Statistical Learning with Big Data

Trevor Hastie
Department of Statistics Department of Biomedical Data Science Stanford University

Thanks to Rob Tibshirani for some slides

Some Take Home Messages

This talk is about supervised learning: building models from data that predict an outcome using a collection of input features.

- There are some powerful and exciting tools for making predictions from data.
- They are not magic! You should be skeptical. They require good data and proper internal validation.
- Human judgement and ingenuity are essential for their success.
- With big data
- model fitting takes longer. This might test our patience for model evaluation and comparison.
- difficult to look at the data; might be contaminated in parts.

Careful subsampling can help with both of these.

Some Definitions

Machine Learning constructs algorithms that can learn from data.
Statistical Learning is a branch of applied statistics that emerged in response to machine learning, emphasizing statistical models and assessment of uncertainty.

Data Science is the extraction of knowledge from data, using ideas from mathematics, statistics, machine learning, computer science, engineering, ...

All of these are very similar - with different emphases.

Some Definitions

Machine Learning constructs algorithms that can learn from data.
Statistical Learning is a branch of applied statistics that emerged in response to machine learning, emphasizing statistical models and assessment of uncertainty.

Data Science is the extraction of knowledge from data, using ideas from mathematics, statistics, machine learning, computer science, engineering, ...

All of these are very similar - with different emphases.
Applied Statistics?

For Statisticians: 15 minutes of fame

2009 "I keep saying the sexy job in the next ten years will be statisticians. And I'm not kidding!" Hal Varian, Chief Economist Google

2012 "Data Scientist: The sexiest job of the 21st century." Harvard Business Review

Sexiest man alive?

The Supervising Learning Paradigm

Training Data Fitting Prediction
Traditional statistics: domain experts work for 10 years to learn good features; they bring the statistician a small clean dataset
Today's approach: we start with a large dataset with many features, and use a machine learning algorithm to find the good ones. A huge change.

Internal Model Validation

- IMPORTANT! Don't trust me or anyone who says they have a wonderful machine learning algorithm, unless you see the results of a careful internal validation.
- Eg: divide data into two parts A and B. Run algorithm on part A and then test it on part B. Algorithm must not have seen any of the data in part B.
- If it works in part B, you have (some) confidence in it

Internal Model Validation

- IMPORTANT! Don't trust me or anyone who says they have a wonderful machine learning algorithm, unless you see the results of a careful internal validation.
- Eg: divide data into two parts A and B. Run algorithm on part A and then test it on part B. Algorithm must not have seen any of the data in part B.
- If it works in part B, you have (some) confidence in it Simple? Yes

Internal Model Validation

- IMPORTANT! Don't trust me or anyone who says they have a wonderful machine learning algorithm, unless you see the results of a careful internal validation.
- Eg: divide data into two parts A and B. Run algorithm on part A and then test it on part B. Algorithm must not have seen any of the data in part B.
- If it works in part B, you have (some) confidence in it Simple? Yes
Done properly in practice? Rarely

Internal Model Validation

- IMPORTANT! Don't trust me or anyone who says they have a wonderful machine learning algorithm, unless you see the results of a careful internal validation.
- Eg: divide data into two parts A and B. Run algorithm on part A and then test it on part B. Algorithm must not have seen any of the data in part B.
- If it works in part B, you have (some) confidence in it Simple? Yes
Done properly in practice? Rarely
In God we trust. All others bring data.

Big data vary in shape. These call for different approaches.

Wide Data

Tall Data

Thousands / Millions of Variables

Hundreds of Samples

> Screening and fdr, Lasso, SVM, Stepwise

We have too many variables; prone to overfitting.
Need to remove variables, or regularize, or both.

Tens / Hundreds of Variables
 Thousands / Millions of Samples
 GLM, Random Forests, Boosting, Deep Learning

[^0]Big data vary in shape. These call for different approaches.

Tall and Wide Data

Millions to Billions of Samples

Tricks of the Trade

Exploit sparsity
Random projections / hashing
Variable screening
Subsample rows
Divide and recombine
Case/ control sampling
MapReduce
ADMM (divide and conquer)

Big data vary in shape. These call for different approaches.

Tall and Wide Data

Thousands / Millions of Variables

Millions to Billions of Samples

Tricks of the Trade

Exploit sparsity
Random projections / hashing
Variable screening
Subsample rows
Divide and recombine
Case/ control sampling
MapReduce
ADMM (divide and conquer)
join Google

Examples of Big Data Learning Problems

Google

a

About 407,000 results (0.33 seconds)

Pickled herring - Wikipedia, the free encyclopedia en wikipedia.org/wiki/Pickled herring * Wikipedia *
Pickled herring, also known as bismarck herring, is a delicacy in Europe, and has become a part of Baltic, Nordic, Dutch, German (Bismarckhering), Czech ...
History - Health effects - Cultural references - See also

Images for pickled herring

Report images

More images for pickled herring

Shop for pickled herring on Google

A미 (1)

Herring Pickled at Amazon

 www.amazon.com/grocery -$4.5 \star+t \star t$ rating for amazon.com Buy Groceries at Amazon \& Save. Free Shipping on Qualified Orders.

See your ad here:

Examples of Big Data Learning Problems

About 407,000 results (0.33 seconds)
Pickled herring - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Pickled_herring * Wikipedia *
Pickled herring, also known as bismarck herring, is a delicacy in Europe, and has become a part of Baltic, Nordic, Dutch, German (Bismarckhering), Czech. History - Health effects - Cultural references - See also

Images for pickled herring

Report images

More images for pickled herring

Shop for pickled herring on Google

Sponsored (i)

Marinated Herring by Abba
$\$ 5.99$ - igourmet
Gourmet Food Delivered Fresh!

A이 (1)

Herring Pickled at Amazon

www.amazon.com/grocery -
$4.5 \star+\star \star\rangle$ rating for amazon.com
Buy Groceries at Amazon \& Save.
Free Shipping on Qualified Orders.
See your ad here »

Click-through rate. Based on the search term, knowledge of this user (IPAddress), and the Webpage about to be served, what is the probability that each of the 30 candidate ads in an ad campaign would be clicked if placed in the right-hand panel.

Examples of Big Data Learning Problems

About 407,000 results (0.33 seconds)

Pickled herring - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Pickled_herring * Wikipedia
Pickled herring, also known as bismarck herring, is a delicacy in Europe, and has become a part of Baltic, Nordic, Dutch, German (Bismarckhering), Czech. History - Health effects - Cultural references - See also

Images for pickled herring

More images for pickled herring

Shop for pickled herring on Google

Sponsored (i)

Marinated Herring by Abba
\$5.99 - igourmet
Gourmet Food Delivered Fresh!

A. (1)

Herring Pickled at Amazon

www.amazon.com/grocery *
$4.5 \star+\star \star\rangle$ rating for amazon.com
Buy Groceries at Amazon \& Save. Free Shipping on Qualified Orders.

See your ad here:

Click-through rate. Based on the search term, knowledge of this user (IPAddress), and the Webpage about to be served, what is the probability that each of the 30 candidate ads in an ad campaign would be clicked if placed in the right-hand panel. Logistic regression with billions of training observations. Each ad exchange does this, then bids on their top candidates, and if they win, serve the ad - all within 10 ms !

Examples of Big Data Learning Problems

Gustaf's Traditional Dutch Soft Licorice Drops 70z. Tub Dy Cendy Orato \qquad
Freal $56.90+35$ anipgho
one: Nar
Sthock
(470) Up to 20 Off Groceries
or Back to School

Customers Who Viewed This Item Also Viewed

Matjes Herring Tidbits by Skansen (6 ounce)

Thick Cut Herring European Style, 26oz
 \$8.99

Pickled Herring - 1 Gallon Ah) (1) $\$ 59.25$

Whole Herring - Old Country Style, 26 oz folcylatiz (2) $\$ 8.99$

Examples of Big Data Learning Problems

Gustaf's Traditional Dutch Soft Licorice Drops 70z. Tub
 \qquad
Froed $56.99+55$ anispere
wiove: Nol elgide tax Amajan Prime.
n Stock.

Cintion Up to 20 Off Groceries
or Back to School

Customers Who Viewed This Item Also Viewed

Recommender systems. Amazon online store, online DVD rentals, Kindle books, ...

Examples of Big Data Learning Problems

Gustaf's Traditional Dutch Soft Licorice Drops 7oz. Tub
 \qquad
Frock $56.99+35$ anisping
n Stock
n Stock.

Ciniol Up to 20° Off Groceries
or Back to School

Customers Who Viewed This Item Also Viewed

Matjes Herring Tidbits by Skansen (6 ounce)

Thick Cut Herring European Style, 26oz
 $\$ 8.99$

Pickled Herring - 1 Gallon
 $\$ 59.25$

Whole Herring - Old Country Style, 260z follolirs (2) $\$ 8.99$

Recommender systems. Amazon online store, online DVD rentals, Kindle books, ...
Based on my past experiences, and those of others like me, what else would I chose?

Examples of Big Data Learning Problems

- Adverse drug interactions. US FDA (Food and Drug Administration) requires physicians to send in adverse drug reports, along with other patient information, including disease status and outcomes. Massive and messy data.

Examples of Big Data Learning Problems

- Adverse drug interactions. US FDA (Food and Drug Administration) requires physicians to send in adverse drug reports, along with other patient information, including disease status and outcomes. Massive and messy data. Using natural language processing, Stanford BMI researchers (Altman lab) found drug interactions associated with good and bad outcomes.

Examples of Big Data Learning Problems

- Adverse drug interactions. US FDA (Food and Drug Administration) requires physicians to send in adverse drug reports, along with other patient information, including disease status and outcomes. Massive and messy data. Using natural language processing, Stanford BMI researchers (Altman lab) found drug interactions associated with good and bad outcomes.
- Social networks. Based on who my friends are on Facebook or LinkedIn, make recommendations for who else I should invite. Predict which ads to show me.

Examples of Big Data Learning Problems

- Adverse drug interactions. US FDA (Food and Drug Administration) requires physicians to send in adverse drug reports, along with other patient information, including disease status and outcomes. Massive and messy data. Using natural language processing, Stanford BMI researchers (Altman lab) found drug interactions associated with good and bad outcomes.
- Social networks. Based on who my friends are on Facebook or LinkedIn, make recommendations for who else I should invite. Predict which ads to show me. There are more than a billion Facebook members, and two orders of magnitude more connections. Knowledge about friends informs our knowledge about you. Graph modeling is a hot area of research. (e.g. Leskovec lab, Stanford CS.)

The Netflix Recommender

Awesome, glad you enjoyed it! Try these next...

How often do you watch PBS?
This will help improve the suggestions you get overall.
Never Sometimes Often

The Netflix Prize - 2006-2009

WETFIIX

Netflles Prize

COMPLETED

Home Rules Leaderboard Update

Leaderboard

Showing Test Score. Click here to show quiz score
Display top $20 \quad$ leaders.

Rank	Team Name	Best Test Score	\% Improvement	Best Submit Time
Grand Prize - RMSE $=0.8567$ - Winning Team: BellKor's Pragmatic Chaos				
1	Bellkor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BelliKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11

41K teams participated! Competition ran for nearly 3 years. Winner "BellKor's Pragmatic Chaos", essentially tied with "The Ensemble".

The Netflix Prize - 2006-2009

WETFIIX

Netiflix Prize
 \section*{COMPLETED}

Home Rules Leaderboard Update

Leaderboard

Showing Test Score. Click here to show quiz score
Display top $20 \quad$ \& leaders.

Rank	Team Name	Best Test Score	\% Improvement	Best Submit Time
Grand Prize - RMSE $=0.8567$ - Winning Team: BellKor's Pragmatic Chaos				
1	Bellkor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BelliKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11

41K teams participated! Competition ran for nearly 3 years. Winner "BellKor's Pragmatic Chaos", essentially tied with "The Ensemble". \supset our Lester Mackey \rightarrow

The Netflix Data Set

Strategies for modeling big data

Once the data have been cleaned and organized, we are often left with a massive matrix of observations.

- If data are sparse (lots of zeros or NAs), store using sparse-matrix methods.

Strategies for modeling big data

Once the data have been cleaned and organized, we are often left with a massive matrix of observations.

- If data are sparse (lots of zeros or NAs), store using sparse-matrix methods. Quantcast example next: fit a sequence of logistic regression models using glmnet in R with 54 M rows and 7 M predictors. Extremely sparse X matrix, stored in memory (256G) - took 2 hours to fit 100 models of increasing complexity.

Strategies for modeling big data

Once the data have been cleaned and organized, we are often left with a massive matrix of observations.

- If data are sparse (lots of zeros or NAs), store using sparse-matrix methods. Quantcast example next: fit a sequence of logistic regression models using glmnet in R with 54 M rows and 7 M predictors. Extremely sparse X matrix, stored in memory (256G) - took 2 hours to fit 100 models of increasing complexity.
- If not sparse, use distributed, compressed databases. Many groups are developing fast algorithms and interfaces to these databases.

Strategies for modeling big data

Once the data have been cleaned and organized, we are often left with a massive matrix of observations.

- If data are sparse (lots of zeros or NAs), store using sparse-matrix methods. Quantcast example next: fit a sequence of logistic regression models using glmnet in R with 54 M rows and 7 M predictors. Extremely sparse X matrix, stored in memory (256G) - took 2 hours to fit 100 models of increasing complexity.
- If not sparse, use distributed, compressed databases. Many groups are developing fast algorithms and interfaces to these databases. For example H 2 O [CRAN] by $\mathrm{H}_{2} \mathrm{O}$ interfaces from R to highly compressed versions of data, using Java-based implementations of many of the important modeling tools.

glmnet

Fit regularization paths for a variety of GLMs with lasso and elastic net penalties; e.g. logistic regression

$$
\log \frac{\operatorname{Pr}(Y=1 \mid X=x)}{\operatorname{Pr}(Y=0 \mid X=x)}=\beta_{0}+\sum_{j=1}^{p} x_{j} \beta_{j}
$$

- Lasso penalty [Tibshirani, 1996] induces sparsity in coefficients: $\sum_{j=1}^{p}\left|\beta_{j}\right| \leq s$. It shrinks them toward zero, and sets many to zero.
- Fit efficiently using coordinate descent. Handles sparse X naturally, and exploits sparsity of solutions, warms starts, variable screening, and includes methods for model selection using cross-validation.
glmnet team: TH, Jerome Friedman, Rob Tibshirani, Noah Simon, Junyang Qian.

Example: Large Sparse Logistic Regression

Quantcast is a digital marketing company.* Data are five-minute internet sessions. Binary target is type of family (≤ 2 adults vs adults plus children). 7 million features of session info (web page indicators and descriptors). Divided into training set $(54 \mathrm{M})$, validation $(5 \mathrm{M})$ and test (5 M).

- All but 1.1 M features could be screened because ≤ 3 nonzero values.
- Fit 100 models in 2 hours in R using glmnet.
- Richest model had 42K nonzero coefficients, and explained 10% deviance (like R-squared).
* TH on SAB

54M train, 5M val, 5M test

H2O Billion Row Machine Learning Benchmark GLM Logistic Regression

Compute Hardware: AWS EC2 c3.2xlarge - 8 cores and 15 GB per node, 1 GbE interconnect
Airline Dataset 1987-2013, 42 GB CSV, 1 billion rows, 12 input columns, 1 outcome column 9 numerical features, 3 categorical features with cardinalities 30, 376 and 380

Strategies for modeling big data

- Online (stochastic) learning algorithms are popular - need not keep data in memory.

Strategies for modeling big data

- Online (stochastic) learning algorithms are popular - need not keep data in memory.
- Subsample if possible!

Strategies for modeling big data

- Online (stochastic) learning algorithms are popular - need not keep data in memory.
- Subsample if possible! When modeling click-through rate, there is typically 1 positive example per 10,000 negatives. You do not need all the negatives, because beyond some point the variance comes from the paucity of positives. 1 in 15 is sufficient.

Will Fithian and TH (2014, Annals of Statistics) Local Case-
Control Sampling: Efficient Subsampling in Imbalanced Data

Strategies for modeling big data

- Online (stochastic) learning algorithms are popular - need not keep data in memory.
- Subsample if possible! When modeling click-through rate, there is typically 1 positive example per 10,000 negatives. You do not need all the negatives, because beyond some point the variance comes from the paucity of positives. 1 in 15 is sufficient.

Will Fithian and TH (2014, Annals of Statistics) Local Case-
Control Sampling: Efficient Subsampling in Imbalanced Data

- Think out of the box!

Strategies for modeling big data

- Online (stochastic) learning algorithms are popular - need not keep data in memory.
- Subsample if possible! When modeling click-through rate, there is typically 1 positive example per 10,000 negatives. You do not need all the negatives, because beyond some point the variance comes from the paucity of positives. 1 in 15 is sufficient.

Will Fithian and TH (2014, Annals of Statistics) Local CaseControl Sampling: Efficient Subsampling in Imbalanced Data

- Think out of the box! How much accuracy do you need? Timeliness can play a role, as well as the ability to explore different approaches. Explorations can be done on subsets of the data.

Thinking out the Box: Spraygun

Work with Brad Efron

Beer ratings
1.4 M ratings
0.75 M vars
(sparse
document features)

Lasso regression path: 70 mins.
Split data into 25 parts, distribute, and average: 30 secs.
In addition, free prediction standard errors and CV error.

Predicting the Pathogenicity of Missense Variants

Goal: prioritize list of candidate genes for prostate cancer

Joint work with Epidemiology colleagues Weiva Sieh, Joe Rothstein, Nilah Monnier Ioannidis, and Alice Whittemore

Approach

- A number of existing scores for disease status do not always agree (e.g SIFT, Polyphen).
- Idea is to use a Random Forest algorithm to integrate these scores into a single consensus score for predicting disease.
- We will use existing functional prediction scores, conservation scores, etc as features - 12 features in all.
- Data acquired through SwissVar. 52K variants classified as disease - 21 K variants
neutral - 31 K variants

Correlation of Features

Decision Trees

Trees use the features to create subgroups in the data to refine the estimate of disease.

Decision Trees

Trees use the features to create subgroups in the data to refine the estimate of disease. Shallow trees are too coarse/inaccurate.

Random Forests

Leo Breiman (1928-2005)

- Deep trees (fine subgroups) are more accurate, but very noisy.
- Idea: fit many (1000s) different and very-deep trees, and average their predictions to reduce the noise.
- How to get different trees?
- Grow trees to bootstrap subsampled versions of the data.
- Randomly ignore variables as candidates for splits.

Random Forests are very effective and give accurate predictions. They are automatic, and give good CV estimates of prediction error (for free!). R package RandomForest.

Results for Random Forests

Performance evaluated using OOB (out-of-bag) predictions for:

- All disease vs neutral variants (AUC 0.984)
- Cancer vs neutral variants (AUC 0.935)

Feature Importance

Two New Methods

GLinternet

With past PhD student Michael Lim (JCGS 2014).
Main effect + two-factor interaction models selected using the group lasso.

Gamsel
With past Ph.D student Alexandra Chouldechova, using overlap group lasso.
Automatic, sticky selection between zero, linear or nonlinear terms in GAMs:

$$
\eta(x)=\sum_{j=1}^{p} f_{j}\left(x_{j}\right)
$$

Glinternet

Example: GWAS with $p=27 K$ Snps, each a 3-level factor, and a binary response, $N=3500$.

- Let X_{j} be $N \times 3$ indicator matrix for each Snp, and $X_{j: k}=X_{j} \star X_{k}$ be the $N \times 9$ interaction matrix.
- We fit model

$$
\log \frac{\operatorname{Pr}(Y=1 \mid X)}{\operatorname{Pr}(Y=0 \mid X)}=\alpha+\sum_{j=1}^{p} X_{j} \beta_{j}+\sum_{j<k} X_{j: k} \theta_{j: k}
$$

- note: $X_{j: k}$ encodes main effects and interactions.
- Maximize group-lasso penalized likelihood:

$$
\ell(\mathbf{y}, \mathbf{p})-\lambda\left[\sum_{j=1}^{p}\left\|\beta_{j}\right\|_{2}+\sum_{j<k}\left\|\theta_{j: k}\right\|_{2}\right]
$$

- Solutions map to traditional hierarchical main-effects/interactions model (with effects summing to zero).

Glinternet (continued)

- Strong rules for feature filtering essential here - parallel and distributed computing useful too. GWAS search space of 729 M interactions!
- Formulated for all types of interactions, not just categorical variables.
- Glinternet very fast - two-orders of magnitude faster than competition, with similar performance.

Example: Mining Electronic Health Records for Synergistic Drug Combinations

Using Oncoshare database (EHR from Stanford Hospital and Palo Alto Medical Foundation) looked for synergistic effects between 296 drugs in treatment of 9,945 breast cancer patients.

Used GLinternet to discover three potential synergies. Joint work with Yen Low, Michael Lim, TH, Nigam Shah and others.

Gamsel: Generalized Additive Model Selection

$$
\begin{aligned}
\frac{1}{2}\left\|y-\sum_{j=1}^{p} \alpha_{j} x_{j}-\sum_{j=1}^{p} U_{j} \beta_{j}\right\|^{2} & +\lambda \sum_{j=1}^{p}\left\{(1-\gamma)\left|\alpha_{j}\right|+\gamma\left\|\beta_{j}\right\|_{D_{j}^{*}}\right\} \\
& +\frac{1}{2} \sum_{j=1}^{p} \psi_{j}\left\|\beta_{j}\right\|_{D_{j}}^{2}
\end{aligned}
$$

- $U_{j}=\left[x_{j} p_{1}\left(x_{j}\right) \cdots p_{k}\left(x_{j}\right)\right]$ where the p_{i} are orthogonal Demmler-Reinsch spline basis functions of increasing degree.
- $D_{j}=\operatorname{diag}\left(d_{j 0}, d_{j 1}, \ldots, d_{j k}\right)$ diagonal penalty matrix with $0=d_{j 0}<d_{j 1} \leq d_{j 2} \leq \cdots \leq d_{j k}$, and $D_{j}^{*}=D_{j}$ but with $d_{j 0}=d_{j 1}$.

Step $=1$ lambda $=125.43$

Step $=2$ lambda $=114.18$

Step $=3$ lambda $=103.94$

Step $=4$ lambda $=94.61$

Step $=5$ lambda $=86.13$

Step $=6$ lambda $=78.4$

Step $=7$ lambda $=71.37$

Step $=8$ lambda $=64.97$

Step $=9$ lambda $=59.14$

Step $=10$ lambda $=53.83$

Step $=11$ lambda $=49.01$

Step $=12$ lambda $=44.61$

Step $=13$ lambda $=40.61$

Step $=14$ lambda $=36.97$

Step $=15$ lambda $=33.65$

Step $=16$ lambda $=30.63$

Step $=17$ lambda $=27.88$

Step $=18$ lambda $=25.38$

Step $=19$ lambda $=23.11$

Step $=20$ lambda $=21.03$

Step $=21$ lambda $=19.15$

Step $=22$ lambda $=17.43$

Step $=23$ lambda $=15.87$

Step $=24$ lambda $=14.44$

Step $=25$ lambda $=13.15$

Step $=26$ lambda $=11.97$

Step $=27$ lambda $=10.89$

Step $=28$ lambda $=9.92$

Step $=29$ lambda $=9.03$

Step $=30$ lambda $=8.22$

Step $=31$ lambda $=7.48$

Step $=32$ lambda $=6.81$

Step $=33$ lambda $=6.2$

Step $=34$ lambda $=5.64$

Step $=35$ lambda $=5.14$

Step $=36$ lambda $=4.68$

Step $=37$ lambda $=4.26$

Step $=38$ lambda $=3.87$

Step $=39$ lambda $=3.53$

Step $=40$ lambda $=3.21$

Step $=41$ lambda $=2.92$

Step $=42$ lambda $=2.66$

Step $=43$ lambda $=2.42$

Step $=44$ lambda $=2.2$

Step $=45$ lambda $=2.01$

Step $=46$ lambda $=1.83$

Step $=47$ lambda $=1.66$

Step $=48$ lambda $=1.51$

Step $=49$ lambda $=1.38$

Step $=50$ lambda $=1.25$

useR! 2016

All the tools I described are implemented in R, which is wonderful free software that gets increasingly more powerful as it interfaces with other systems. R can be found on CRAN: http://cran.us.r-project.org

27-30 June 2016, R user conference at Stanford!

useR! 2016

All the tools I described are implemented in R, which is wonderful free software that gets increasingly more powerful as it interfaces with other systems. R can be found on CRAN: http://cran.us.r-project.org

27-30 June 2016, R user conference at Stanford!
... and now for some cheap marketing ...

useR! 2016

All the tools I described are implemented in R, which is wonderful free software that gets increasingly more powerful as it interfaces with other systems. R can be found on CRAN: http://cran.us.r-project.org

27-30 June 2016, R user conference at Stanford!
... and now for some cheap marketing ...

useR! 2016

All the tools I described are implemented in R, which is wonderful free software that gets increasingly more powerful as it interfaces with other systems. R can be found on CRAN: http://cran.us.r-project.org

27-30 June 2016, R user conference at Stanford!
... and now for some cheap marketing ...

Thank you!

[^0]: Sometimes simple models (linear) don't suffice.
 We have enough samples to fit nonlinear models with many
 interactions, and not too many variables.
 Good automatic methods for doing this.

