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1 Introduction

Predictive models are widely used in domains ranging from judiciary and healthcare to autonomous
driving. As we increasingly rely on these models for high-stakes decisions, identifying and charac-
terizing their unexpected failures in the real world is critical. We categorize errors of a predictive
model as: known unknowns and unknown unknowns [3]. Known unknowns are those data points
for which the model makes low confidence predictions and errs, whereas unknown unknowns cor-
respond to those points where the model is highly confident about its predictions, but is actually
wrong. Since the model lacks awareness of such unknown unknowns, approaches developed for
addressing known unknowns (e.g., active learning) cannot be used for discovering unknown un-
knowns. Unknown unknowns primarily occur when the data used for training a predictive model is
not representative of the samples encountered during test time, i.e., when the model is deployed in
the wild. This mismatch could be a result of biases in the collection of training data or differences
between the train and test distributions due to temporal, spatial or other factors such as a subtle shift
in task definition.

Here, we study the problem of informed discovery of unknown unknowns of any given predictive
model where unknown unknowns occur due to systematic biases in the training data. Consequently,
the resulting unknown unknowns are likely to be concentrated in certain portions of the feature space
(and not randomly). We also assume that the features which are informative enough to distinguish
between different kinds of unknown unknowns are present in the data, but the biases in the training
data prevented the predictive model from learning that these features are indeed discriminative. We
propose a methodology that guides the discovery of such unknown unknowns by querying true
labels of selected instances from an oracle under a fixed budget that limits the number of queries.
The formulation assumes no knowledge of the functional form or the associated training data of
the predictive model and treats it as a black box which outputs a label and a confidence score (or
a proxy) for a given data point. To the best of our knowledge, this is the first work providing an
algorithmic solution to address this problem.

Our methodology follows a two-step approach which first partitions the search space such that in-
stances which share similar feature values and have been assigned similar confidence scores by the
black box model are grouped together. This step also associates an interpretable description with
each such group. The second step then employs an explore-exploit strategy for navigating through
these groups systematically based on the feedback from an oracle. We also present qualitative and
quantitative evaluations of our framework on an image classification task.

2 Our Framework

Given a black-box predictive model M which takes as input a data point x with features F =
{f1, f2, · · · fL}, and returns a class label c′ ∈ C and a confidence score s ∈ [0, 1], our goal is to
find the unknown unknowns of M w.r.t a given test set D using a limited number of queries, B,
to the oracle, and, more broadly, to maximize the utility associated with the discovered unknown
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unknowns. The discovery process is guided by a utility function, which not only incentivizes the
discovery of unknowns unknowns, but also accounts for the costs associated with querying the oracle
(e.g., monetary and time costs of labeling in crowdsourcing).

Although our methodology is generic enough to find unknown unknowns associated with all the
classes in the test set, we formulate the problem for a particular class c, a critical class, where false
positives are costly and need to be discovered [5]. Based on the decisions of the system designer
regarding critical class c and confidence threshold τ , our search space for unknown unknown dis-
covery constitutes all of those data points in D which are assigned the critical class c by modelM
with confidence higher than τ .

Our approach takes the following inputs: 1) A set of N instances, X = {x1, x2 · · ·xN} ⊆ D, which
were confidently assigned to the critical class c by the modelM, and the corresponding confidence
scores, S = {s1, s2 · · · sN}, assigned to these points byM, 2) An oracle o which takes as input a
data point x and returns its true label o(x) as well as the cost incurred to determine the true label of
x, cost(x) 3) A budget B on the number of times the oracle can be queried.

Our utility function, u(x(t)), for querying the label of data point x(t) at the tth step of exploration
is defined as:

u(x(t)) = 1{o(xt)6=c} − γ × cost(x(t)) (1)

where 1{o(xt)6=c} is an indicator function which returns 1 if x(t) is identified as an unknown un-
known, and a 0 otherwise. cost(x(t)) ∈ [0, 1] is the cost incurred by the oracle to determine the
label of x(t). Both the indicator and the cost functions in Equation 1 are initially unknown and ob-
served based on oracle’s feedback on x(t). γ ∈ [0, 1] is a tradeoff parameter which can be provided
by the end user.
Problem Statement: Find a sequence of B instances {x(1), x(2) · · ·x(B)} ⊆ X for which the

cumulative utility
B∑
t=1

u(x(t)) is maximum.

Below, we present the two-phase approach that we propose to address this problem. First we present
Descriptive Space Partitioning (DSP), which induces a similarity preserving partition on the set X .
Then, we present a novel multi-armed bandit algorithm, which we refer to as Bandit for Unknown
Unknowns (UUB), for systematically searching for unknown unknowns within the resulting groups
while leveraging feedback from an oracle.

Descriptive Space Partitioning The goal of the DSP is to partition the instances in X such that
instances grouped together are likely to be indistinguishable w.r.t the model M and the feture set
F . DSP creates groups that can be explored by our bandit algorithm, UUB, to discover regions with
high concentrations of unknown unknowns. In addition, each group is associated with a descriptive
pattern (details below) which can help us understand what kinds of instances are part of that group.

DSP takes as input a set of candidate patterns Q = {q1, q2, · · · } where each qi is a conjunction
of (feature, value) pairs. Such patterns can be obtained by running an off-the-shelf frequent pat-
tern mining algorithm such as Apriori [2] on X . Each pattern characterizes or covers a group of
one or more instances in X . For each pattern q, the set of instances that satisfy q is denoted by
covered by(q), the centroid of such instances is x̄q , and their mean confidence score is s̄q .

Our partitioning objective minimizes dissimilarities of instances within each group, maximizes them
across groups, and favors concise descriptions for each group. In particular, we define goodness of
each pattern q in Q using the following metrics, where d and d′ are standard distance measures
defined over feature vectors of instances and their confidence scores respectively:

Intra-partition feature distance: g1(q) =
∑

{x∈X : x ∈ covered by(q)}

d(x, x̄q)

Inter-partition feature distance: g2(q) =
∑

{x∈X : x ∈ covered by(q)}

∑
{q′∈Q: q′ 6=q}

d(x, x̄q′)

Intra-partition confidence score distance: g3(q) =
∑

{si: xi∈X ∧xi ∈ covered by(q)}

d′(si, s̄q)

Inter-partition confidence score distance: g4(q) =
∑

{si: xi∈X ∧xi ∈ covered by(q)}

∑
{q′∈Q: q′ 6=q}

d′(si, s̄q′)
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Pattern Length: g5(q) = size(q), the number of (feature, value) pairs in pattern q
Given the sets X , S, a collection of patternsQ, and weight vector λ used to combine g1 through g5,
our goal is to find a set of patterns P ⊆ Q such that it covers all the points in X and minimizes the
following objective:

min
∑
q∈Q

fq (λ1g1(q)− λ2g2(q) + λ3g3(q)− λ4g4(q) + λ5g5(q)) (2)

subject to
∑

q: x∈covered by(q)

fq ≥ 1 ∀x ∈ X , where fq ∈ {0, 1} ∀q ∈ Q

This formulation is identical to that of a weighted set cover problem which is NP-hard [7]. We
employ a strategy which greedily selects patterns with maximum coverage-to-weight ratio at each
step (Refer Appendix [8] for a detailed pseudocode), thus resulting in a ln N approximation guar-
antee [7]. This process is repeated until no instance in X is left uncovered. In case of instances in X
which are covered by multiple patterns, ties are broken by assigning it to the group with the closest
centroid.

Multi-armed Bandit for Unknown Unknowns The output of the first step of our approach, DSP,
is a set of K groups P = {p1, p2 · · · pK} such that each group pj clusters together data points that
are indistinguishable w.r.t the modelM and feature space F . The partitioning, however, does not
guarantee that data points in a group are identical and each group has an unobservable concentration
of unknown unknown instances. The goal of the second step of our approach is to compute an
exploration policy over these groups such that it maximizes the overall utility of the discovery of
unknown unknowns.

We formalize this problem as a multi-armed bandit problem and propose an algorithm which decides
what group should be queried at each step (Refer Appendix [8] for detailed pseudocode). In this
formalization, each group pj corresponds to an arm j of the bandit. At each step, the algorithm
strategically picks a group (details below) and then randomly samples a data point from that group
without replacement and queries its true label from the oracle. Since querying the data point reveals
whether it is an unknown unknown, the point is excluded from future steps. In the first K steps,
the algorithm samples a point from each group. Then, at each step t, the algorithm chooses a
group which maximizes ūt(i) + bt(i) and then samples a point randomly from it. ūt(i) denotes the
empirical mean utility (reward) of the group i at time t, and bt(i) represents the uncertainty over the
estimate of ūt(i).

Our problem setting has the characteristic that the expected utility of each arm is non-stationary;
querying a data point from a group changes the concentration of unknown unknowns in the group
and consequently changes the expected utility of that group in future steps. Therefore, stationary
MAB algorithms such as UCB [4] are not suitable. A variant of UCB, discounted UCB, addresses
the non-stationary settings and can be used as follows to compute ūt(i) and bt(i) [6].

ūt(i) =
1

Nt(ϑi
t, i)

t∑
j=1

ϑi
j,t u(x(j)) 1Aj=i, bt(i) =

√√√√√2 log
K∑
i=1

Nt(ϑi
t, i)

Nt(ϑi
t, i)

, Nt(ϑ
i
t, i) =

t∑
j=1

ϑi
j,t 1Aj=i

The main idea of Discounted UCB is weighing recent observations more to account for the non-
stationary nature of the utility function. If ϑij,t denotes the discounting factor applied at time t to
the reward obtained from arm i at time j < t, ϑij,t = γt−j in the case of discounted UCB, where
γ ∈ (0, 1).

The discounting factor of Discounting UCB is designed to handle arbitrary changes in the utility
distribution, whereas the way the utility of a group changes in our setting has a certain structure:
The utility estimate of arm i only changes when the arm is queried and the magnitude of the change
corresponds to the influence of a single data point in the size of the group,Ni. Using this observation,
we can customize the calculation of ϑij,t:

ϑij,t = (Ni −
t∑

l=1

1Al=i)
/

(Ni −
j∑

l=1

1Al=i) (3)

The value of ϑij,t is inversely proportional to the number of pulls of arm i during the interval (j, t).
ϑij,t is 1, if the arm is not pulled during this interval, indicating that the expected utility of i remained
unchanged.
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Figure 1: (a) Quantitative evaluation of our framework on image data (b) Illustration of our method-
ology on image data.

3 Experimental Evaluation
We evaluate our framework1 on a set of 25K cat and dog images [1]. We use this data set to assess
whether our framework can recognize unknown unknowns that occur when semantically meaningful
sub-groups are missing from the training data. To this end, we split the data equally into train and
test and bias the training data such that it comprises only of images of dogs which are black, and
cats which are not black. We set the class label cat to be the critical class in our experiments. We
use super-pixels obtained from the first max-pooling layer of Google’s pre-trained Inception neural
network [10, 9] as the feature set. Each image is represented with a feature vector comprising of 1’s
and 0’s indicating the presence or absence of the corresponding super pixel. We experiment with
multiple predictive models: decision trees, SVMs, logistic regression, random forests and neural
network. Due to space constraints, we present results for decision trees as model M but detailed
results for all the other models are included in the Appendix [8]. We set confidence threshold τ to
0.65 to construct our search space X . The cost is 1 for all instances (uniform cost) and the budget B
is set to 20% of all the instances of the set X through out our experiments. We search the parameter
space using coordinate descent to find parameters which result in the minimum value of the objective
function defined in Eqn. 2. Further, the results presented for UUB are all averaged across 100 runs.
Quantitative Analysis We compare the performance of our complete pipeline (DSP + UUB) is to
other end-to-end heuristic methods we devised as baselines (Refer Appendix [8] for a comprehensive
evaluation of each phase of the pipeline). We compare the cumulative regret of our framework to
several baselines: 1) Random sampling: Randomly select B instances from set X for querying the
oracle. 2) Least average similarity: For each instance in X , compute the average Euclidean distance
w.r.t all the data points in the training set and choose B instances with the largest distance. The idea
is that instances dissimilar to those encountered during the training of the model could potentially
be unknown unknowns. 3) Least maximum similarity: Compute minimum Euclidean distance of
each instance in X from the training set and choose B instances with the highest distances. 4) Most
uncertain: Rank the instances in X in increasing order of the confidence scores assigned by the
modelM and pick the top B instances. Figure 1(a) shows the cumulative regret of our framework
and the baselines for the image data. Our framework achieves the least cumulative regret of all the
strategies.
Qualitative Analysis Figure 1(b) presents an illustrative example of how our methodology explores
three of the groups generated for the image data set. Our partitioning framework associated the super
pixels shown in the Figure with each group. Examining the super pixels reveals that groups 1, 2 and
3 correspond to the images of white chihuahuas (dog), white cats, and brown dogs respectively.
The plot shows the number of times these groups have been played by our bandit algorithm. The
figure shows that group 2 is selected very few times compared to groups 1 and 3 — because white
cat images are part of the training data for our predictive models and there are not many unknown
unknowns in this group. On the other hand, white and brown dogs are not part of the training data
and the algorithm explores these groups often. Figure 1(c) also indicates that group 1 was explored
often during the initial steps but not later on. This is because there were fewer unknown unknowns
in that group and the algorithm had exhausted all of them after a certain number of plays.

1Detailed experiments on other tasks such as sentiment detection, subjectivity analysis, domain adaption
are in Appendix [8]
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