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Lasso: β̂(λ) = argminβ

∑N

i=1(yi − β0 − xT
i β)2 + λ||β||1
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History

• In 2001 the LARS algorithm (Efron et al) provides a way to

compute the entire lasso coefficient path efficiently at the cost

of a full least-squares fit.

• Efficient path algorithms allow for easy and exact

cross-validation and model selection.

• 2001 – present: path algorithms pop up for a wide variety of

related problems: grouped lasso, support-vector machine,

elastic net, quantile regression, logistic regression and glms,

Cox proportional hazards model, Dantzig selector, ...

• Many of these do not enjoy the piecewise-linearity of LARS,

and sieze up on very large problems.
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Coordinate Descent

• Solve the lasso problem by coordinate descent: optimize each

parameter separately, holding all the others fixed. Updates are

trivial. Cycle around till coefficients stabilize.

• Do this on a grid of λ values, from λmax down to λmin

(uniform on log scale), using warms starts.

• Can do this with a variety of loss functions and additive

penalties.

Coordinate descent achieves dramatic speedups over all

competitors, by factors of 10, 100 and more.
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Speed Trials

Competitors:

lars As implemented in R package, for squared-error loss.

glmnet Fortran based R package using coordinate descent — topic

of this talk. Does squared error and logistic (2- and K-class).

l1logreg Lasso-logistic regression package by Koh, Kim and Boyd,

using state-of-art interior point methods for convex

optimization.

BBR/BMR Bayesian binomial/multinomial regression package by

Genkin, Lewis and Madigan. Also uses coordinate descent to

compute posterior mode with laplace prior—the lasso fit.

Based on simulations (next 3 slides) and real data (4th slide).
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Linear Regression — Dense Features

Average Correlation between Features
0 0.1 0.2 0.5 0.9 0.95

N = 5000, p = 100

glmnet 0.05 0.05 0.05 0.05 0.05 0.05

lars 0.29 0.29 0.29 0.30 0.29 0.29

N = 100, p = 50000

glmnet 2.66 2.46 2.84 3.53 3.39 2.43

lars 58.68 64.00 64.79 58.20 66.39 79.79

Timings (secs) for glmnet and lars algorithms for linear regression with

lasso penalty. Total time for 100 λ values, averaged over 3 runs.
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Logistic Regression — Dense Features

Average Correlation between Features
0 0.1 0.2 0.5 0.9 0.95

N = 5000, p = 100

glmnet 7.89 8.48 9.01 13.39 26.68 26.36

l1lognet 239.88 232.00 229.62 229.49 223.19 223.09

N = 100, p = 5000

glmnet 5.24 4.43 5.12 7.05 7.87 6.05

l1lognet 165.02 161.90 163.25 166.50 151.91 135.28

Timings (seconds) for logistic models with lasso penalty. Total time for

tenfold cross-validation over a grid of 100 λ values.
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Logistic Regression — Sparse Features

0 0.1 0.2 0.5 0.9 0.95

N = 10, 000, p = 100

glmnet 3.21 3.02 2.95 3.25 4.58 5.08

BBR 11.80 11.64 11.58 13.30 12.46 11.83

l1lognet 45.87 46.63 44.33 43.99 45.60 43.16

N = 100, p = 10, 000

glmnet 10.18 10.35 9.93 10.04 9.02 8.91

BBR 45.72 47.50 47.46 48.49 56.29 60.21

l1lognet 130.27 124.88 124.18 129.84 137.21 159.54

Timings (seconds) for logistic model with lasso penalty and sparse

features (95% zeros in X). Total time for ten-fold cross-validation over a

grid of 100 λ values.
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Logistic Regression — Real Datasets

Name Type N p glmnet l1logreg BBR

BMR

Dense

Cancer 14 class 144 16,063 2.5 mins NA 2.1 hrs

Leukemia 2 class 72 3571 2.50 55.0 450

Sparse

Internet ad 2 class 2359 1430 5.0 20.9 34.7

Newsgroup 2 class 11,314 777,811 2 mins 3.5 hrs

Timings in seconds (unless stated otherwise). For Cancer, Leukemia and

Internet-Ad, times are for ten-fold cross-validation over 100 λ values; for

Newsgroup we performed a single run with 100 values of λ, with

λmin = 0.05λmax.
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A brief history of coordinate descent for the lasso

1997 Tibshirani’s student Wenjiang Fu at U. Toronto develops the

“shooting algorithm” for the lasso. Tibshirani doesn’t fully

appreciate it.

2002 Ingrid Daubechies gives a talk at Stanford, describes a

one-at-a-time algorithm for the lasso. Hastie implements it,

makes an error, and Hastie +Tibshirani conclude that the

method doesn’t work.

2006 Friedman is external examiner at PhD oral of Anita van der

Kooij (Leiden) who uses coordinate descent for elastic net.

Friedman, Hastie + Tibshirani revisit this problem. Others

have too — Krishnapuram and Hartemink (2005), Genkin,

Lewis and Madigan (2007), Wu and Lange (2008), Meier, van

de Geer and Buehlmann (2008).
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Coordinate descent for the lasso

minβ
1

2N

∑N

i=1(yi −
∑p

j=1 xijβj)
2 + λ

∑p

j=1 |βj |

Suppose the p predictors and response are standardized to have

mean zero and variance 1. Initialize all the βj = 0.

Cycle over j = 1, 2, . . . , p, 1, 2, . . . till convergence:

• Compute the partial residuals rij = yi −
∑

k 6=j xikβk.

• Compute the simple least squares coefficient of these residuals

on jth predictor: β∗
j = 1

N

∑N

i=1 xijrij

• Update βj by soft-thresholding:

βj ← S(β∗
j , λ)

= sign(β∗
j )(|β∗

j | − λ)+

(0,0)
PSfrag replacements

|β̂(M)|

λ
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Why is coordinate descent so fast?

Naive Updates: β∗
j = 1

N

∑N

i=1 xijrij = 1
N

∑N

i=1 xijri + βj , where

ri is current model residual; O(N). Many coeficients are zero,

and stay zero. If a coefficient changes, residuals are updated in

O(N) computations.

Covariance Updates:
∑N

i=1 xijri = 〈xj , y〉 −
∑

k:|βk|>0〈xj , xk〉βk

Cross-covariance terms are computed once for active variables

and stored (helps a lot when N � p).

Sparse Updates: If data is sparse (many zeros), inner products

can be computed efficiently.

Active Set Convergence: After a cycle through p variables, we

can restrict further iterations to the active set till convergence

+ one more cycle through p to check if active set has changed.

Helps when p� N .
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Warm Starts: We fits a sequence of models from λmax down to

λmin = ελmax (on log scale). λmax is smallest value of λ for

which all coefficients are zero. Solutions don’t change much

from one λ to the next. Convergence is often faster for entire

sequence than for single solution at small value of λ.

FFT: Friedman + Fortran + Tricks — no sloppy flops!
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Binary Logistic Models

Newton Updates: For binary logistic regression we have an outer

Newton loop at each λ. This amounts to fitting a lasso with

weighted squared error-loss. Uses weighted soft thresholding.

Multinomial: We use a symmetric formulation for multi- class

logistic:

Pr(G = `|x) =
eβ0`+xT β`

∑K

k=1 eβ0k+xT βk

.

This creates an additional loop, as we cycle through classes,

and compue the quadratic approximation to the multinomial

log-likelihood, holding all but one classes parameters fixed.

Details Many important but tedious details with logistic models.

e.g. if p� N , cannot let λ run down to zero.
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Elastic-net Penalty

Proposed in Zou and Hastie (2005) for p� N situations, where

predictors are correlated in groups.

Pα(β) =

p
∑

j=1

[

1
2
(1− α)β2

j + α|βj |
]

.

α creates a compromise between the lasso and ridge.

Coordinate update is now

βj ←
S(β∗

j , λα)

1 + λ(1− α)

where β∗
j = 1

N

∑N

i=1 xijrij as before.
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Elastic Net − alpha=0.4
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Ridge Regression

Leukemia Data, Logistic, N=72, p=3571, first 10 steps shown
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Multiclass classification

Microarray classification: 16,063 genes, 144 training samples 54 test

samples, 14 cancer classes. Multinomial regression model.

Methods CV errors Test errors # of

out of 144 out of 54 genes used

1. Nearest shrunken centroids 35 (5) 17 6520

2. L2-penalized discriminant analysis 25 (4.1) 12 16063

3. Support vector classifier 26 (4.2) 14 16063

4. Lasso regression (one vs all) 30.7 (1.8) 12.5 1429

5. K-nearest neighbors 41 (4.6) 26 16063

6. L2-penalized multinomial 26 (4.2) 15 16063

7. Lasso-penalized multinomial 17 (2.8) 13 269

8. Elastic-net penalized multinomial 22 (3.7) 11.8 384

6–8 fit using glmnet
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Summary

Many problems have the form

min
{βj}

p
1



R(y, β) + λ

p
∑

j=1

Pj(βj)



 .

• If R and Pj are convex, and R is differentiable, then coordinate

descent converges to the solution (Tseng, 1988).

• Often each coordinate step is trivial. E.g. for lasso, it amounts

to soft-thresholding, with many steps leaving β̂j = 0.

• Decreasing λ slowly means not much cycling is needed.

• Coordinate moves can exploit sparcity.
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Other Applications

• Undirected graphical models — learning dependence structure

via the lasso. Model the inverse covariance in the Gaussian

family with L1 penalties applied to elements. Modified lasso

algorithm, which we solve by coordinate descent (FHT 2007).

• Grouped lasso (Yuan and Lin, 2007, Meier, Van de Geer,

Buehlmann, 2008) — each term Pj(βj) applies to sets of

parameters:
J

∑

j=1

||βj ||2.

Leads to a block-updating form of coordinate descent.

• CGH modeling and the fused lasso. Here the penalty has the
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form
p

∑

j=1

|βj |+ α

p−1
∑

j=1

|βj+1 − βj |.

This is not additive, so a modified coordinate descent

algorithm is required (FHT + Hoeffling 2007).


