scale spatial variation
in demersal fish species richness in the New Zealand
region (Fig. 7). To the extent that comparisons are pos-
sible, the patterns we observed were consistent with
those from previous, smaller-scale studies in the same
region. This is perhaps not surprising given that the
earlier studies used some of the same research trawl
data that we used. McClatchie et al. (1997) analysed
shelf and slope richness from 80 to 898 m depth and
43 to 54° S (Chatham Rise to Campbell Plateau). They
found that species-richness ‘hotspots’ were concen-
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trated on the Chatham Rise (particularly the north
Chatham Rise) and ‘coldspots’ were concentrated on
the Campbell Plateau. They also noted that richness
increased with depth to reach a maximum at 500 to
1000 m. In a further study focusing solely on the
Chatham Rise, Bull et al. (2001) observed that mean
species richness peaked at 550 to 800 m on the north
Chatham Rise, and was lower on the south Chatham
Rise, and in depths between 200 and 550 m. Beentjes
et al. (2002) reported conflicting depth-related trends
in species richness between summer surveys (richness
increased with depth) and winter surveys (richness de-
creased with depth) of Canterbury Bight, but as their
study covered limited latitudinal and depth ranges (43
to 46° S and 10 to 400 m respectively), the observed
patterns may reflect small-scale seasonal migrations. 

In a larger-scale study covering latitudes 35 to 47° S,
Tracey et al. (2004) compared species richness be-
tween seamounts and adjacent areas of lower-relief
seabed. Seamounts showed increasing fish species
richness with increasing latitude, with the 3 highest
mean richness values being recorded for Chatham Rise
seamounts (2 sites) and Puysegur Bank (near Solander
Trough, see Fig. 1); both these areas were identified in
our study as having high species richness. Tracey et al.
(2004) also reported that richness was higher at the
adjacent sites than on the seamounts themselves, but
their analysis was confounded by other uncontrolled
variables, including depth and distance towed. 

Our results therefore agree well with those previ-
ously reported, but we extend the analysis of fish
species richness in the New Zealand region to span 25
degrees of latitude (29 to 54° S) with a high degree of
spatial resolution, taking into account a wide range of
environmental and operational variables. Neverthe-
less, our predictions of richness in some areas having
few or no trawl stations (notably the submarine ridges
north of 34° S and steep slopes around the margins
of the Campbell and Bounty plateaus) have wide
confidence intervals and require validation.

Use of environmental versus geographic predictors

Our focus on use of environmental predictors for this
study contrasts with practices adopted in a number of
other recent studies of demersal fish distribution, in
which geographic variables such as latitude and longi-
tude are used as predictors, often in combination with
environment. This was prompted by the understand-
ing of the relative utility of environmental and geo-
graphic predictors developed in terrestrial plant eco-
logy (e.g. Austin 2002), which demonstrates that the
contribution of geographic predictors, such as latitude
and elevation, is largely derived from their correlations

with more proximate physical drivers of biological
phenomena. However, we suggest that the utility of
latitude as a geographic proxy in marine studies is
likely to be low because of its generally lower levels of
correlation with environmental variation. While latitu-
dinal gradients in environment, and particularly irradi-
ance, clearly play a significant role at the ocean sur-
face, correlations between latitude and environment
generally decrease with progression to greater depths.
Here, spatial variation in environmental conditions is
frequently complicated by oceanographic processes
such as the long-distance movement of water bodies of
contrasting temperature and salinity, and the collision
of these water bodies produces marked environmental
discontinuities (e.g. Bradford-Grieve et al. in press).
As a consequence, latitudinal sorting becomes in-
creasingly blurred with progression to greater depths
because of the increasing degree of disconnection
with surface environmental conditions, and in abyssal
waters environmentally homogeneous conditions fre-
quently prevail across wide latitudinal ranges. 

We argue therefore that analytical approaches based
on functionally relevant environmental factors are
crucial in developing a better understanding of geo-
graphic variation in species richness, particularly in
the Southern Hemisphere, where oceanic circulation is
less impeded by extensive landmasses and marked
environmental discontinuities are common. However,
we also acknowledge that evolutionary influences on
variation in species richness are more likely to operate
primarily in geographic rather than in environmental
space, and these may be important, particularly in
analyses conducted over wider geographic ranges
than that for this analysis. The detection of such effects
is likely to require the development of analyses that
allow for a careful partitioning of the relative roles of
both environment and geography. 

Variation with trawl characteristics

Various approaches have been adopted in other stud-
ies to accommodate the effects of differences in the
fishing characteristics between vessels, including seg-
regation of data by vessel (e.g. McClatchie et al. 1997),
use of fishing power coefficients and/or categorical de-
scriptors of gear type (e.g. Muetter & Norcross 2002),
and use of generalised linear mixed models (GLMM)
to adjust for the effects of between-vessel differences
(e.g. Cooper et al. 2004). Our approach was relatively
simplistic compared to these latter two, and ideally we
would have calculated the area swept for each trawl,
but this was not feasible given the amount of missing
data for key trawl parameters. Even though this was not
possible, our use of predictors describing trawl dis-
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tance, cod-end mesh size and trawl speed contributed
substantially to the analysis outcome, with the first of
these variables explaining nearly 25% of the variation
in the most successful model of species richness.

Our initial analyses, which gave results for cod-end
mesh size and trawl distance that were clearly incon-
sistent with the behaviour of trawl sampling, highlight
the care required in analysing large datasets assem-
bled from disparate sources. Inspection of the geo-
graphic distribution of trawls using various mesh sizes
and distances indicated that these discrepancies are
much more likely to have resulted from the very
uneven distribution of variation in these predictors
with respect to both environment and geography.
While regularizing the models to allow only the fitting
of monotonic functions reduced the total amount of
deviance explained (data not presented), we argue
that it allowed a more accurate description of the rela-
tionship between richness and environment.

Including a variable describing the year in which
trawling occurred would have also been desirable,
particularly given the potential to use such an analysis
to assess both the long-term impacts of sustained
harvesting and the impacts of environmental variation
associated with factors such as the El Niño–Southern
Oscillation, which has a substantial effect on some
aspects of the oceans around New Zealand (e.g.
Livingston 2000). However, this was frustrated by 2
factors. First, there is marked variation in the spatial
sampling by trawls in different years; systematic cover-
age is never achieved in any particular year, and
several regions have been intensively sampled in only
1 or a few years. Second, an exploratory model fitted
using year as a predictor indicated a slight but grad-
ual increase in richness with time, a result that we
attribute not only to the greater frequency of trawls in
deeper waters in later years, but also to an increase in
taxonomic knowledge of demersal fish and a greater
interest in non-commercial species. Such an effect was
also noted by Shackell & Frank (2003) in their analysis
using a trawl database in which sampling extended
over a lengthy period. While this result does not pre-
clude future use of trawl data to monitor changes in
fish species richness, it highlights the need for consis-
tency of data collection in any ongoing trawl surveys
likely to be used for long-term monitoring.

Analytical considerations

Results from our analysis provide a clear demonstra-
tion of the ability of BRT to outperform substantially
conventional regression models such as GAMs. The
progressive improvement in the relative performance
of BRT as the size of the individual trees is increased

indicates that several factors contribute to this
improvement. First, the performance gains in BRT
models fitted with a tree size of 1 (= no interaction
effects) suggests that this method has greater flexibil-
ity in describing data complexities than in a GAM. This
probably reflects the effectiveness of the strategy used
in boosting, i.e. fitting successive models that are pro-
gressively adapted to explain cases poorly predicted
by the preceding models, compared with the approach
used in a GAM of fitting a single most parsimonious
model. As a caution though, we note that the discrep-
ancies between these 2 models may also reflect the
greater ease with which a monotone function could
be specified in the BRT model, as standard GAM
and boosted models fitted without such restrictions
matched each other in predictive performance much
more closely. Second, the greater performance gains in
the BRT model fitted with a tree size of 2 compared
with the interaction GAM model suggest that boosting
offers flexibility in interaction fitting that is far more
practical than the fitting of interactions in a GAM. A
wide range of interactions were automatically identi-
fied and fitted, whereas the manual fitting of inter-
actions in the comparable GAM model was both
tedious and computationally constrained. Finally, the
BRT model using a tree size of 5 delivered further im-
provements in predictive performance, fitting a wide
array of interactions in a manner not achievable with a
GAM or similar model. Results from this model sug-
gested a continued rise in ecological interpretability,
particularly with respect to the relationship between
species richness and depth, which varied depending
on values taken by other variables. 

CONCLUSION

Our analysis indicates that, while there are strong
associations between species richness and depth, high
species richness is also associated with areas of high
primary productivity, as indicated both by surface chl a
concentrations and zones of mixing of water bodies of
contrasting origin associated with the Subtropical
Front. Use of results such as these as a baseline for
longer-term monitoring of the status of New Zealand’s
oceanic resources is feasible, but it would probably
require consideration of the effects of inter-annual
variation in environment, as well as long-term means.
Boosted regression trees appear to offer considerable
performance gains over conventional regression tech-
niques, and a large part of this gain is attributable to
their capability for fitting interactions among predictor
variables. However, because of their tendency to over-
fit, care should be exercised both in fitting such models
and in reporting on their success. 
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Appendix 1. Robust fitting and evaluation of BRT models

This appendix describes methods developed to allow the ro-
bust fitting of BRT models, reflecting both the challenges posed
by their propensity to over-fit and the potential gains they offer
given their automatic fitting of interactions between predictor
variables. Several of these techniques reflect our belief that
evaluation of model performance using the data used to fit the
model is misleading. Even though many models can be made to
perform well on their training data, the danger is that they over-
fit to specific features of that data that lack applicability in a
wider sample, degrading model performance when predicting
to new sites. We prefer to assess model performance using in-
dependent sites, and this can be achieved using a number of
strategies. Partitioning the data into separate modelling and
evaluation subsets is one alternative, although it involves a loss
of information, particularly with smaller datasets. While we
used this for initial testing, for most of our model fitting and
evaluation we used k-fold cross-validation (e.g. Hastie et al.
2001) or bootstrap re-sampling (e.g. Efron & Tibshirani 1993).
These alternative approaches allow the use of all available in-
formation, while using subsets of the data to estimate model
performance when predicting to independent sites.

Choice of learning rate

To establish a suitable value for the learning rate used in
fitting BRT models, we carried out an initial evaluation of the
relationship between learning rate and model predictive per-
formance with a script that used standard options in the ‘gbm’

library functions. We achieved this by fitting a series of models
to randomly selected subsets of 70% of the available data, with
trees successively added until no further improvement in pre-
diction could be detected when predicting to the 30% of the
data that were withheld. Models were fitted with learning rates
of 0.5, 0.1, 0.05, 0.01 and 0.005, with the number of trees fitted
increasing steadily as the learning rate was decreased. Results
indicated a progressive improvement in prediction perfor-
mance as the learning rate decreased from 0.5 to 0.05, with the
latter value typically resulting in 800 to 1000 trees being fitted.
Use of learning rates smaller than 0.05 not only brought about
minimal improvement in predictive performance, but also
increased substantially the computational requirements.

Setting model complexity

Because of the risks of over-fitting when using BRT, we
explored a number of options for identifying the optimal
number of trees to include in a model, including options
provided as part of the ‘gbm’ library. The method we identi-
fied as the most consistent and computationally efficient was
based on a k-fold cross-validation procedure described by
Hastie et al. (2001, Chap. 7), which we implemented using
a purpose written script.

In this procedure, the data available for model fitting were
first divided into 10 mutually exclusive subsets, selected
using a randomisation procedure. Ten models were then fit-
ted simultaneously, each using a different subset of the total
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data (= training data) containing 90% of the total data set,
and formed by omitting 1 of the 10 subsets. A step-wise pro-
cedure was then used to gradually increase the complexity
of all 10 models, typically by adding groups of 100 trees. At
each step, predictions were formed from each model for the
10% subset of data omitted from its training data (= evalua-
tion data), and the residual deviance was calculated to com-
pare the goodness of fit between the model predictions and
the species richness as recorded in the evaluation data. 

Results typically indicated an initial decline in prediction
error (residual deviance) as more trees were added, but with
most models a point was eventually reached where, even
though the training error continued to decline, the prediction
error would begin to rise as the model became excessively
adapted to the training data, i.e. over-fitting occurred. At this
point the mean prediction errors and their standard errors (es-
timated from the 10 subsets) were plotted as a function of the
number of trees fitted (Fig. A1), and this graph was used to de-
termine the lowest number of trees giving a prediction error
equal to or less than 1 SE above the best model (see Hastie et al.
2001). This number of trees was then used in a model fitted to
the entire dataset with the required learning rate and tree size. 

Assessing model performance

The performance of both GAM and BRT models was evalu-
ated using k-fold cross-validation to estimate their predictive
ability with new data. Using a procedure similar to that used to
estimate the optimal tree size for the BRT models, we wrote a
script in which the input data were divided into 10 mutually
exclusive subsets that were omitted in turn. At each iteration,
a model was fitted to the retained data, predictions were made
for the omitted data, and the residual deviance was calculated
as a measure of the correspondence between measured and
predicted richness. The mean and standard error were then
calculated for each of these 10 estimates of predictive perfor-
mance. Because results from k-fold cross-validation can vary
depending on the random selection of points for the folds, this
procedure was repeated 5 times for each model, and overall
means were calculated for the mean prediction error and its
standard error.

Display of fitted functions

Relationships between species richness and environment
fitted by the both the GAM and BRT models were displayed
by plotting the fitted relationship for each individual predic-
tor. Values for plotting were calculated by setting values for
all but 1 predictor to their mean. Predictions were then
formed for points along the range of the remaining variable
using a purpose written script. As a BRT model provides no
estimate of the confidence intervals around these fitted
functions, we estimated these by taking 1000 bootstrap sam-
ples of the input data, i.e. a sample of equivalent size to the
trawl dataset, but selected randomly with replacement A
GAM or BRT model was fitted to each sample, and predic-
tions were formed for each predictor and accumulated. Five
and 95 percentile values were calculated for points along the
range of each function from the accumulated values. The
complexity of interactions fitted by the BRT models with tree
size greater than 1 made display of their fitted relationships
more challenging, as these can vary depending on the val-

ues assigned to other predictors. We therefore wrote our
own scripts in R to calculate and graph values predicted in
relation to major variables, while other variables were either
held constant or varied in steps.

Detection and interpretation of interactions

For BRT models with tree size greater than 1, we assessed
the magnitude of interaction effects using a purpose-written
script that examined the relationship between the model
predictions and all possible pair-wise combinations of
predictors. This was achieved by selecting each possible
pair-wise combination of predictors in turn. For each pair of
predictors, 2 variables (x1, x2) were created that consisted of
values at constant intervals along the ranges of the 2 pre-
dictors, and predictions on the linear predictor scale (y ’)
were calculated from the BRT model for all possible combi-
nations of these. In making these predictions, values for the
remaining predictors were set at their mean for the dataset.
We then used a linear model to relate these predicted values
to the values of the 2 marginal variables, i.e. y ’ ~ x1 + x2, with
the 2 predictor variables fitted as factors. Where the pre-
dicted values are formed by a purely additive combination
of the 2 predictors, this regression object will have zero
residual variance. However, as stronger interaction effects
for the 2 predictors are fitted in the BRT model, so the
variance in y ’ left unexplained by the test linear model
increases. Thus the amount of residual variance in the test
linear model can be used as a direct indication of the
strength of the interaction effect fitted by the BRT model for
that pair of predictors.
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Fig. A1. Relationship between model complexity and pre-
dictive error for a boosted regression tree model relating
species richness to environment and trawl characteristics
calculated using a 10-fold cross-validation procedure. Cir-
cles indicate the mean predictive error averaged across
10 iterations for each level of model complexity, with
standard errors indicated by vertical lines. Dashed hori-
zontal line indicates the minimum mean predictive error
plus 1 SE, and the vertical dashed line indicates the model
complexity with predictive error equal to the minimum

predictive error plus 1 SE
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