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Some Take Home Messages

This talk is about supervised learning: building models from
data that predict an outcome using a collection of input
features.

• There are some powerful and exciting tools for making
predictions from data.

• They are not magic! You should be skeptical. They require
good data and proper internal validation.

• Human judgement and ingenuity are essential for their
success.

• With big data

- model fitting takes longer. This might test our patience for
model evaluation and comparison.

- difficult to look at the data; might be contaminated in parts.

Careful subsampling can help with both of these.
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Some Definitions

Machine Learning constructs algorithms that can learn from
data.

Statistical Learning is a branch of applied statistics that
emerged in response to machine learning,
emphasizing statistical models and assessment of
uncertainty.

Data Science is the extraction of knowledge from data, using
ideas from mathematics, statistics, machine
learning, computer science, engineering, ...

All of these are very similar — with different emphases.

Applied Statistics?
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For Statisticians: 15 minutes of fame

2009 “I keep saying the sexy job in the next ten years
will be statisticians. And I’m not kidding!” Hal
Varian, Chief Economist Google

2012 “Data Scientist: The sexiest job of the 21st
century.” Harvard Business Review

4 / 39



Sexiest man alive?
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The Supervising Learning Paradigm

Training Data Fitting Prediction

Traditional statistics: domain experts work for 10 years to learn
good features; they bring the statistician a small
clean dataset

Today’s approach: we start with a large dataset with many
features, and use a machine learning algorithm to
find the good ones. A huge change.
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Internal Model Validation

• IMPORTANT! Don’t trust me or anyone who says they
have a wonderful machine learning algorithm, unless you
see the results of a careful internal validation.

• Eg: divide data into two parts A and B. Run algorithm on
part A and then test it on part B.
Algorithm must not have seen any of the data in part B.

• If it works in part B, you have (some) confidence in it

Simple? Yes
Done properly in practice? Rarely

In God we trust. All others bring data.
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Big data vary in shape. These call for different approaches.

Wide Data

Tall Data

Thousands / Millions of  Variables

Hundreds of Samples

Tens / Hundreds of  Variables

Thousands /  Millions of Samples

Screening and fdr, 
Lasso, SVM, Stepwise

GLM, Random Forests, 
Boosting, Deep Learning

We have too many variables; prone to overfitting.

Need to remove variables, or regularize, or both.

Sometimes simple models (linear) don’t suffice.

We have enough samples to fit nonlinear models with many 

interactions, and not too many variables.

Good automatic methods for doing this.
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Big data vary in shape. These call for different approaches.

Tall and Wide Data
Thousands / Millions of  Variables

Millions to Billions of Samples

Tricks of the Trade

Exploit sparsity

Random projections / hashing

Variable screening

Subsample rows

Divide and recombine

Case/ control sampling

MapReduce

ADMM (divide and conquer)
    .
    .
    .
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Examples of Big Data Learning Problems

Click-through rate. Based on the search term, knowledge of
this user (IPAddress), and the Webpage about to be served,
what is the probability that each of the 30 candidate ads in an
ad campaign would be clicked if placed in the right-hand panel.
Logistic regression with billions of training observations.
Each ad exchange does this, then bids on their top candidates,
and if they win, serve the ad — all within 10ms!
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Examples of Big Data Learning Problems

Recommender systems. Amazon online store, online DVD
rentals, Kindle books, ...
Based on my past experiences, and those of others like me,
what else would I chose?
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Examples of Big Data Learning Problems

• Adverse drug interactions. US FDA (Food and Drug
Administration) requires physicians to send in adverse drug
reports, along with other patient information, including
disease status and outcomes. Massive and messy data.

Using natural language processing, Stanford BMI
researchers (Altman lab) found drug interactions
associated with good and bad outcomes.

• Social networks. Based on who my friends are on
Facebook or LinkedIn, make recommendations for who else
I should invite. Predict which ads to show me.
There are more than a billion Facebook members, and two
orders of magnitude more connections. Knowledge about
friends informs our knowledge about you. Graph modeling
is a hot area of research. (e.g. Leskovec lab, Stanford CS.)
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The Netflix Recommender
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The Netflix Prize — 2006–2009

41K teams participated! Competition ran for nearly 3
years. Winner “BellKor’s Pragmatic Chaos”, essentially
tied with “The Ensemble”.

⊃ our Lester Mackey →
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The Netflix Data Set
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User A 1 ? 5 4 · · ·
User B ? 2 3 ? · · ·
User C 4 1 2 ? · · ·
User D ? 5 1 3 · · ·
User E 1 2 ? ? · · ·
...

...
...

...
...

. . .

• Training Data:
480K users, 18K movies,
100M ratings (1–5)
(99% ratings missing)

• Goal:
$1M prize for 10% reduction
in RMSE over Cinematch

• BellKor’s Pragmatic Chaos
declared winners on
9/21/2009

Used ensemble of models, an
important ingredient being
low-rank factorization (SVD)
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Strategies for modeling big data

Once the data have been cleaned and organized, we are often
left with a massive matrix of observations.

• If data are sparse (lots of zeros or NAs), store using
sparse-matrix methods.

Quantcast example next: fit a
sequence of logistic regression models using glmnet in R
with 54M rows and 7M predictors. Extremely sparse X
matrix, stored in memory (256G) — took 2 hours to fit 100
models of increasing complexity.

• If not sparse, use distributed, compressed databases. Many
groups are developing fast algorithms and interfaces to
these databases. For example H2O [CRAN] by H2O
interfaces from R to highly compressed versions of data,
using Java-based implementations of many of the
important modeling tools.
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glmnet
Fit regularization paths for a variety of GLMs with lasso and
elastic net penalties; e.g. logistic regression

log
Pr(Y = 1 | X = x)

Pr(Y = 0 | X = x)
= β0 +

p∑
j=1

xjβj

• Lasso penalty [Tibshirani, 1996] induces sparsity in
coefficients:

∑p
j=1 |βj | ≤ s. It shrinks them toward zero,

and sets many to zero.
• Fit efficiently using coordinate descent. Handles sparse X

naturally, and exploits sparsity of solutions, warms starts,
variable screening, and includes methods for model
selection using cross-validation.

glmnet team: TH, Jerome Friedman, Rob Tibshirani, Noah
Simon, Junyang Qian.
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Example: Large Sparse Logistic Regression

Quantcast is a digital marketing company.∗ Data are
five-minute internet sessions. Binary target is type of family
(≤ 2 adults vs adults plus children). 7 million features of
session info (web page indicators and descriptors). Divided into
training set (54M), validation (5M) and test (5M).

• All but 1.1M features could be screened because ≤ 3
nonzero values.

• Fit 100 models in 2 hours in R using glmnet.

• Richest model had 42K nonzero coefficients, and explained
10% deviance (like R-squared).

∗
TH on SAB
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∗
TH on SAB
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Strategies for modeling big data

• Online (stochastic) learning algorithms are popular — need
not keep data in memory.

• Subsample if possible! When modeling click-through rate,
there is typically 1 positive example per 10,000 negatives.
You do not need all the negatives, because beyond some
point the variance comes from the paucity of positives.
1 in 15 is sufficient.

Will Fithian and TH (2014, Annals of Statistics) Local Case-

Control Sampling: Efficient Subsampling in Imbalanced Data

Sets

• Think out of the box! How much accuracy do you need?
Timeliness can play a role, as well as the ability to explore
different approaches. Explorations can be done on subsets
of the data.
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Thinking out the Box: Spraygun
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features)

Lasso regression path: 70 mins.
Split data into 25 parts, distribute, and average: 30 secs.
In addition, free prediction standard errors and CV error. 24 / 39



Predicting the Pathogenicity of Missense Variants

Goal: prioritize list of candidate genes for prostate cancer

Joint work with Epidemiology colleagues Weiva Sieh, Joe
Rothstein, Nilah Monnier Ioannidis, and Alice Whittemore
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Approach

• A number of existing scores for disease status do not
always agree (e.g SIFT, Polyphen).

• Idea is to use a Random Forest algorithm to integrate these
scores into a single consensus score for predicting disease.

• We will use existing functional prediction scores,
conservation scores, etc as features — 12 features in all.

• Data acquired through SwissVar. 52K variants classified as

disease — 21K variants
neutral — 31K variants
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Decision Trees

SIFT > .9

SLR > .8

Pr(D)=.65GERP >.2

Pr(D)=.95

Pr(D)=.75Pr(D)=.75

Pr(D)=.75

Pr(D)=.60

Pr(D)=.55 Pr(D)=.25

LRT > .8

SIFT > .5

x

x x

x x

Trees use the features to create subgroups in the data to refine
the estimate of disease.

Shallow trees are too coarse/inaccurate.
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Random Forests

Leo Breiman (1928–2005)

• Deep trees (fine subgroups) are more accurate, but very
noisy.

• Idea: fit many (1000s) different and very-deep trees, and
average their predictions to reduce the noise.

• How to get different trees?

- Grow trees to bootstrap subsampled versions of the data.
- Randomly ignore variables as candidates for splits.

Random Forests are very effective and give accurate
predictions. They are automatic, and give good CV estimates of
prediction error (for free!). R package RandomForest.
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Results for Random Forests
All-Disease Random Forest 

Performance evaluated using out-of-bag votes for: 
•  All disease & neutral variants (AUC 0.984) 
•  Cancer & neutral variants (AUC 0.935) 
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Performance evaluated using OOB (out-of-bag) predictions for:

• All disease vs neutral variants (AUC 0.984)

• Cancer vs neutral variants (AUC 0.935)
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Two New Methods

Glinternet

With past PhD student Michael Lim
(JCGS 2014).
Main effect + two-factor interaction models
selected using the group lasso.

Gamsel

With past Ph.D student Alexandra Choulde-
chova, using overlap group lasso.
Automatic, sticky selection between zero, lin-
ear or nonlinear terms in GAMs:

η(x) =
∑p

j=1 fj(xj)
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Glinternet
Example: GWAS with p = 27K Snps , each a 3-level factor, and
a binary response, N = 3500.
• Let Xj be N × 3 indicator matrix for each Snp, and
Xj:k = Xj ? Xk be the N × 9 interaction matrix.

• We fit model

log
Pr(Y = 1|X)

Pr(Y = 0|X)
= α+

p∑
j=1

Xjβj +
∑
j<k

Xj:kθj:k

• note: Xj:k encodes main effects and interactions.
• Maximize group-lasso penalized likelihood:

`(y,p)− λ

 p∑
j=1

‖βj‖2 +
∑
j<k

‖θj:k‖2


• Solutions map to traditional hierarchical

main-effects/interactions model (with effects summing to
zero).
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Glinternet (continued)

• Strong rules for feature filtering essential here — parallel
and distributed computing useful too. GWAS search space
of 729M interactions!

• Formulated for all types of interactions, not just categorical
variables.

• Glinternet very fast — two-orders of magnitude faster
than competition, with similar performance.
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Example: Mining Electronic Health Records for
Synergistic Drug Combinations

Using Oncoshare database (EHR from Stanford Hospital and
Palo Alto Medical Foundation) looked for synergistic effects
between 296 drugs in treatment of 9,945 breast cancer patients.

Used glinternet to discover three potential synergies.
Joint work with Yen Low, Michael Lim, TH, Nigam Shah and
others.
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Fig. 2. Variables (nodes) are connected by edges if they synergistically interact with each other such 
that the pair is more strongly associated with lower mortality (blue edges) or higher mortality (red 
edges) 

� Demographic variable 
� Tumor variable 
� Comorbidity variable 
� Treatment variable 
� Drug variable 
� Drug class variable 
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Gamsel: Generalized Additive Model Selection

1

2

∥∥∥∥∥∥y −
p∑

j=1

αjxj −
p∑

j=1

Ujβj

∥∥∥∥∥∥
2

+ λ

p∑
j=1

{
(1− γ)|αj |+ γ‖βj‖D∗

j

}

+
1

2

p∑
j=1

ψj‖βj‖2Dj

• Uj = [xj p1(xj) · · · pk(xj)] where the pi are orthogonal
Demmler-Reinsch spline basis functions of increasing
degree.

• Dj = diag(dj0, dj1, . . . , djk) diagonal penalty matrix with
0 = dj0 < dj1 ≤ dj2 ≤ · · · ≤ djk, and D∗

j = Dj but with
dj0 = dj1.
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useR! 2016
All the tools I described are implemented in R, which is
wonderful free software that gets increasingly more powerful as
it interfaces with other systems. R can be found on CRAN:
http://cran.us.r-project.org

27–30 June 2016, R user conference at Stanford!

· · · and now for some cheap marketing . . .
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