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Abstract

We study how to reduce congestion in two-sided matching markets with private preferences.

We measure congestion by the number of bits of information that agents must (i) learn about

their own preferences, and (ii) communicate with others before obtaining their final match.

Previous results by Segal (2007) and Gonczarowski et al. (2015) suggest that a high level of

congestion is inevitable under arbitrary preferences before the market can clear with a stable

matching. We show that when the unobservable component of agent preferences satisfies certain

natural assumptions, it is possible to recommend potential matches and encourage informative

signals such that the market reaches a stable matching with a low level of congestion. This

is desirable because the communication overhead is minimized while agents have negligible

incentives to leave the marketplace or to look beyond the set of recommended partners. The

main idea is to only recommend partners with whom the agent has a non-negligible chance

of both liking and being liked by. The recommendations are based both on the observable

component of preferences, and on the signals sent by agents on the other side that indicate

interest.
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1 Introduction

In many two-sided marketplaces agents search to form matches with potential partners based

on mutual compatibility. Examples include labor markets, college admission, online dating, and

accommodation. Forming matches often requires extensive and costly communication between

participants and their potential partners. For instance, on a large global freelancing platform,

fewer than 10% of job applications get a response, and yet over half of job openings remain unfilled,

including when the employer invites individual freelancers (Horton 2017b). We refer to a market’s

inability to reach a satisfactory outcome due to high communication overhead as congestion.1 A

major challenge for such marketplaces is to ease congestion without reducing the choice available

to participants. In this paper we explore, in a stylized setting, how matching markets can be

efficiently cleared by encouraging informative signaling among users and providing good match

recommendations to participants.

To study congestion in a rigorous framework, we adopt the classic notion of stability introduced

by Gale and Shapley (1962) as our ideal of the market outcome without congestion. In a stable

matching, no pair of agents would both prefer to match with each other over their assigned partners.

This captures a key feature of such markets, which is that agents cannot simply choose their

partners, but must also be chosen. Stability has been adopted as an equilibrium notion to capture

real world outcomes (Hitsch et al. 2010, Banerjee et al. 2013). Moreover, platforms that implement

stable outcomes can prevent agents from looking for matches elsewhere, for instance on other

platforms.2

Many marketplaces use centralized clearinghouses that implement stable matchings in order to

ease congestion, including the National Residency Matching Program and many school admission

systems. In these marketplaces, participants on both sides of the market submit preferences,

which are then converted into a stable matching using the Gale-Shapley deferred acceptance (DA)

algorithm. But even in these centralized platforms, participants may be unable to list their true

preferences over all potential partners. For example, medical students participating in the NRMP

are only permitted to rank hospitals they have interviewed with, so the logistical costs of interviews

limit the length of the ranking. Hence, having a centralized clearinghouse alone does not eliminate

congestion.

1Congestion in matching markets has been studied in laboratory experiments and in the field. See Roth and

Xing (1994, 1997), Roth (2008) and Avery et al. (2001) for empirical studies of unravelling in labor markets due to

congestion, and Kagel and Roth (2000) for related laboratory experiments. More recently, Fradkin (2017) document

large reductions on the number of eventual bookings on AirBnB because the initial contact made by searchers went

to hosts who reject the offer.
2Roth finds stability to be an important requirement in the success of centralized matching markets (Roth 2002,

Kagel and Roth 2000).
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Recent theoretical results suggest that it may be unrealistic to expect large markets to arrive

at stable matchings. Using the theory of communication complexity,3 which studies the minimum

communication required to accomplish certain tasks from an information theory perspective, Segal

(2007), Chou and Lu (2010), and Gonczarowski et al. (2015) prove that for any method of finding

stable matchings, there exists a class of preferences such that, to clear the market, agents must

each learn and communicate their preferences for a substantial fraction of the entire market. More

precisely, the worst-case amount of communication needed per agent grows linearly with the number

of agents.4 This communication requirement is implausibly large for many real markets, which have

many thousands of agents on each side,5 suggesting that there is an inevitable tension between

providing choice to market participants (as captured by stability) and reducing communication

overhead.

In contrast to these negative results, we show that under natural assumptions on the distribu-

tion of preferences and prior knowledge of agents, stable matchings can be reached with limited

communication even in large markets. We do this by constructing communication protocols that

guide agents on whom to contact. The protocols help agents estimate whom they can realisti-

cally be matched with, and encourage them to reach out to easier-to-get partners while waiting for

harder-to-get partners to reach out to them. When every agent follows the protocol, the market,

reaches a stable matching with high probability and with low levels of communication and prefe-

rence learning. Moreover, with high probability, it is in the best interest of each agent to comply

with the protocol, assuming that others also do so.

The signaling employed by our protocol resembles features of real world marketplaces. For

instance, in the online labor market Upwork, the platform recommends suitable jobs to freelancers,

who then “signal” their interest by applying; employers can also “signal” by inviting a suitable

freelancer to apply. Both match recommendation and agent signaling play an important role in

helping the market clear efficiently. Our communication protocols give platforms stylized insights

on what kind of signals to allow and how to recommend matches.

3See Kushilevitz and Nisan (2006) for a review of the communication complexity literature. The importance of

studying communication in economic models is highlighted in the seminal essay Hayek (1945). This research direction

was first formalized in Hurwicz (1973) and Mount and Reiter (1974).
4An agent can specify her preference list over all n agents on the other side using n logn bits. Segal (2007)

proves that the communication needed per agent may grow linearly in the number of agents, assuming deterministic

preferences, deterministic communication protocols, and exact stability. Chou and Lu (2010) extend this result to

approximate stability. Gonczarowski et al. (2015) extend it to protocols that succeed with probability at least 2/3

on the worst-case distribution of preferences. We give a precise restatement in Section 2.3.1.
5In 2017, the number of applicants in the NRMP is about 43, 000, and the number of positions is 31, 000 (National

Residency Matching Program, 2017).
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Our model and results. We now describe our precise assumptions and results. Our assumptions

on the preference distribution are mild. We say that a market is separable if the preferences of one

side, say, firms, follow a latent random utility model with an additively separable structure. The

preferences of workers can be arbitrary. For a firm, its latent utility for a worker is the sum

of a systematic score and an idiosyncratic score,6 both of which are heterogeneous across firm-

worker pairs. The systematic score represents the worker’s general level of fit based on observable

characteristics such as past experience, level of education, and test scores. This information is

known to the worker and the firm, but not necessarily to anyone else. The idiosyncratic score

represents the idiosyncratic component of the firm’s preference and is drawn independently from

a certain unknown distribution. The preferences of agents, including both workers and firms,

are unknown a priori to everyone, including the agents themselves. In order to learn their own

preferences, agents have to query a choice function, which returns their most preferred partner

within a given set.

Because the systematic scores can be heterogeneous across worker-firm pairs, we need the idio-

syncratic scores to be sufficiently important relative to the systematic scores; otherwise, separable

markets would include general markets, and the previous impossibility results of Gonczarowski

et al. (2015) would hold. Precisely speaking, we assume that the range of systematic scores and

the hazard rate of idiosyncratic scores are bounded above. A bounded hazard rate allows the idi-

osyncratic scores to take any heavy-tailed distribution, including the exponential, type-I extreme

value, lognormal, and Pareto distributions.

Our main result (Theorem 1) is that in any separable market, there exists a way to find a

stable matching with high probability using low levels of communication and preference learning

cost. The protocol that we construct, called communication-efficient deferred acceptance (CEDA),

modifies the worker-proposing DA algorithm by having workers apply only to firms where they have

a realistic chance. Workers know whether they have a chance through signals sent by firms. We

show that in any separable market, this protocol yields, with high probability, the worker-optimal

stable match. Furthermore, the communication cost, as measured by the number of bits agents send

on average, and the preference learning cost, as measured by the number of choice function queries

agents make on average, both scale with the square root of the market size in the worst case,7

which is much smaller than the linear scaling necessary under arbitrary preferences. In Theorem 2

we show, by constructing a plausible distribution over markets, that no stable matching protocol

can have a better worst-case efficiency than CEDA for separable markets.

6This structure of preferences is analogous to many discrete choice models, such as the multinomial logit or probit.
7The square root comes from the communication complexity of set disjointness under independent inputs (Babai

et al. 1986).
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The source of CEDA’s efficiency is the signals sent by firms, which help workers direct their

applications. There are two types of signals: in the beginning, each firm bins workers based on

their systematic scores and sends a preference signal to a certain number of its favorite workers

in each bin. Receiving a preference signal indicates to a worker that she should apply despite

having a potentially unfavorable systematic score. While workers are applying to firms, each firm

maintains and updates a systematic qualification requirement, which is broadcast to all workers.

The qualification requirement is increased whenever the firm receives sufficiently many applications

from workers whose systematic score meets the requirement. We show that if a worker neither meets

the qualification requirement nor receives a preference signal from a firm, then her chance of being

matched with that firm is essentially zero, so she should not waste her time applying. Moreover,

when workers apply only to firms where their systematic scores qualify or from which they have

received preferences signals, then the total communication cost is small.

A drawback of the CEDA protocol is that it may require many rounds of communication, as

the signal an agent sends may depend on what signals the agent has received, which may in turn

depend on the prior signals of other agents. We give an example illustrating that such sequential

dependency may be necessary for any protocol under certain preference distributions. However,

under stronger assumptions on preferences, we show that a two-round protocol is possible. The

markets we consider are tiered random markets, in which agents on both sides are partitioned

into tiers; an agent of a higher tier is always preferable to one of a lower tier, and preferences

are uniformly random and independent within each tier.8 For such markets, we give a two-round

protocol whose preference learning and communication costs scale only polylogarithmically in the

market size (Theorem 3). The protocol has the additional advantage of using only private signals,

which need to be seen only by a single receiver. The protocol, called the targeted-signaling protocol,

designates for each agent a set of easy-to-get partners and hard-to-get partners, based on commonly

known tier information alone. In the first round, each agent signals a certain number of her favorite

easy-to-get partners. In the second round, each agent submits a partial preference ranking, in which

she ranks only the subset of potential partners whom she signaled or who signaled her. The protocol

outputs a matching based on these partial preferences, and we show that this matching is stable

with respect to the full preferences with high probability.

Both of our protocols inherit the incentive properties of worker-proposing DA under complete

information. More precisely, we show that with high probability, no worker can unilaterally deviate

from the protocol and improve her outcome, and no firm can unilaterally deviate and be matched

to someone better than its partner in the firm-optimal stable match (Theorem 4). Recent literature

has demonstrated that in large markets, under mild assumptions, the vast majority of agents have

8Such preferences are called “block correlated” in Coles et al. (2013).
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the same match partners under the worker-optimal and firm-optimal stable matchings (Immorlica

and Mahdian 2005, Kojima and Pathak 2009, Ashlagi et al. 2017, Lee 2017, Lee and Yariv 2017).

For such markets, all agents have vanishing incentives to deviate from our protocols.

Managerial insights for platforms. Our results highlight three features a platform can im-

plement to reduce congestion. Each feature can take a variety of forms depending on the context,

and we recommend implementing all three together for maximum effectiveness. The first feature

is to help agents estimate their chance of obtaining a particular match. Such a feature can be as

simple as publishing predicted9 thresholds for school admissions, as is currently practiced in certain

universities in India, Israel, and Iran. Online platforms have the additional advantage of having a

treasure trove of data on participant attributes and historical matches, and such data can be used

to predict match compatibility in each direction (how much an agent may like a particular partner

and vice versa.) As in CEDA, they can update their predictions by keeping track of how many

favorable contacts a potential partner has received, and correcting over-optimistic predictions for

getting partners who are more popular than expected.

A second way for a platform to reduce congestion is to help both sides of the market better

search for potential partners and signal interest. If only workers can initiate contact, then the

top firms will receive a deluge of applications, most of which will turn out to be unfruitful. The

market would be more efficient if there is a database of all workers which the top firms can use

to filter for desirable worker attributes and initiate contact. Examples of such a database include

class rosters that business schools post of graduating MBA students and their resumes, or an online

platform like LinkedIn which allows both workers and firms to search for potential partners and

initiate contact. A recent empirical work that supports the importance of signaling from both sides

of the market is Horton (2017b), who finds that in an online labor market in which employers

recruit freelancers, the simple intervention of allowing freelancers to signal their level of availability

substantially increases both match rates and market welfare.

A third helpful feature for reducing congestion is a match recommendation engine that targets

potential partners for whom an agent has a realistic chance of matching. This is different from a

naive “one-sided” recommendation engine that only takes into account whom an agent may like, but

not who may like the agent back. An online matching platform can implement such a “two-sided”

engine as part of its search tool, and only return potential partners who are estimated to be suitable,

available, and willing to match. The value of such a recommendation engine is highlighted by the

field experiment of Horton (2017a) on oDesk/UpWork, who reports a 20% increase in employers’

job fill rates from adopting a recommendation engine that takes into account worker relevance,

9If the market is stable across years, then publishing historical thresholds would suffice.
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ability, and availability.

Relationship to literature. As already discussed, this paper contributes to the literature on

two-sided matching by defending the plausibility of stable matchings in large markets, and by

demonstrating the theoretical importance of match recommendations and informative signals in

reducing congestion.

The conceptual framework we use to study signaling and information friction is distinct and

complementary to previous works.10 First, the role of signaling in this paper differs, in that we

focus on the informative aspect of signaling rather than the strategic aspect. In previous work,

signaling changes the set of equilibrium outcomes, inspired by the literature on signaling games in

economics. In this paper, signaling does not change the outcome but enables the market to reach

a desired outcome more quickly. Second, our approach on modeling information friction differs

from previous approaches based on search theory, in which agents optimize the matching outcome

given costs or constraints on communication or information acquisition.11 By contrast, we take

the dual approach, in which the matching outcome is fixed, and we look for the least amount of

communication needed to obtain that outcome.

The separable market model we study strictly generalizes previous models with uniformly

random preferences (Wilson 1972, Pittel 1989, 1992, Coles and Shorrer 2014, Ashlagi et al. 2017),

finite preference ordering on one side (Immorlica and Mahdian 2005, Kojima and Pathak 2009),

and O(
√
n) many acceptable partners on both sides (Dagsvik 2000, Menzel 2015). This generali-

zation is necessary for our purposes because the DA algorithm already yields low communication

cost in the uniformly random case (Wilson 1972), and communication is trivially easy when agents

have few acceptable partners. Our model is also distinct from the models of Lee (2017) and Lee

and Yariv (2017) with bounded idiosyncratic scores and in which everyone receives the maximum

possible idiosyncratic value in any large stable matching. Our model of tiered random preferences

is studied in other contexts by Coles et al. (2013) and Che and Tercieux (2017, 2018), and our

analysis extends ideas from Pittel (1989), Pittel (1992) and Ashlagi et al. (2017).

10See Coles et al. (2010), Chade et al. (2014), Lee and Niederle (2015), Abdulkadiroğlu et al. (2015), Lee and

Schwarz (2017) and Jagadessan and Wei (2018).
11See Eeckhout (1999), Adachi (2003), Das and Kamenica (2005), Lauermann and Nöldeke (2014), Arnosti et al.

(2014), Kanoria and Saban (2017). For a review of the use of search theory in matching, see Chade et al. (2014).
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2 Model

2.1 Review of asymptotic notation

This paper heavily utilizes Big-O type asymptotic notation. For clarity, we define these notations

in this section.

Given two nonnegative functions f, g : N → R+, we say that f(n) = O(g(n)) if there exists n0

and M > 0 such that f(n) ≤ Mg(n) for all n ≥ n0. This indicates that up to a multiplicative

constant, the tail of the function f grows no faster than g. Similarly, we say that f(n) = O∗(g(n))

if there exists n0 and C > 0 such that f(n) ≤ (log n)Cg(n) for all n ≥ n0.

We say that f(n) = Ω(g(n)) if g(n) = O(f(n)). In other words, there exists n0 and M > 0 such

that f(n) ≥Mg(n) for all n ≥ n0.

We say that f(n) = o(g(n)) if for any ε > 0, there exists n0 such that f(n) ≤ εg(n) for all

n ≥ n0. A special case is f(n) = o(1), which means that limn→∞ f(n) = 0.

Intuitively speaking, O(·) and O∗(·) are used to upper bound the rate at which a function

converges to infinity, and Ω(·) is used to lower bound the rate; o(·) is used to lower bound the rate

at which a function converges to zero.

2.2 Two-sided matching markets with preference learning

In this section, we define a generic model of two-sided matching markets with incomplete infor-

mation. The markets studied in this paper, separable markets (Section 2.4) and tiered random

markets (Section 4.1), are special cases of this more general model. Compared to previous work,

the model has two distinguishing features: agents are allowed to have partial information on the

preference distribution of others, and agents do not know their own preferences directly, but must

query a choice function to learn them.

A two-sided matching market M is defined by a tuple (I, J, ω,K,P), where I = {1, 2, · · · , nI}
is a set of workers, and J = {nI + 1, · · ·nI +nJ} is a set of firms. Both workers and firms are called

agents. For concreteness, we refer to each worker as “she” and each firm as “it.” Let n = nI + nJ .

This is the total number of agents, and we call this the market size. The parameter ω ∈ W

represents the true state of the world, where W is the set of possible states. (The state of world will

capture the distribution over agents’ preferences.) K represents the a priori knowledge of agents

about the state of the world. It is indexed by each agent i ∈ I ∪ J , and Ki ⊆ W contains the true

state ω. A preference realization R is indexed by the set of agents I ∪ J . For worker i ∈ I, Ri is

a permutation of J ∪ {0}, which specifies her (strict) preference ordering over being matched with

each firm and remaining unmatched, which is represented by the symbol 0. Similarly, for each firm

j ∈ J , Rj is a permutation of I ∪{0}, which specifies the preference ordering of firm j. A potential
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partner is said to be acceptable to an agent if the agent prefers being matched to the partner over

being unmatched. The function P : W → ∆(R) is called the preference function, and maps the

state of the world to a probability distribution over preference realizations. Since ω is the true state

of the world, P(ω) is called the true preference distribution. We assume that each agent i ∈ I ∪ J
a priori knows the function P and that the state of the world ω is contained in Ki; but they do not

know the true state of the world ω or the preference realization R.

To learn the realization of their own preference ordering, each agent must query their choice

function, which specifies the agent’s most preferred option within a given set of potential partners.

Precisely speaking, for each worker i ∈ I, the choice function is Ci : 2J∪{0} → J ∪ {0}, which

takes as input a subset of possible options, S ⊆ J ∪{0}, and outputs the highest-ranked element of

S according to the preference ordering Ri, which the agent does not directly observe. The choice

function is analogously defined for every firm j ∈ J , except the set of possible options is now I∪{0}.
The concept of choice function query will later be used to quantify the preference learning cost

of an agent. For the majority of the paper, we simply count the number of queries. In Section 6,

we discuss an alternative formulation in which preference learning costs account for the size of the

input set to each choice function query, so queries with larger inputs result in higher costs.

2.2.1 Stable matchings.

A collection of worker-firm pairs µ ⊆ I×J is called a matching if each worker and each firm appears

at most once. We refer to each (i, j) ∈ µ as a matched pair, and i and j as matched partners to

one another in µ. Agents who have no matched partner are said to be unmatched in µ. While a

matching µ is technically speaking a set of pairs, we abuse notation and also use µ as a function that

maps each agent to their matched partner: if (i, j) is a matched pair, then µ(i) = j and µ(j) = i; if

an agent i ∈ I ∪ J is unmatched, then µ(i) = 0. A potential partner is said to be acceptable to an

agent if the agent prefers to be matched to the partner over being unmatched. A blocking pair to

a matching µ is a pair (i, j) ∈ I × J which is not a matched pair, but both agents find one another

acceptable, and worker i prefers firm j to µ(i), and firm j prefers worker i to µ(j). A matching is

said to be stable if there are no blocking pairs. For any preference realization R, a stable matching

always exists and can be found using the deferred acceptance (DA) algorithm of Gale and Shapley

(1962). A version of this algorithm is stated in Section 2.3.

2.3 Stable matching protocol and communication cost

In this section, we formalize the concept of the communication cost of finding a stable matching,

using concepts from the communication complexity literature. (See Kushilevitz and Nisan 2006, for

an overview of this literature.)
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A communication protocol with n agents and input vector (x1, · · · , xn) is defined as follows.

Each agent i has access only to her component xi of the input vector, but agents can send messages

to other agents. Each message is formally represented as a sequence of zero-one bits, and we

measure the length of messages by the number of bits. For now, we assume that messages are

public, which means they are visible to all agents. (We remove this assumption in Section 4, where

we study protocols in which messages are visible only to a particular receiver.) We define the

history of messages to be the sequence of all messages sent by any agent since the beginning of the

protocol. As a function of the current history of messages, the protocol either terminates with a

final output or chooses one agent to send the next message. The protocol also specifies what the

chosen agent i’s message should be (including the length of the message) as a deterministic function

of her component xi of the input vector and the current history of messages. For every input vector

(x1, · · · , xn), the protocol must be guaranteed to terminate with an output within a finite number

of messages.

The next three definitions are essential for stating our main results. Intuitively, a matching

protocol describes a way of finding a stable matching in which one can rigorously track the amount

of communication. A preference learning strategy specifies how agents gather the necessary in-

formation about their own preferences when following a matching protocol, and a good strategy

minimizes the expected number of choice function queries. A good matching protocol and an asso-

ciated preference learning strategy together yield low communication and preference learning cost

while producing stable matches with high probability.

Definition 1 (matching protocol & communication cost). Given a two-sided matching market

M = (I, J, ω,K,P), a corresponding matching protocol Π is a communication protocol in which

the set of agents is I ∪ J , and for each i ∈ I ∪ J , her component of the input vector is (Ki, Ri),
which includes her a-priori knowledge on the state of the world and her preference realization. The

output of the protocol is a matching µ ⊆ I × J . The communication cost of Π is the expected total

length of all messages (in bits) divided by the total number of agents, where the expectation is taken

over the distribution of preference realizations P(ω).

Definition 2 (preference learning cost). Given a two-sided matching market M = (I, J, ω,K,P)

and a matching protocol Π, a corresponding preference learning strategy specifies for each agent

i ∈ I∪J how she should use choice function queries to obtain enough information on her preference

ordering Ri so that the agent can follow the protocol. Precisely speaking, the strategy for an agent

specifies the input to her next choice function query given the history of the protocol, the sequence

of choice function queries she made so far, and the result of these queries. (If the strategy specifies

the empty set, then she should stop querying during this step of the protocol and send the message
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required of her.) The expected cost of a strategy is the expected total number of choice function

queries across all agents, divided by the number of agents. The preference learning cost of matching

protocol Π is the minimum expected cost of any corresponding preference learning strategy.

Definition 3 (stable with high probability). Consider a sequence of markets (Mn)n∈N indexed by

the number of agents n, and a corresponding sequence of matching protocols (Πn)n∈N. The sequence

of matching protocols (Πn)n∈N is said to be stable with high probability for markets (Mn)n∈N if

the probability that the matching produced is stable with respect to the realized preferences converges

to 1 as the market size n goes to ∞. Here, the probability is taken over the sequence of preference

distributions Pn(ωn).

An example of a matching protocol that is always stable is the DA algorithm, given below.12

The corresponding preference learning strategy is implicitly given, and uses one choice function

query each step.

Protocol 1. The sequential deferred acceptance (DA) algorithm.

The protocol keeps track of a “tentative matching,” which is initialized to be empty.

1. Consider the set of tentatively unmatched workers who have not yet applied to all firms they

find acceptable. If this set is empty, then the algorithm terminates and outputs the current

tentative matching. Otherwise, one worker from this set is selected arbitrarily, say worker

i, and she applies to her favorite firm j that she finds acceptable to which she has not yet

applied.

2. If firm j is tentatively unmatched and finds her acceptable, then it becomes tentatively matched

to the worker. Otherwise, if it is already tentatively matched to some other worker, say worker

i′, then it becomes tentatively matched to the more preferred worker among the two and rejects

the other. The rejected worker becomes tentatively unmatched and can again be chosen in a

future step. Return to step 1.

This protocol requires high preference learning and communication cost: Each step requires a

choice function query to identify whom to apply and whom to accept. If there are Ω(n) firms, then

communicating the identity of each firm requires Ω(log n) bits of information, so each application

requires a communication cost of Ω(log n). In the worst case, a worker may apply to and be

rejected from every single firm, and the average number of applications per worker may be Ω(n)

(Itoga 1978). Therefore, the worst case communication cost is Ω(n log n) per agent, and the worst

case preference learning cost is Ω(n) per agent.

12In particular, this is the sequential version of the worker-proposing DA algorithm, developed by McVitie and

Wilson (1971).
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Remark 1. Though Definitions 1 and 2 define costs for a particular state of the world ω, the

protocol that we propose in Section 3 achieves low cost in all states of the world that satisfy the

assumptions described in Section 2.4. Moreover, the protocol definition is the same for all states of

the world.

2.3.1 Impossibility of sublinear communication cost for arbitrary markets

The following negative result, which is a strengthening of an earlier result13 by Segal (2007), implies

that without restrictions on the preference distribution, one cannot hope to improve much upon

the DA algorithm. There exists a distribution of preferences such that any matching protocol that

is stable with high probability must require agents to learn and communicate on average at least

a constant fraction of their preferences over the entire market. For real world markets with many

thousands of agents on each side, this is an unrealistically high requirement for communication and

preference learning.

Proposition 1. (adapted from Gonczarowski et al. 2015) There exists a sequence of two-sided ma-

tching markets Mn = (In, Jn, ωn,Kn,Pn) with Kni = {ωn} (everyone knows the state of the world

and hence the precise distribution of preferences), such that any sequence of matching protocols

that is stable with high probability requires a communication cost of at least Ω(n) per agent and a

preference learning cost of at least Ω( n
logn) per agent.14

However, this negative result requires an unrealistic preference distribution in which agent

preferences are highly correlated in a contrived way.15 The takeaway from the present paper is that

since preferences in real markets are not worst-case but usually exhibit additional structure, this

13The earlier result of Segal (2007) implies that for any matching protocol that always produces a stable matching,

there exists a preference realization R such that the protocol requires a communication cost of Ω(n) per agent.
14The original results in Gonczarowski et al. (2015) concern communication cost only. However, any lower bound

on communication cost automatically implies a bound on preference learning, because any protocol that uses Q choice

function queries can be made into a communication protocol with Q logn bits of communication, because the only

information relevant to computing a stable matching is the result of choice function queries.
15The construction of Gonczarowski et al. (2015) is based on embedding a worst-case input distribution of the

Unique-Disjointness problem (Razborov 1992) into the preference distribution of a sub-market of m = Ω(n) workers

and firms. The preferences are such that 1) every agent within the sub-market values a uniformly random subset of

m/4 partners within the sub-market highly; 2) with constant probability, no pair of agents within this sub-market

value each other highly reciprocally; with remaining probability, exactly one uniformly random pair of agents value

each other highly; and 3) the structure of the unique stable matching hinges on the existence of such a pair of agents.

Any matching protocol that is stable with high probability can be used to determine the existence of such a pair of

agents who value each other highly, and so the protocol requires Ω(n) bits of communication per agent as implied by

the hardness result of Razborov (1992) on the Unique-Disjointness problem.
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structure can be used to find stable matchings much more efficiently than what the above result

suggests.

2.4 Separable markets

In this section, we define separable markets, a restricted class of two-sided matching markets for

which we show in Section 3 that the communication requirement is much less than in arbitrary mar-

kets. After precisely stating the assumptions behind separable markets, we discuss in Section 2.4.1

why this is a reasonable model.

A separable market M = (I, J, ω,K,P) is a two-sided matching market with the following re-

strictions on the preference distribution P, the true state of the world ω, and the a priori knowledge

K of the agents.

We assume no restrictions on the preferences of one side. Without loss of generality, let the un-

restricted side be the workers. We assume the preferences of the firms follow a latent random utility

model with the following additively separable structure. (Hence the term “separable” markets.)

The latent utility of firm j for worker i is

uji = aji + εji, (1)

where aji is the systematic score of worker i for firm j, which represents the observable charac-

teristics for this worker-firm pair, and εji is the idiosyncratic score of worker i for firm j, which

represents the unobserved component of the firm’s preference for that worker. The utility of the

firm for being unmatched, uj0, is unrestricted. Denote this as firm j’s outside utility. We assume

that all idiosyncratic scores for firm j are distributed independently and identically according to a

distribution Fj and are independent of systematic scores, the preferences of workers, and the utility

of firms for being unmatched.

Let P(ω) denote the preference distribution described above, where the state of the world ω

encapsulates the preferences of workers, the outside utilities of the firms, the set of systematic

scores {aji}, and the idiosyncratic score distributions {Fj}. The worker preferences and firm

outside utilities are completed unrestricted, while the systematic and idiosyncratic scores satisfy

the following parametric assumptions, which together guarantee that the idiosyncratic scores are

sufficiently important compared to the systematic scores.

Assumption 1 (range of systematic scores). Without loss of generality,16 we assume that all

systematic scores aji are non-negative and mini∈I aji = 0 for all j ∈ J . Further, we assume the

range of systematic scores is upper bounded by a polylogarithmic function of market size n, i.e.,

a = O∗(1), (2)

16Simple translation of aji’s and uj0 yields this property for each j, given that uj0 is unrestricted.

13



where a = maxi∈I,j∈J{aji}. That is, there exists a constant C > 0 such that a ≤ logC n.

Assumption 2 (bounded hazard rate). For every firm j, the distribution of idiosyncratic scores,

Fj, satisfies a uniform bound on its hazard rate:

h(x) :=
F ′j(x)

1− Fj(x)
≤ 1 ∀x ∈ R. (3)

A bounded hazard rate is satisfied by any distribution with a sufficiently heavy tail, including the

exponential, the type-I extreme value, the log-normal, and the Pareto distributions. Note also that

the bound of 1 on the right side of (3) is without loss of generality, because one can multiplicatively

scale latent utilities by an arbitrary positive constant without affecting the underlying preferences,

and the same multiplicative constant would become the bound on the right side of (3).

The assumptions on the a priori knowledge K of agents are as follows.

Assumption 3 (lower bound on prior knowledge). Each agent knows the systematic scores that

are associated with them. (The systematic score aji is a priori known to firm j and worker i.) In

addition, workers and firms know that the state of the world ω satisfies Assumptions 1 and 2.

Note that assumption 3 requires certain information to be included in K, but leaves much

flexibility on the remaining content. In particular, it does not specify whether agents have additional

information on the state of the world, such as the systematic scores among other agents, the

distribution Fj for each firm, the preference of workers, or the outside utility of firms. Such

knowledge assumptions are not necessary, as all of our results hold regardless of how much additional

knowledge agents possess beyond that specified in Assumption 3.

As described in Section 2.2, each agent does not know their own preference realization a-priori,

but can learn this via choice function queries. Agents can learn about the other agents’ preferences

only through communication.

2.4.1 Discussion of assumptions.

The key assumptions behind separable markets are:

1. The additively separable structure of firm latent utilities, with systematic score aji mutually

known to firm j and worker i.

2. The idiosyncratic scores are i.i.d.

3. Firm preferences are sufficiently idiosyncratic (Assumptions 1 and 2).

14



The additively separable structure of firm preferences is motivated as follows: in many real

matching markets, the preference of at least one side depends on observable characteristics in a

predictable way. For example, in hiring for a position, a firm may value an applicant’s education,

GPA, relevant certification, and relevant work experience. An interested worker may also have

reasonable a priori knowledge of how important each of these characteristics is for a particular

position, and can assess her general level of fit without communicating with the firm. Likewise,

the firm may observe many of a potential worker’s characteristics from LinkedIn or a university’s

alumni database. The systematic score aji represents this mutually observable general level of fit

between worker i and firm j. Note that we allow this to vary for each worker-firm pair, allowing

for rich heterogeneities.

The idiosyncratic score εji represents everything that is unexplained by the observable com-

ponent. The assumption that they are i.i.d. is for technical convenience, and is prevalent in the

discrete choice literature as well as in most empirical studies in matching markets.17 In our analy-

sis, this assumption allows us to claim that with high probability, after examining many workers,

the firm must have found someone with a high idiosyncratic score. Furthermore, it allows us to

upper-bound the number of workers with a idiosyncratic score above a certain quantile. Because

these are the only times we use this assumption, we expect the analysis to be generalizable to

models in which the unobservable component of firm preferences exhibits mild correlations or mild

variations in magnitude across workers for each firm.18

Regarding our assumption that firm preferences are sufficiently idiosyncratic, we note that some

variant of this assumption is necessary to bypass the previous impossibility results. This is because

if idiosyncratic scores were identically zero, or if the systematic scores were to have an unbounded

range, then one can embed any arbitrary deterministic preferences into the separable market model,

and a variant of the impossibility result of Proposition 1 would apply to any protocol acting on a

particular distribution over separable markets.19 However, Appendix B shows that Assumption 1

may be relaxed to allow the range of systematic scores to be an arbitrary sublinear function of n

while still obtaining a non-trivial bound.

Note also that Assumptions 1 and 2 still allow a substantial amount of systematic variation in

the firm preferences. For example, suppose Fj is the exponential distribution with parameter 1,

17See for example Choo and Siow (2006), Agarwal (2015), Dagsvik (2000), Peski (2015), Menzel (2015), and

Galichon et al. (2016), as well as the review article Chiappori and Salanié (2016).
18However, if the correlations in preferences are allowed to be large and complex, then the negative result of

Gonczarowski et al. (2015) applies and no communication efficient protocol exists.
19Without the idiosyncratic component of firm preferences, worker i can infer nothing from her systematic score

for a firm, because she cannot meaningfully compare systematic scores across firms, as any increasing non-linear

transformation of systematic scores for a firm would perfectly preserve preference orderings.
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then a difference in systematic scores of 3 log n implies that the firm will prefer the worker with the

higher systematic score with a probability of 1− 1
n3 . Since there are only O(n2) worker-firm pairs,

our assumptions allow enough systematic variation for each firm to have multiple tiers of workers,

such that, with high probability, every worker in a better tier is preferred to every worker in a lower

tier.20 The number of tiers can also grow to infinity, as long as it is controlled by a polynomial

of log n, and the tiers for each firm can be completely distinct. This allows the separable market

model to be flexible enough to capture rich preference structures.

3 Main results

Our main technical results for separable markets are as follows.

1. We propose a matching protocol called the communication-efficient deferred acceptance (CEDA)

protocol, which is stable with high probability and in the worst case incurs communication

and preference learning costs of O∗(
√
n) per agent (see Theorem 1 in Section 3.1). This is

much lower than the Ω(n) cost needed for arbitrary two-sided markets (see Proposition 1).

2. This O∗(
√
n) communication and preference learning cost is essentially the best possible

guarantee for separable markets, as we give an example of a separable market in which any

matching protocol that is stable with high probability requires O(
√
n) bits of communication

and O(
√
n/ log n) bits of preference learning (see Theorem 2 in Section 3.2).

The CEDA protocol itself is a main contribution of the paper, as it has an intuitively appealing

structure and provides guidance on how matching platforms can facilitate efficient market clearing.

We also show in Section 5 that the protocol has good incentive properties.21

3.1 Communication-efficient deferred acceptance (CEDA)

The protocol we construct, which achieves the O∗(
√
n) guarantee, is called the communication-

efficient deferred acceptance (CEDA) protocol. The high-level idea is to allow workers to better

20In comparison, the preference distributions in Kojima and Pathak (2009) correspond to a O(1) bound on the

range of systematic scores, and cannot incorporate enough systematic variation to have multiple tiers.
21The incentive properties for CEDA are as follows: with high probability, no worker can unilaterally deviate

and improve her matching; no firm can unilaterally deviate and obtain someone better than its best stable partner.

Previous results have found that in a variety of large market models, the difference between the worker-optimal

and firm-optimal stable matches is small for the vast majority of agents (Immorlica and Mahdian 2005, Kojima and

Pathak 2009, Ashlagi et al. 2017, Lee 2017, Lee and Yariv 2017). In such cases, CEDA is approximately incentive

compatible for everyone.
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Figure 1: Illustration of qualification rules in CEDA for applying to a firm. The vertical axis shows

the systematic score of workers for firm j. The long rectangle on the left represents the set of

all workers, with the dashed regions to the right representing workers who received a preference

signal from the firm. There are three workers in the figure: i, i′ and i′′. Worker i qualifies for firm

j because her systematic score exceeds the threshold zj , worker i′ qualifies because she received

a preference signal, but worker i′′ does not qualify because she neither meets the qualification

requirement zj nor received a preference signal.

target their applications with the help of signals sent by firms, which help workers identify the firms

at which they have a non-negligible chance of acceptance. There are two types of signals.

• Preference signal: A firm j signals to worker i if it has a high idiosyncratic score εji for

the worker. All preference signals are sent at the outset.

• Qualification requirement signal: A firm j broadcasts a qualification requirement zj to

the entire market, which specifies the minimum systematic score a worker who did not receive

a preference signal needs in order to apply to the firm. Qualification requirement updates are

sent throughout the protocol.

The key property of the protocol is that if a worker i does not receive a preference signal from

a firm and if her systematic score is below its qualification requirement, then she would almost

certainly be rejected, so should not bother applying. We explain this point in more detail in

Section 3.1.1.

Definition 4. A worker i is said to systematically qualify for firm j if her systematic score meets

its qualification requirement, aji ≥ zj. The worker is said to qualify for the firm if she either

systematically qualifies for it or receives a preference signal from it. See Figure 1 for an illustration.

The protocol is defined formally as follows, and also implies a preference learning strategy.

Protocol 2. Communication-efficient deferred acceptance (CEDA).
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Initialize the qualification requirement for each firm j to the minimum possible systematic score22

zj = 0. There are two phases in CEDA.

1. Preference signaling: Each firm j places workers based on their systematic scores into

unit-ranged bins [0, 1), [1, 2), · · · , [a− 1, a].

The firm sends a preference signal to its top 2e
√
n most preferred workers from each bin.23

2. Deferred acceptance with qualification requirement: Run the sequential worker-proposing

deferred acceptance algorithm (Protocol 1 in Section 2.3) with the following modifications24:

(a) Workers apply only to firms for for which they qualify (see Definition 4).

(b) Each firm j, after every 3e log n
√
n applications received from systematically qualified

applicants, increases its qualification requirement zj by 1 and broadcasts this increase to

the market by sending a qualification requirement signal.

In practice, a platform can make it easier for agents to follow the protocol by estimating the

systematic scores, automating the qualification requirement updates, and only showing workers the

firms for which they currently qualify. This would also eliminate the need for broadcast messages.

We highlight also that the CEDA protocol is exactly the same for any market with set of workers

I, set of firms J , and range of systematic scores a; thus it demands only minimal knowledge on the

part of the protocol designer, cf. Remark 1 in Section 2.3.

The following is our main result about CEDA.

Theorem 1. In any sequence of separable markets satisfying Assumptions 1, 2 and 3, the CEDA

protocol (Protocol 2) is a matching protocol that is stable with high probability. Its communication

cost and preference learning cost are both at most O∗(
√
n) per agent in the worst case.

Before sketching the proof, we present the high-level intuition on what drives the reductions in

communication overhead in CEDA. Worker-proposing DA (Protocol 1) yields high communication

cost if there are many applications before the algorithm converges, and this can happen if either

i) most applications by worker are rejected by firms; or

22The qualification requirement will be an integer throughout the protocol, ensuring that it can be communicated

with O(logn) bits.
23If there are fewer than 2e

√
n workers in the bin, then the firm sends a preference signal to all of them.

24In addition, we require the identity of the worker selected to make the next application in Step 1 of Protocol 1

cannot depend on any information outside the history of application and acceptance decisions of DA, such as the

preference signals received by workers from firms to whom they have not applied yet.
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ii) firms’ utility only improves slightly with every acceptance, implying that a firm may tentati-

vely match with many candidates before reaching its final match.

CEDA overcomes the first problem by only allowing applications from workers who have a signifi-

cant chance of being accepted. The second problem does not occur in separable markets because

idiosyncratic scores are heavy-tailed (Assumption 2), implying that each acceptance is likely to

improve a firm’s utility by a significant amount.

3.1.1 Sketch of the proof.

The formal proof of Theorem 1 is in Appendix A. The main reason behind this result is what we

call CEDA’s no-false-negatives property.

Lemma 3.1 (no-false-negatives property). With high probability, throughout the running of CEDA,

if a worker does not qualify for a firm at a certain time, then she will not be accepted if she had

applied to the firm at that time.

This property implies that with high probability, CEDA prevents only applications that would

have been rejected anyway. So the sequence of acceptances in CEDA exactly matches that in the

DA protocol, and CEDA succeeds in finding the worker-optimal stable match.

The high-level intuition of why the property holds is as follows. At least one of two things must

occur for a worker to be (tentatively) accepted by a firm: she must have either a high systematic

score or a high idiosyncratic score. The definition of “not qualifying” (the inverse of Definition 4)

rules out both these possibilities, so workers who do not qualify would not have been accepted

anyway.

More precisely, define γj to be the
(
1 − 1√

n

)
-th fractile of the idiosyncratic scores for firm j,

γj := F−1
j

(
1− 1√

n

)
. Define xj to be firm j’s latent utility for the current tentative match in CEDA.

(This is initialized to uj0 and increases whenever the firm tentatively accepts a new worker.) We

show in Appendix A that CEDA satisfies the following two properties with high probability.

1. Every worker i whose idiosyncratic score for firm j is higher than γj receives a preference

signal. (This follows from the i.i.d. property of idiosyncratic scores, the definition of γj , and

the number of preference signals sent.)

2. For every firm j, the tentative match value xj increases sufficiently quickly relative to zj , so

that the following invariant holds throughout the running of the CEDA protocol,

zj ≤ max(0, xj − γj), (4)
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which implies that if a worker does not systematically qualify for firm j, then her systematic

score satisfies aji < xj − γj . This invariant holds due to the following concentration bound:

the maximum idiosyncratic score among 3e log n
√
n independent draws of Fj is at least γj +1

with probability at least 1 − 1
n3 . Intuitively, the maximum of many independent draws of a

heavy-tailed distribution is large with high probability, and we can make the probability as

high as 1− 1
nk

by taking ke log n
√
n draws.

The two points above together imply the no-false-negatives property, because when worker i

does not qualify for firm j, then the first property implies that εji < γj , and the second implies

that aji < xj − γj , so the firm’s utility for the worker satisfies uji = aji + εji < xj , and thus the

worker would not have been accepted anyway.

Having explained the intuition as to why CEDA successfully computes the worker-optimal

stable match with high probability, we now explain the reasoning behind the O∗(
√
n) bounds in

communication and preference learning cost. This follows from the observation that in CEDA, both

communication and preference learning can be upper bounded by the number of signals sent and

the number of applications. By construction, each firm sends only O∗(
√
n) preference signals and

O∗(1) qualification requirement signals. This implies that it can receive only O∗(
√
n) applications

from workers who do not systematically qualify, and O∗(
√
n) applications from workers who do

systematically qualify. This last bound follows from the observation that there are at most O∗(1)

updates to the qualification requirement for each firm, since Assumption 1 implies that after this

many updates the qualification requirement will have exceeded the highest possible systematic score,

and no worker would systematically qualify. Finally, for each update to the qualification score, there

are – by construction – only O∗(
√
n) applications from systematically qualified workers.

The argument is formalized in Appendix A. The proof shows that the probability that the

resulting matching is not stable is bounded above by a(n)
n2 + ne−

√
n/3, where a(n) = O∗(1) is the

bound on the range of systematic scores in Assumption 1.

3.2 The optimality of the O∗(
√
n) guarantee

The following example shows that the O∗(
√
n) guarantee of CEDA is asymptotically near optimal:

Consider a market with n workers and n firms. The preferences of both workers and firms follow a

separable structure, with all systematic scores being 0, and all idiosyncratic scores being drawn from

an exponential distribution with rate parameter 1. Each agent has an outside option of value logn
2 ,

which implies that each agent finds a uniformly random subset of about
√
n partners acceptable.

Agent preferences among acceptable partners are also uniformly random.

Intuitively, it is hard to find a stable matching in this market without at least Ω(
√
n) bits of

communication, because otherwise it is difficult even to identify which pairs of agents find each
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other mutually acceptable: out of n possible partners, an agent has on average only one whom she

finds acceptable and who reciprocally finds her acceptable, so finding mutually acceptable partners

is like finding needles in a haystack. The most obvious way of finding all mutually acceptable

partners is for every agent to communicate the set of agents whom she finds acceptable, which

requires Θ(log n
√
n) bits per agent. Theorem 2 shows that no protocol can do much better.

Theorem 2. There exists a sequence of separable markets for which any sequence of matching

protocols that is stable with high probability requires a communication cost of Ω(
√
n) per agent and

a preference learning cost of Ω(
√
n/ log n) per agent.25

The sequence of markets in Theorem 2 is exactly the example described above. An outline of

the proof in Appendix C is as follows. First, we show that any matching protocol that is stable with

probability at least 90% must approximately identify the set of worker-firm pairs who find each

other mutually acceptable. (The precise definition of “approximately identify” is technical and is

presented in the formal proof in the Appendix.) The reason is that there are O(n) such mutually

acceptable pairs, and a significant fraction of them must be matched in all stable matchings, since

O(n) agents are matched in total. There are n2 worker-firm pairs in total. For each pair, we use

ideas from information theory based on Shannon’s entropy and Shannon’s mutual information (see

Braverman 2015) to show that the protocol must use Ω(1/
√
n) bits of communication on average

to approximately determine mutual acceptability. This implies that n2 × Ω(1/
√
n) = Ω(n

3
2 ) total

bits of communication are needed, which implies the Ω(
√
n) per agent bound.

Finally, we show that this Ω(
√
n) lower bound on communication cost immediately implies a

Ω(
√
n/ log n) lower bound on preference learning cost. The reason is that any protocol that uses Q

choice function queries can be modified into a communication protocol with a communication cost

of O(Q log n) bits.

4 Two-round protocol with private communication

The CEDA protocol in Section 3.1 is sequential: a worker’s decision about what firms to apply to

depends on the firms’ current qualification requirements, which in turn depend on other workers’

application decisions. Implementing such a protocol may result in slow market convergence, as

agents need to wait for other agents to act before knowing what preference information to learn

next and how to act next. In this section, we explore the possibility of simultaneous protocols,

in which the dependence of each agent’s action on prior actions is minimized. In particular, we

25Our lower bound allows the communication protocol to be adaptive, to be randomized, and to broadcast messages

to every agent. Moreover, the bound holds even if all workers can communicate among themselves for free, and all

firms can communicate among themselves for free.
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consider two-round protocols.26 In the first round, agents simultaneously signal to various partners,

and in the second round everyone reports a partial preference list to a central matchmaker, based on

signals received during the first round. One interpretation of the central matchmaker is a centralized

clearinghouse, as in the National Residency Matching Program (NRMP). Another interpretation

is that it is a proxy for a decentralized matching process, after which agents arrive at a matching

in which no pair of agents who contacted one another form a blocking pair.

It turns out that one can construct a separable market in which any two-round protocol of

this form that is stable with high probability requires Ω(n) bits of communication per agent (see

Appendix H). In order to obtain a positive result, we introduce a simpler model of matching markets,

which we call tiered random markets. In such markets, agents are partitioned into tiers, and each

agent prefers better tiers to worse tiers and has uniformly random preferences among agents in a

given tier (see Section 4.1). This model still allows both vertical and horizontal differentiation, and

it yields clean insights about what kind of signals are most informative. Moreover, there is a highly

efficient two-round stable matching protocol, which we present in Section 4.4.

This protocol has an additional advantage: it uses only private messages, which are messages

visible only to a sender and a receiver, but not to anyone else. Requiring messages to be private

models markets in which there is no efficient way to broadcast a particular message to all agents

simultaneously. The formal definition is as follows.

Definition 5. A communication protocol Π is said to use only private messages if every message

specifies the identity of a receiving agent and is visible only to that agent. Furthermore, each

message an agent sends can depend only on the history of messages that the agent has seen, but

not on messages the agent has not seen.

As in the definition of a communication protocol in Section 2.3, the protocol still observes all

messages and chooses when to terminate with an output and who should send the next message.27

4.1 Tiered random markets

A tiered market is a two-sided matching market (I, J, ω,K,P) in which agents are partitioned into

commonly known tiers, and every agent prefers partners from a better tier to those from a worse

tier, and has uniformly random preferences for partners within a given tier.28

Precisely speaking, there are K ≥ 1 tiers of workers and L ≥ 1 tiers of firms. The state of the

world ω = (s, t), where s is a K-dimensional vector of positive integers, and t is a an L-dimensional

26We need at least two rounds for agents to be able to respond to signals from others.
27One can interpret this as the existence of an additional “operator” through which all messages are routed, so the

operator sees all messages and can choose who should send the next message.
28This preference structure is called “block-correlated” in Coles et al. (2013).
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vector of positive integers, satisfying

0 =: s0 < s1 < · · · < sK = nI ,

and 0 =: t0 < t1 < · · · < tL = nJ .

Let Ik = {sk−1 + 1, sk−1 + 2, · · · , sk}. This denotes the kth tier of workers. I1 is the best tier,

and IK the worst. Given worker i ∈ I, let k(i) denote the tier of the worker. This is the unique

k such that sk−1 < i ≤ sk. Similarly, let Jl = {nI + tl−1 + 1, · · · , nI + tl} denote the lth tier of

firms. (We add nI because we index the firms from nI + 1 to nI + nJ .) For every firm j, let l(j)

denote the tier of the firm. The a priori knowledge Ki of every agent i ∈ I ∪ J is {ω}. The true

preference distribution P(ω) is such that the preference realization Ri of each worker i ∈ I is a

uniformly random permutation of J1, followed by a uniformly random permutation of J2, and so

on. We assume that every firm is acceptable to the worker. The preferences of firms are defined

analogously.

Tiered random markets model markets in which the vertical differentiation is coarse and the

horizontal differentiation is idiosyncratic. For example, in the academic job market for certain

subfields, one may argue that departments are clustered into quality-differentiated tiers, and every

applicant prefers better tiers but preferences within each tier are driven by personal preferences

that can be modeled as essentially random. Furthermore, applicants may also be clustered into

tiers based on publication record and school of origin, with different departments having essentially

random preferences within each tier based on their particular needs at the moment.

4.2 Better and worse positions

We define a notion of relative competitive position, which intuitively indicates who has more market

power in a tiered random market. We say that a worker i is in a weakly better position than firm

j if sk(i) ≤ tl(j). In other words, there are weakly fewer workers in tiers as good as i as there are

firms in tiers as good as j (workers as good as i are in short supply). Similarly define this for firms.

Define weakly worse position in an analogous way with the inequality reversed.

These definitions are motivated by the following result from previous work. In a uniformly

random market, which is a special case of tiered random markets with one tier on each side, the

DA algorithm terminates quickly when the proposing side has weakly fewer agents, but not when

it has strictly more agents. (For example, Ashlagi et al. (2017) show that in a market with n − 1

workers and n firms, the average number of applications in the worker-proposing DA algorithm

is about log n per agent, whereas the average number of applications in the firm-proposing DA is

about n
logn per agent.) This implies that it is more efficient in terms of communication to have the

side with fewer agents do the proposing.

23



The protocol we propose will have agents only initializing contact with potential partners in

weakly worse positions than themselves.

4.3 Example and intuition

Before giving the full protocol, we consider a simple numerical example, which will illustrate the

main insights. Suppose that there are two tiers of workers of 50 workers each. We call these the

top workers and average workers respectively. Similarly, there are two tiers of firms, which we call

the top and average firms. There are 20 top firms and 90 average firms, as illustrated in Figure 2.

The first observation is that the tier structure precludes certain matches in a stable matching.

For example, in every stable matching, every top firm must be matched with a top worker. The

reason is that there are more top workers than top firms, and any top worker who is not matched

with a top firm would like to be matched to one. Thus, the average workers in this example have no

chance whatsoever of being matched with a top firm. More generally, in a tiered random market,

worker i can be matched with firm j only if their tiers overlap: sk(i)−1 < tl(j) and sk(i) > tl(j)−1.

The second observation is that it is more efficient to have the agents signal partners with

(weakly) worse positions than themselves. In the example, it is more efficient for top firms to signal

top workers than the reverse, because there are fewer top firms than top workers. Similarly, it is

more efficient for average firms to wait for signals from both top and average workers, because when

we take out the top workers who will be matched to the top firms, there are 100− 20 = 80 workers

left, and 90 average firms. So the previous results for uniformly random markets suggest that it is

better for the workers to signal. These directions of signaling are shown in the arrows in Figure 2.

The third observation is that because preference signals are sent in parallel, certain agents may

have to send extra signals to account for the fact that potential partners may already be taken up

by competitors from better tiers. For example, for each of the average workers, there are 90 average

firms she can signal, but 30 of these will end up matching with a top worker, against whom she has

no chance. So for every three signals she sends, in expectation one would be wasted. This means

that she should amplify the number of signals she sends by a factor of 3
2 .

For certain agents, this amplification effect may be large. For example, consider the case in

which there is a single tier of n firms and there are n tiers of one worker each, so that the workers

are completely vertically differentiated. In this example, the last ranked workers will need to

signal order n firms, because of the amplification effect. However, one can show that the average

amplification needed is only O(log n) in this case.29 For arbitrary tier structures, one can show

that the average amplification needed is always small.

29The reason is that the worker ranked number k needs to send only O( n
n−k+1

) signals.
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workers firms

Figure 2: An example of a tiered random market (see Section 4.3). There are two tiers of workers,

I1 and I2, and two tiers of firms, J1 and J2. The height of each rectangle corresponds to the number

of agents in that tier. The arrows show the direction of the most informative signaling. The top

workers I1 should signal to the average firms J2, and wait for the top firms to signal to them. The

bottom workers I2 should signal to the bottom firms as well, but they need to amplify the number

of signals they send because some of the bottom firms would already be taken by top workers.

4.4 The targeted signaling protocol

In this section, we describe a two-round protocol for tiered random markets that is stable with high

probability and uses only private messages. We begin with a high-level summary. The protocol

designates for each agent a target tier based on the tier structure alone (Definition 6). In the first

round, every agent signals a certain number of favorite partners within the agent’s target tier. A

signal intuitively represents initiating contact in a decentralized job market. In the second round,

agents submit a partial preference ranking of partners among those they signaled or received a

signal from, and the protocol runs the DA algorithm using the partial preferences collected.

Definition 6. The target tier of a worker i is the best tier of firms that is in a weakly worse

position than she is. In other words, this is Jl, where l = min{l : tl ≥ sk(i)}. Similarly define the

target tier of each firm j.

In the example in Figure 2, the target tiers are indicated by the arrows, so that the target tier

of top firms is top workers, the target tier of top workers is bottom firms, and so on. The bottom

firms do not have a target tier because they are in the worst position possible. As explained in

Section 4.3, it is most efficient for agents to each limit signals to their target tier. However, the

number of signals sent needs to be amplified in inverse proportional to the fraction of target-tier

agents left over after competitors in better tiers have found matches. This is precisely stated below.

Definition 7. For each worker i in tier k with target tier l, define her relative competitiveness for
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her target tier

ρ(i) = min

(
1,
tl − sk−1

tl − tl−1

)
.

This is the proportion of the target tier that will not be matched to workers from better tiers.

Similarly define ρ(j) for firms.

Definition 8. Define the target number of an agent i ∈ I ∪ J as

r(i) =
24 log2 n

ρ(i)
.

In the example, the relative competitiveness of top firms and top workers is 1, whereas the

relative competitiveness of the bottom workers is the proportion of bottom firms that are unshaded

in Figure 2, which is equal to 60
90 = 2

3 . The most important feature of the target number is that it is

inversely proportional to ρ(a), which matches the level of amplification in the example. The log2 n

multiplier accounts for competition from the agent’s own tier.30 The constant 24 is an artifact of

the analysis in Appendix E and is not the minimum possible constant.

The protocol is precisely defined as follows.

Protocol 3. Targeted signaling protocol.

The protocol has two rounds and uses only private messages.

1. Signaling round: every agent i ∈ I ∪ J signals to the agent’s favorite r(i) partners in the

agent’s target tier.

2. Matching round: every agent submits to the protocol a partial preference ranking of part-

ners, with the ranking restricted to partners who either signaled to the agent or to whom the

agent signaled. The protocol then outputs the worker optimal stable matching with respect to

the submitted preferences (computed by running worker-proposing DA off-line).

Theorem 3. For any sequence of tiered random markets, the targeted signaling protocol is a ma-

tching protocol that uses only private messages and is stable with high probability. Its average

communication cost is O(log4 n) per agent, and its average preference learning cost is O(log3 n) per

agent.

30A factor of logn is necessary because even when there is one tier on each side, agents on the short side of the

market obtains an expected rank of Ω(logn) (Pittel 1989). (Obtaining a rank of 1 means being matched with one’s

favorite partner; a rank of 2 means one’s second favorite, and so on.) The extra logarithmic factor in 24 log2 n is an

artifact of the analysis (see Remark 3 after Theorem 3.)
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The proof of Theorem 3 is in Appendix E. The main steps are as follows. First, we show

that, with high probability, a certain subset of signals sent in the signaling round contains a stable

matching. This result, stated in Lemma E.1, is obtained by proving a new bound on the average

rank of agents in any stable matching in unbalanced uniform random markets.31 Second, we

show that whenever this subset of signals contains a stable matching, running DA on the partial

preferences as in the matching round returns a stable matching. This result uses the structure of

tiered markets and the definition of target tier. (In general, even if a set of partial preferences

contains a stable matching with respect to full preferences, running DA on these partial preferences

may result in a matching that is stable only with respect to the partial preferences.) Third, we

count the total number of signals and show that it is no more than O(log3 n) per agent, and the

communication cost naturally has an additional logarithmic factor.32 The proof shows that the

probability that the resultant matching is not stable is no more than 18
n , and the average number

of signals sent per agent is no more than 60 log3 n.

Remark 2. An immediate corollary of Theorem 3 is that in the targeted signaling protocol, with

high probability, the number of agents who experience more than
√
n bits of communication is at

most33 O∗(
√
n). Intuitively speaking, some agents may experience relatively more communication,

but the number of such agents is a vanishing fraction of the population. In Theorem 8 of Appen-

dix I, we demonstrate a tiered random market where some agents must experience Ω(
√
n) bits of

communication under any protocol that uses private messages and is stable with high probability.

Remark 3. We also have a variant of the targeted signaling protocol that saves a factor of log n:

its communication cost is O(log3 n) bits per agent and its preference learning cost is O(log2 n) per

agent. It involves a much more complicated formula for the target number than in Definition 8. In

the interest of a clean exposition, we show the simpler version here.

Remark 4. The targeted signaling protocol presented above achieves near optimal communication

cost. In Theorem 8 of Appendix I, we give an example of a tiered random market in which any

matching protocol that uses only private communication and is stable with high probability must use

at least Ω(log2 n) bits of communication per agent. This lower bound includes protocols that allow

an arbitrary number of rounds of communication. The targeted signaling protocol achieves near

optimal cost using only two rounds.

31The bound, stated in Proposition 2, is analogous to Theorem 2 of Ashlagi et al. (2017), except that the constant

is worse but the notion of “high probability” is stronger, as per our requirement.
32This is because communicating the identity of each particular agent requires logn bits.
33This follows because the total amount of communication is O(n log3 n) = O∗(n).
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5 Incentive compatibility

The deferred acceptance (DA) protocol, even in the setting with full preference elicitation, is not

completely incentive compatible: an agent on the non-proposing side may profitably deviate from

truthful reporting by truncating his or her preference ranking.34 Nevertheless, the DA mechanism is

known to be strategyproof for the proposing side.35 Moreover, assuming truthful reporting by other

agents, an agent on the non-proposing side cannot unilaterally deviate (misreport her preferences)

and be matched with someone better than her best stable partner.36

We show that, with high probability, all the matching protocols proposed in this paper are in a

certain sense “as incentive compatible” as DA with full preference elicitation. By Theorem 4.11 in

Roth and Sotomayor (1990) (originally due to Demange et al. 1987), being as incentive compatible

as DA is the best one can hope for in any mechanism that returns stable matchings.

Definition 9. For a given sequence of two-sided matching markets, a sequence of matching pro-

tocols is as incentive compatible as DA with high probability if there exists a function δ(n) with

δ(n)→ 0 as n→∞, such that for any fixed agent, with probability at most δ(n), the agent can uni-

laterally deviate from the protocol and be matched with someone better than the agent’s best stable

partner (under complete preferences). The probabilities are defined with respect to the distribution

of preferences P(ω).

Theorem 4. For any sequence of separable markets, the CEDA protocol is as incentive compatible

as DA with high probability. For any sequence of tiered random markets, the targeted signaling

protocol is as incentive compatible as DA with high probability.

The “with high probability” caveat is needed because, with a small probability, the protocols

may fail to find a stable matching. The proof of Theorem 4 is in Appendix G. The proof is based

on applying a “Blocking Lemma” by Gale and Sotomayor (1985) to a market in which preferences

are restricted to the subgraph of signals, which is the set of worker-firm pairs in which at least

one member of each pair sent a signal to the other (i.e., a preference signal or an application in

the CEDA protocol, or a signal in the targeted signaling protocol). The same lemma is used to

prove the incentive properties of the original DA algorithm.37 The new ingredient here is to use

properties of the subgraph of signals generated by our protocols. In particular, we make use of the

fact that a single deviating agent has little control over the edges of the subgraph between other

agents.

34See Chapter 4 of Roth and Sotomayor (1990) for a thorough exposition of the incentive properties of DA. See Coles

and Shorrer (2014) for a discussion of the manipulability of DA in a balanced uniformly random market.
35See Roth (1982) and Dubins and Freedman (1981).
36The best stable partner of an agent is her most preferred partner in all stable matchings.
37See pages 92–93 of Roth and Sotomayor (1990).
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The proof shows that the respective protocols are as incentive compatible as DA whenever they

succeed in finding a stable matching. By the proofs of Theorems 1 and 3, we can set the function

in Definition 9 to δ(n) = a(n)
n2 + ne−

√
n/3 for CEDA, where a(n) = O∗(1) is the upper bound to the

range of systematic scores in Assumption 1, and to δ(n) := 18
n for the targeted signaling protocol.

Since both protocols we propose are based on the worker-proposing DA, they are also, with

high probability, strategyproof for workers.

Corollary 1. For any sequence of separable markets, the CEDA protocol is strategyproof for all

workers, with high probability. For any sequence of tiered random markets, the targeted signaling

protocol is strategyproof for all workers, with high probability.38

Theorem 4 also implies that whenever an agent has a unique stable partner, the probability that

the agent can profitably deviate from the protocol vanishes in large markets. Thus, if each agent’s

probability of having multiple stable partners is small, then following the protocol is an ε-Bayes

Nash equilibrium. In “typical” tiered random markets, we can prove that agents have vanishing

probability of having multiple stable partners, thus implying approximate incentive compatibility

of the targeted signaling protocol for everyone. This is made precise as follows.

Definition 10. A tiered market satisfies general imbalance if the sets {t1, t2, · · · } and {s1, s2, · · · }
are disjoint.

Theorem 5. There exists a function δ : N → R satisfying δ(y) → 0 as y → ∞ such that the

following holds. For any y ∈ N, consider any tiered random market satisfying general imbalance in

which the number of agents in each tier is at least y. Then for each agent, the probability that the

agent can profitably deviate from the targeted signaling protocol is at most δ(y).

The proof is in Appendix G. Besides applying Theorem 4, the proof uses ideas from Ashlagi

et al. (2017) to show that the proportion of agents with multiple stable partners converges to

zero under the general imbalance condition when the number of agents in each tier is large. The

convergence rate shown in the proof is δ(y) = o
(

1√
log y

)
and is close to the best possible.39

6 Discussion

While we study particular mathematical models in this paper, the general message is broader: a

market clearing outcome (stable matching) can be achieved in large matching markets by informa-

38Here, “with high probability” is defined as in Definition 9: the probability space is P(ω) and the probability of

not being strategyproof is no more than δ(n) = o(1).
39It is impossible to show a convergence rate faster than O( 1

logn
) because in a uniformly random market with n

workers and n−1 firms in which every partner is acceptable to every agent, the probability that an agent has multiple

stable partners is approximately 1
logn

, following the analysis of Ashlagi et al. (2017).
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tive signaling, despite real-world limitations in communication. The types of informative signals we

uncover for matching markets include the following: signaling partners for whom one has a particu-

lar idiosyncratic preference, broadcasting to the market a requirement on observable characteristics

(the platform can do this), and focusing on initiating contact with easy-to-get partners while wai-

ting for hard-to-get partners to initiate contact. These types of signaling are already present in

many real matching markets, and our results highlight their importance to market efficiency.

One potential criticism of our model is that preference learning costs do not distinguish between

finding one’s best option among many or among few alternatives. However, if we alter the cost model

so each choice function query with input set S incurs cost c(|S|) for some increasing function c(·),
then Theorem 1 still holds with the guarantees on preference learning cost weakened to O∗(

√
nc(n))

bits per agent. This is still an asymptotic improvement over previous results if c(n) = o(
√
n).

Another model of preference learning would be to only allow each agent to query for her idiosyncratic

score for one partner at a time, but in that model it is hopeless to achieve sub-linear preference

learning cost because there is always the chance that one’s favorite partner was not queried.

Another potential criticism is that agents in our model know the systematic scores associated

with them perfectly. However, if agents know their systematic scores up to an additive error of

no more than a constant δ > 0, then Theorems 1 and 4 still hold with the following variant of

CEDA: 1) an agent systematically qualifies for firm j if her estimate of her systematic score is no

less than zj− δ; 2) increase by a multiplicative factor of eδ the number of preference signals sent by

firms to each bin, as well as the number of applications from systematically qualified agents before

increasing the qualification requirement by one.

This paper raises several questions for future research. One question is how many rounds of

communications are required to keep the overall level of communication low.40 In Appendix H, we

give a simple example of a separable market in which no two-round protocol can reach a stable

matching with low communication cost. In that example, the problem would be solved by having

an additional “aftermarket” round.41

Another question is, “how heterogeneous do incurred communication and preference learning

costs need to be across agents?” In the targeted-signaling protocol, while most agents incur a very

low communication cost (polylogarithmic in the market size), some agents require more communi-

cation effort. To see this, consider the following example: there are n tiers of one worker each, and

one tier of n firms. In this example, the top workers can essentially choose whichever firm they

like, but the bottom workers can be matched only with leftover firms after workers from higher

40One paper that studies the number of rounds of communication needed in a matching model is Dobzinski et al.

(2014). However, they do not consider the stability of the match.
41An analogous aftermarket is implemented in the NRMP after the main match takes place.
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tiers have already made their choices. In the targeted-signaling protocol, the bottom worker in this

example incurs a linear communication cost. Moreover, we show in Appendix I that for this market,

any protocol that uses only private messages requires some agent to incur a communication cost

on the order of the square root of the market size. It would be interesting to study, either theore-

tically or empirically, the relationship between the market position of an agent and the minimum

communication effort required from her.
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Atila Abdulkadiroğlu, Yeon-Koo Che, and Yosuke Yasuda. Expanding “choice” in school choice. American

Economic Journal: Microeconomics, 7(1):1–42, 2015.

Hiroyuki Adachi. A search model of two-sided matching under nontransferable utility. Journal of Economic

Theory, 113(2):182–198, 2003.

Nikhil Agarwal. An empirical model of the medical match. The American Economic Review, 105(7):1939–

1978, 2015.

Nick Arnosti, Ramesh Johari, and Yash Kanoria. Managing congestion in decentralized matching markets. In

Proceedings of the Fifteenth ACM Conference on Economics and Computation, pages 451–451. ACM,

2014.

Itai Ashlagi, Yash Kanoria, and Jacob D. Leshno. Unbalanced random matching markets: The stark effect

of competition. Journal of Political Economy, 125(1):69–98, 2017.

Christopher Avery, Christine Jolls, Richard A. Posner, and Alvin E. Roth. The market for federal judicial

law clerks. The University of Chicago Law Review, 68(3):793–902, 2001.

Laszlo Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity theory. In

Proceedings of the 27th Annual Symposium on Foundations of Computer Science, pages 337–347. IEEE,

1986.

Abhijit Banerjee, Esther Duflo, Maitreesh Ghatak, and Jeanne Lafortune. Marry for what? caste and mate

selection in modern india. American Economic Journal: Microeconomics, 5(2):33–72, 2013.

Mark Braverman. Interactive information complexity. SIAM Journal on Computing, 44(6):1698–1739, 2015.

Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From information to exact communi-

cation. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing, pages 151–160.

ACM, 2013.

Hector Chade, Jan Eeckhout, and Lones Smith. Search and matching models in microeconomics. Technical

report, working paper, 42., 2014.

Yeon-Koo Che and Olivier Tercieux. Efficiency and stability in large matching markets, 2017. working paper.

Yeon-Koo Che and Olivier Tercieux. Payoff equivalence of efficient mechanisms in large matching markets.

Theoretical Economics, 13(1):239–271, 2018.

31
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A Proof of correctness and efficiency of CEDA (Theorem 1)

In this appendix, we prove Theorem 1 from Section 3.1, which states that in any separable market,

the CEDA protocol is a matching protocol that is stable with high probability (see Definition 1),

and that it uses only communication and preference learning costs of O∗(
√
n) per agent. After

proving this, we give a generalization of CEDA that works when the range of systematic scores is

upper bounded by a general function g(n), instead of the O∗(1) upper bound assumed in Section 2.4.

Proof of Theorem 1. We first prove that CEDA is a stable with high probability in separable mar-
kets. (In other words, it succeeds in finding a stable matching with high probability.) Define γj to
be the

(
1 − 1√

n

)
-th fractile of idiosyncratic score for firm j, γj = F−1

j

(
1 − 1√

n

)
. Define xj to be

firm j’s latent utility for the current tentative match. (This is initialized to uj0 and increases with
every tentative acceptance by the firm.) The proof relies on the two following lemmas, which we
will prove later.

Lemma A.1. With probability at least 1−o( 1
n), for every firm j, every worker i whose idiosyncratic

score for the firm is at least γj receives a preference signal from the firm.

Lemma A.2. With probability at least 1− o(1/n), throughout the running of the CEDA protocol,
we have the following invariant for every firm j,

zj ≤ max(0, xj − γj) (5)

Given Lemma A.1 and A.2, we show that CEDA successfully computes the worker-optimal
stable match with high probability. The argument is by showing what is referred to as the no-
false-negatives property in Section 3.1, which is that with high probability, CEDA never prevents
an application that would have been accepted. The usefulness of this property comes from the fact
that when CEDA does not prevent any application that would have been accepted, then CEDA
reproduces the outcome of the standard DA algorithm (Protocol 1), which is the worker-optimal
stable match.

The no-false-negatives property follows from the two lemmas above. This is because the only
applications CEDA prevents are from worker-firm pairs (i, j) in which worker i does not qualify to
firm j. By definition, this means that the worker does not systematically qualify for the firm, and
has not received a preference signal from the firm. Suppose that we are in the 1 − o( 1

n) fraction
of preferences in which the statements in both Lemma A.1 and A.2 are true. Then the first clause
above implies that aji < zj , which implies that zj > 0, so by Inequality (5), aji < zj < xj − γj .
The second clause above implies that εji < γj . Together, these two clauses implies that

uji = aji + εji < xj − γj + γj = xj ,

so worker i would not have been accepted by firm j even if the worker applied. This implies that
with probability 1− o( 1

n) (with probability defined on the randomness in the preferences), CEDA
produces the worker-optimal stable match.

Having established that CEDA is stable with high probability in separable markets, we now
prove the O∗(

√
n) bounds on the average communication cost per agent, as well as on the average

preference learning cost per agent.
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First, we bound the number of signals sent per firm. For preference signals, this is at most
O∗(
√
n) because there are O∗(1) bins and 2e

√
n signals per bin. For qualification signals, this

is at most O∗(1) because this is the maximum range of systematic scores for any firm and the
qualification requirement increases by 1 for every signal. (When the qualification requirement
exceeds the maximum systematic score, then the increases in qualification requirement would also
stop because there are no systematically qualified applicants.)

The bounds on the number of signals sent per firm imply a O∗(
√
n) bound on the number of

applications received by each firm. This is because the number of applications from workers who
do not systematically qualify is upper bounded by the number of preference signals. The number
of applications from workers who do systematically qualify is upper bounded by 3e log n

√
n times

the number of qualification requirement updates. Both of these are O∗(
√
n).

To bound preference learning cost, observe that the only choice function queries needed in CEDA
are for preference signals, applications, and responses to an application, and each of these requires
exactly one choice function query. This proves the O∗(

√
n) per agent bound on preference learning

cost. For communication cost, observe that each preference signal, application, and response to an
application can be communicated in O(log n) bits, as this suffices to encode the identity of an agent.
Each qualification requirement signal can also be represented by O∗(1) bits, since each qualification
requirement zj only takes integer values and have a range of O∗(1) bits.

To complete the proof of Theorem 1, we prove Lemmas A.1 and A.2 below. Both of these use
Lemma A.3, which we derive first.

Lemma A.3. If a random variable Z is distributed according to CDF F with bounded hazard rate

h(x) =
F ′(x)

1− F (x)
≤ 1 ∀x ∈ R.

Then for all x ∈ R,
P(Z ≥ x+ 1)

P(Z ≥ x)
≥ 1

e
.

Proof of Lemma A.3. Define φ(x) = log(1 − F (x)). Note that bounded hazard rate implies that
the derivative φ′(x) ≥ −1. The result follows from the fact that the desired conditional probability
is simply exp(φ(x+ 1)− φ(x)). �

Proof of Lemma A.1. For a given firm j, suppose on the contrary that there exists a worker i whose
idiosyncratic score exceeds γj but who does not get a preference signal from the firm. Then there
must be at least 2e

√
n other workers in the same bin as worker i who do receive a preference signal.

This in turn implies that there are 2e
√
n other workers with idiosyncratic score at least γj − 1.

Let random variable Y denote the number of workers in the bin with idiosyncratic score of at
least γj−1. Define y = E[Y ]. By Lemma A.3 (with x in the Lemma being γj−1), we get y ≤ e

√
n.

Furthermore, y ≥
√
n by definition of γj . Let M = 2e

√
n. Note that 2y ≤M . By Chernoff bound,

P(Y ≥M) ≤ P(Y ≥ 2y) ≤ exp

(
−1

3
y

)
≤ exp

(
−1

3

√
n

)
= o

(
1

n2

)
. (6)

Thus, after a union bound on the O∗(1) bins per firm and O(n) firms, we get that the desired
result.
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Proof of Lemma A.2. Fix firm j, the invariant on zj (see Inequality (5)) is initially satisfied by
definition, as zj = 0 ≤ max(0, xj − γj). There are at most O∗(1) increases to zj throughout the
running of CEDA. Since the right hand side of the invariant can only increase, it suffices to upper
bound the probability that zj > xj + γj after each of these increases in zj .

Now, suppose that the qualification requirement zj is equal to y at some point in CEDA. We
show that with probability at least 1− 1

n3 , after 3e log n
√
n applications from systematically qualified

workers, the tentative match value xj is at least y + γj + 1. This is because if xj is less than this
after so many applications from systematically qualified workers, then it must be that all of those
workers had idiosyncratic score less than γj + 1. By Lemma A.3, the chance that any worker has
idiosyncratic score at least γj + 1 is at least 1

e
√
n

. (Lemma A.3 applies because of the restriction

in footnote 24 regarding how the next worker applicant is picked: As a result, as analysts we can
pretend we don’t know which preference signals were sent, and when a worker i applies to firm j, we
can first check if the worker is systematically qualified for that firm. If so, εji remains independent
of the information we know so far, and is thus a fresh draw from distribution Fj .) So the chance
that not one of 3e log n

√
n workers had such a high idiosyncratic score is at most(

1− 1

e
√
n

)3e logn
√
n

≤ 1

n3
.

The above statement implies that regardless of what the value of y = zj is at a certain time,
after 3e log n

√
n applications from systematically qualified workers, we have that with probability

at least 1− 1
n3 , the qualification requirement at that time is

zj = y + 1 ≤ xj − γj ≤ max(0, xj − γj).

Using this argument, and counting from the first application from a systematically qualified
applicant, we get that with probability at least 1 − O∗(1)

n3 = 1 − o( 1
n2 ), the invariant is satisfied

after every qualification requirement update. A union bound on the O(n) firms yields the desired
result.

This completes the proof of Theorem 1.

B Extension of CEDA to larger range of systematic scores

Suppose now that the range in systematic scores for a firm is upper bounded by a general function
g(n), instead of by the O∗(1) bound assumed in Assumption 1. Finding a stable match in such a
market is a more difficult problem because there is a greater variation of possible unknowns. In
fact, if we allow g(n) to be as high as O∗(n), then one can show that even with idiosyncratic scores
satisfying bounded hazard rate, it is possible to embed the worst-case examples of Gonczarowski
et al. (2015) into our model so that any matching protocol that is stable with high probability must
use at least Ω(n) bits of communication per agent.

Nevertheless, we can generalize CEDA to cases in which g(n) = o(n), and still provide a
O∗
(√

ng(n)
)

guarantee on communication and preference learning costs. This is nontrivial because

O∗
(√

ng(n)
)

= o(n), so this bypasses the bypasses the impossibility result for arbitrary markets
(Proposition 1). The protocol is as follows.
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Protocol 4. Generalized CEDA
Initialize the qualification requirement for each firm j to zj = 0. There are two phases.

1. Preference signaling: Each firm j bins workers according to systematic scores into unit-
ranged bins [0, 1), [1, 2), · · · . For each bin, let the number of workers be l. The firm sends a
preference signal to its top

M(n, l) = max

(
(log n)2, 2el

√
g(n)

n

)
(7)

most preferred workers from the bin.

2. Deferred acceptance with qualification requirement: Proceed as in step 2 of the CEDA
protocol (see Section 3.1), except that we change the number of systematically qualified appli-
cations received before increasing the qualification requirement by one to

3e log n

√
n

g(n)
.

Note that the only changes when generalizing CEDA are the number of preference signals sent
in each bin, and the number of applications to wait for before each update of the qualification
requirement. The underlying framework is the same.

Theorem 6. In any separable market in which the range of systematic scores is at most g(n), the
generalized CEDA protocol (Protocol 4) is a matching protocol that is stable with high probability.
In the worst case, its communication cost and preference learning cost are O∗(

√
ng(n)) per agent.

Proof of Theorem 6. Define γj to be now the
(
1−

√
g(n)/n

)
-th fractile of idiosyncratic scores. By

the argument in the proof of Theorem 1, to show that the generalized CEDA protocol is stable
with high probability, it suffices to prove that Lemmas A.1 and A.2 hold in this new context with
this new definition of γj .

For Lemma A.1, the same argument works except we need to modify the Chernoff bound (6)
to handle bins with few workers. As in the previous proof of Lemma A.1, for a particular bin with
l workers, define Y to be the number of workers in the bin with idiosyncratic score at least γj − 1,

and y = E[Y ]. By Lemma A.3, y ≤ e

√
g(n)
n l. Define β = M(n, l)/y − 1. By definition of M

(Equation 7), β ≥ 1, and βy ≥ 1
2M(n, l) = Ω(log2 n). By Chernoff bound,

P(Y ≥M(n, l)) ≤ max

(
e−

β2y
3 , e

− β2y
2+β

)
≤ exp

(
−1

2

βy

3

)
≤ exp

(
−Ω(log2(n))

)
= o

(
1

n3

)
.

As before, a union bound over all g(n) bins for each firm and the O(n) firms yields the desired
result.

For Lemma A.2, the same argument as in the previous proof applies. Concretely speaking,
suppose that the tentative match value zj is equal some value y at some point. With probability

at least 1 − 1
n3 , after seeing 3e log n

√
n
g(n) applications from systematically qualified workers, the

tentative match value xj is at least y + γj + 1. This is because the chance that any worker has
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a idiosyncratic score of at least γj + 1 is at least 1
e

√
g(n)
n , and the chance that none of these

systematically qualified applicants have such a high idiosyncratic score is at most(
1− 1

e

√
g(n)

n

)3e logn
√

n
g(n)

≤ 1

n3
.

After establishing Lemmas A.1 and A.2 for this new setting with range of systematic score being
g(n), we get from the argument in the proof of Theorem 1 that the generalized CEDA protocol is
stable with high probability for such markets.

As before, to prove the bound on communication and preference learning costs, it suffices to
bound the number of signals and applications per agent. By definition and by the assumption
that g(n) = o(n), each firm sends at most O∗(

√
ng(n)) preference signals. This also bounds the

number of applications from workers who are not systematically qualified. Each firm also sends at

most g(n) qualification requirement signals, and for each such signal, receives at most O∗
(

n
g(n)

)
applications from systematically qualified workers. So the total number of signals and applications
is at most O∗(

√
ng(n)) per agent, which is what we needed to prove.

C Proof of Near Optimality of CEDA (Theorem 2)

We obtain the communication lower bound in a model that is even stronger than the broadcast
model. Consider the following two-party relaxation of the problem of finding a stable matching.
Alice controls all the workers, and Bob controls all the firms. The workers’ and firms’ preferences
are generated according to the model. Alice and Bob want to figure out a stable matching by
communicating with each other. Note that if there is a distributed broadcasting protocol that uses a
total of B bits of communication, then Alice and Bob can simulate it using B bits of communication:
Alice will simulate all the workers’ messages, and Bob will simulate all the firms’ messages. Note
that the converse is not true, since Alice’s messages are allowed to depend on the preferences of
all workers simultaneously (which amounts to having “free” communication among workers). We
will show an example where Ω(n3/2) communication between Alice and Bob is necessary, which
will immediately imply an Ω(n3/2/n) = Ω(

√
n) lower bound on average communication per agent

needed to solve the original (harder) problem.
In fact, we show our lower bound under a further restriction of the model with the workers’

preferences being stochastic and similar to the firms’ preferences. The construction is as follows.
There are n workers and n firms. Let vij be worker i’s latent utility for firm j and uji be firm
j’s latent utility for worker i. Let both be distributed independently according to Exp(1), which
is the exponential distribution with rate parameter 1 (i.e., the systematic scores are zero, and the
idiosyncratic scores are exponentially distributed). Let the value of the outside option be logn

2 for

every agent. Note that P(vij ≥ logn
2 ) = 1√

n
. Therefore, we expect every agent to have around

√
n

acceptable partners.
Let Alice be given all the workers’ preferences, and Bob be given all the firms’ preferences. Let

π be the communication protocol, at the end of which Alice and Bob output a matching µπ that is
stable with probability at least .9 (that is, the matching protocol is successful with a high constant
probability). We claim that it must be the case that the length of the protocol (i.e., the number
of bits of communication), is bounded as |π| = E[|Π|] = Ω(n3/2), where Π is the realization of the
protocol π.
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We will focus only on whether a pair of agents find each other mutually acceptable (ignoring
other ordinal information), such mutually acceptable pairs being the only pairs that can be matched
under any stable matching (this will lead to Claim C.2 below). If worker i and firm j are a mutually
acceptable pair, and moreover, this is the only mutually acceptable pair of which each of i and j is
a member, then (i, j) must be a matched pair under any stable matching. This will yield Claim C.1
below. We will draw on ideas from information complexity theory (see, e.g., Braverman (2015)),
together with Claims C.1 and C.2, to establish Claim C.3 and hence our lower bounds. Note that
our proof is short and self-contained, using only basic facts from information theory (Cover and
Thomas 2012).

We define the following boolean random variables for each worker-firm pair (i, j):

Aij :=

{
1 if vij ≥ logn

2 ,
0 otherwise

and Bij :=

{
1 if uji ≥ logn

2 ,
0 otherwise.

(8)

In other words, Aij = 1 means that worker i likes firm j more than the outside option, and Bij = 1
means that firm j likes worker i more than the outside option. Note that all Aij , Bij are distributed
as Bernoulli(α), where α = 1/

√
n, and are independent of each other. In addition, let Mij be the

indicator random variable of whether worker i is matched to firm j under µπ.

Claim C.1. For sufficiently large n, we have P[Mij = 1|Aij = Bij = 1] > 10−2.

Proof of C.1. Assume Aij = Bij = 1, so worker i and firm j find one another acceptable. By a
standard Chernoff bound, the probability that worker i has more than 2

√
n acceptable partners is

at most exp(−
√
n

3 ). Since the probability that each of these firms finds worker i to be acceptable is
exactly 1√

n
, the probability that another firm out of these other than j finds worker i acceptable is

at most 1− (1− 1√
n

)2
√
n, which converges to 1− e−2 for large n. For sufficiently large n, the sum of

these two probabilities is no more than 1− e−2.1, so the chance that j is the unique firm that both
finds i acceptable and also is acceptable to i is at least e−2.1. Since the preferences of workers and
firms are independent, the chance that both i and j are the unique mutually acceptable partners
for one another is at least e−4.2 for sufficiently large n. Therefore, for sufficiently large n,

P[Mij = 1|Aij = Bij = 1]

≥ P[π outputs a stable match] · P[i is with j in all stable matches|Aij = Bij = 1]

> (.9) · e−4.2

> 10−2 .

Claim C.2. P[Mij = 1|Aij = 1, Bij = 0] = 0, P[Mij = 1|Aij = 0, Bij = 1] = 0, and P[Mij =
1|Aij = 0, Bij = 0] = 0.

Proof of Claim C.2. This follows from the fact that two agents can be matched with one another
in a stable matching only if both find one another acceptable (more preferable than the outside
option).
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Note that Claims C.1 and C.2 together imply that π must approximately compute the value of
the AND function Aij ∧Bij in the sense that knowing that Mij = 1 implies that Aij ∧Bij = 1, and
when Aij ∧Bij = 1, we know that Mij = 1 with at least a constant probability. Next, we make the
following information-theoretic claim, which quantifies the information complexity of approximately
computing the boolean AND function (this line of reasoning is similar to Braverman et al. 2013).

Claim C.3. We have
I(AijBij ; Π) = Ω(α) = Ω(1/

√
n). (9)

Here Π is again the random variable representing the realization of the protocol π, and I(X;Y )
is Shannon’s mutual information, which, informally, measures the amount of information a random
variable X contains about a variable Y (and vice versa). In terms of Shannon’s entropy H(·), the
mutual information is I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). In other words, Alice and
Bob cannot hope to even approximate the value of Aij∧Bij without revealing a substantial amount
of information about themselves. Note that fully revealing the values of Aij , Bij corresponds to
Shannon’s entropy H(Aij , Bij) = Θ(log n/

√
n).42 Let us prove Claim C.3.

Proof of Claim C.3. We rely on the following basic facts about protocols and about mutual infor-
mation.

1. If Aij and Bij are independent, and independent of the players’ other inputs, then for each
transcript realization π of Π, the variables (Aij |Π = π) and (Bij |Π = π) are also independent.
The reason is that one player speaking at a time cannot introduce a dependence between
these variables (the formal proof is by induction on protocol rounds).

2. Therefore, we have by the Chain Rule (see, e.g., Cover and Thomas (2012) for information
theory basics):

I(AijBij ; Π) = I(Aij ; Π) + I(Bij ; Π|Aij) = I(Aij ; Π) + I(Bij ; ΠAij)− I(Bij ;Aij) =

I(Aij ; Π) + I(Bij ; ΠAij) = I(Aij ; Π) + I(Bij ; Π) + I(Bij ;Aij |Π) = I(Aij ; Π) + I(Bij ; Π).

Therefore, it will be enough to lower bound I(Aij ; Π) + I(Bij ; Π).

3. We can write the mutual information expression we are interested in in terms of KL-divergence
as follows:

I(Aij ; Π) = Eπ∼ΠDKL(Aij |Π=π‖Aij). (10)

A similar expression holds for Bij . Again, a proof and further discussion can be found in
information theory texts such as Cover and Thomas (2012).

4. It can be shown by direct calculation that for any constant c < 1, and x < 1/2, it is the case
that for c′ < c

DKL(Bernoulli(c′ · x)‖Bernoulli(x)) = Ωc(x), (11)

where the Bernoulli random variable Bernoulli(x) takes the value 1 w.p. x, and the value 0
w.p. 1− x.

42The Θ notation represents that two functions grow to infinity at similar rates: f(x) = Θ(g(x)) if f(x) = O(g(x))
and f(x) = Ω(g(x)).
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By Claims C.1 and C.2 we have that

P[Mij = 0] ≥ P[(Aij , Bij) 6= (1, 1)] = (1− α2), (12)

and
P[Mij = 0, (Aij , Bij) = (1, 1)] < α2 · (1− 10−2). (13)

Therefore, for a sufficiently large n (and thus a sufficiently small α),

P[(Aij , Bij) = (1, 1)|Mij = 0] <
α2(1− 10−2)

1− α2
≤ α2 · (1− 9 · 10−3). (14)

Let ΠMij=0 be the distribution of the history of the protocol, conditional on Mij = 0, we have by
observation 1 above that

Eπ∼ΠMij=0
P[(Aij , Bij) = (1, 1)|Π = π] = P[(Aij , Bij) = (1, 1)|Mij = 0],

and thus by Markov’s inequality

Pπ∼ΠMij=0
[P[(Aij , Bij) = (1, 1)|Π = π] < α2 · (1− 2 · 10−3)] ≥ 1− 0.991

0.998
> 7 · 10−3. (15)

Note that P[(Aij , Bij) = (1, 1)|Π = π] < α2 · (1 − 2 · 10−3) implies that either P[Aij = 1|Π = π] <
α · (1− 10−3) or P[Bij = 1|Π = π] < α · (1− 10−3), and by (11) above, for any π ∈ ΠMij=0,

DKL(Aij |Π=π‖Aij) + DKL(Bij |Π=π‖Bij) = Ω(α). (16)

By (12) and (15), the probability of such a π is at least 7 · 10−3 · (1− α2) > 6 · 10−3 for sufficiently
large n. The contribution of such π’s to the expectation of DKL(Aij |Π=π‖Aij)+DKL(Bij |Π=π‖Bij)
is therefore at least Ω(α), since DKL is always nonnegative, which implies by (10) that

I(Aij ; Π) + I(Bij ; Π) = Eπ∼Π [DKL(Aij |Π=π‖Aij) + DKL(Bij |Π=π‖Bij)] = Ω(α),

concluding the proof.

Fact 1. If X and Y are independent, then I(X,Y ;Z) ≥ I(X;Z) + I(Y ;Z).

We can now conclude the proof of Theorem 2. Since Aij , Bij are mutually independent for the
different values of (i, j), we get using the above fact, and the fact that entropy is always an upper
bound on mutual information,

H(Π) ≥ I(A11B11 . . . AnnBnn; Π) ≥
n∑
i=1

n∑
j=1

I(AijBij ; Π) = n2 · Ω(1/
√
n) = Ω(n3/2).

(We have used Claim C.3 here.) Observing that |π| ≥ H(Π) = Ω(n3/2) concludes the proof of the
lower bound on communication cost.

The preference learning lower bound follows, since if there is a protocol of preference learning
cost R, each time a preference oracle call is made, Alice (or Bob) can share the learned preference
with the other player at cost O(log n), yielding a communication protocol with cost C = O(R log n).
Therefore R = Ω(n3/2/ log n).
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D A generic algorithm for stable matchings in tiered markets

In this section, we present a generic algorithm for computing stable matchings in tiered markets,
based on the ability to compute stable matchings between single tiers of workers and firms. One
corollary of this is that the CEDA protocol in Section 3.1 can be generalized to tiered separable
markets, which are tiered markets in which the preferences between any tier of workers and any tier
of firms follow assumptions of the separable market as in Section 2.4. This implies that the O∗(

√
n)

average communication cost of computing a stable matching can also be attained for generalizations
of separable markets that allow for arbitrarily many tiers. (Recall that the assumptions on separable
markets in Section 2.4 restrict it to having only a constant number of tiers.)

Before presenting the algorithm (Theorem 7), we first define the concept of sub-matching. For
any matching µ, any subset A ⊆ I of workers and B ⊆ J of firms, let µ(A,B) be the sub-matching
restricted to agents A × B, which is defined as {(i, j) ∈ µ : i ∈ A, j ∈ B}. We say that the sub-
matching µ(A,B) is stable if everyone prefers to be matched to their partner over being unmatched
and there are no blocking pairs in A×B.

Theorem 7. A stable matching in a tiered market can be constructed as follows. Initialize µ = ∅.

1. Construct a stable sub-matching between the top tiers I1 and J1. Add these matches to µ.

2. Remove any matched agent in the sub-matching found above, as well as any unmatched agent
in I1 or J1 who finds someone in J1 or I1 unacceptable. (These agents will find all agents in
worse tiers unacceptable.) After this, either I1 or J1 would have been completely removed.

3. If either all of the workers or all of the firms have been removed, then return µ. Otherwise
repeat step 1 for the top remaining tiers on both sides.

Moreover, every stable matching can be constructed in the above way.

Proof of Theorem 7. The theorem follows from the following claim, which implies that the set of
stable matchings in tiered markets can be decomposed into the Cartesian product of stable sub-
matchings for the top tiers and stable sub-matchings for the rest of market.

Claim D.1. In a tiered market, a matching µ is stable if and only if

1. Sub-matching µ(I1, J1) is stable.

2. Sub-matching µ(I1\(Im1 ∪ Iu1 ), J1\(Jm1 ∪ Ju1 )) is stable, where Im1 ⊆ I1 denotes the matched
workers in µ(I1, J1), and Iu1 ⊆ I1 denotes the unmatched workers who find someone in J1

unacceptable. The sets of firms Jm1 and Ju1 are similarly defined.

Given this claim, both directions of Theorem 7 follow from straightforward induction. To show
the first direction of this claim, assume that µ is a stable matching for the tiered market. Note
that in any stable matching µ, for a fixed set A of workers and fixed set B of firms, the sub-
matching µ(A,B) must be stable. Therefore, sub-matching µ(I1, J1) must be stable. Apply the
Rural Hospital Theorem on this sub-market, we have that the sets Im1 , Iu1 , Jm1 and Ju1 are fixed in
all possible stable matchings µ. Hence, the sets I1\(Im1 ∪ Iu1 ) and J1\(Jm1 ∪ Ju1 ) are fixed and the
sub-matching µ(I1\(Im1 ∪ Iu1 ), J1\(Jm1 ∪ Ju1 )) must be stable.

For the second direction of the claim, suppose that the designated sub-matchings are stable, we
show that µ must be stable. To do this, we need to show that workers in Iu1 and firms in Ju1 cannot
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be matched in any stable matching, and that there can be no blocking pairs between workers Im1
and any firm in J , and no blocking pairs between firms Jm1 and any worker in I.

First, observe that workers Iu1 are unmatched in the stable sub-matching µ(I1, J1), which implies
that these workers cannot be matched to anyone in J1 in a stable matching for the whole market.
However, because they find certain firms in the top tier J1 unacceptable, they must find every firm
in worse tiers unacceptable, so cannot be matched to them either. A similar statement can be made
for firms in Ju1 .

Now, there can be no blocking pairs between workers in Im1 and firms in J1 by the fact that
sub-matching µ(I1, J1) is stable. Moreover, there cannot be any blocking pairs between workers
in Im1 and firms in J\J1 because the worker is already matched to someone of a better tier. This
implies that there cannot be blocking pairs between workers in Im1 and any firm. A similar statment
can be made for firms in Jm1 . This implies that µ is stable, as desired.

Corollary 2 (Generalization of the Rural Hospital Theorem). In a tiered market, if we define the
partner tier of a given agent in a matching as the tier index of the agent’s matched partner (and
zero if the agent is unmatched), then for every agent, the partner tier of that agent is the same in
every stable matching.

E Proof of correctness and efficiency of the targeted signaling
protocol (Theorem 3)

In this section, we prove Theorem 3, which claims that the targeted signaling protocol succeeds
with high probability and bounds its communication and preference learnings costs. The proof is
based on studying the properties of the following mathematical object.

Definition 11. In the targeted-signaling protocol, define the subgraph of signals as the collection
of tuples (i, j) for which either

1. The worker i signaled to firm j in the signaling round.

2. The firm j signaled to the worker i and sk(i) 6= tl(j). (We do not count signals from firms who
are at an equal position with their target tier, sk(i) = tl(j).)

We break the proof of Theorem 3 into 3 claims.

• Claim 1: With probability at least 1− 18
n , the subgraph of signals contains a stable matching.

• Claim 2: Whenever the subgraph of signals contains a stable matching, the matching retur-
ned by the targeted signaling protocol is stable (with respect to complete preferences).

• Claim 3: The total number of signals is at most Θ(n log3 n).

Claims 1 and 2 imply that the targeted signaling protocol succeeds with probability at least
1− 18

n . Claim 3 implies the desired bounds on communication and preference learning costs. This
is because in the signaling round, sending each signal requires O(log n) communication cost and
O(1) preference learning cost. In the matching round, the sum of the length of everyone’s partial
rankings is exactly twice the total number of signals, and producing each ranking of length k
requires O(k log n) communication cost and O(k) preference learning cost.
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E.1 Proof of Claim 1

Definition 12. Define the tiered DA matching as the matching produced when running the algo-
rithm from Theorem 7 on the tiered random market, with the stable sub-matching between top tiers
I1 and J1 in step 1 being produced by the following algorithm: if |I1| ≤ |J1|, run the worker-proposing
DA algorithm in the sub-market with only tiers I1 and J1; otherwise, run the firm-proposing DA
algorithm in this sub-market.

We prove Claim 1 by proving that with probability 1− 18
n , the tiered DA matching is contained

in the subgraph of signals. The crux is proving the following lemma, which gives a bound on the
rank obtained by a given agent in a uniformly random matching market with certain partners being
unavailable. (Intuitively, the unavailable partners represent those that have been matched to better
tiers in the tiered DA matching). As in the whole paper, log here denotes the natural logarithm.

Lemma E.1. Consider a matching market with m workers, n ≥ m available firms and u unavailable
firms. The preferences of workers for the n+ u firms are uniformly random, and the preference of
available firms for workers are uniformly random. The unavailable firms prefer to be unmatched.
Let N ≥ 2 be such that N ≥ n+ u. For any given worker, with probability at least 1− 9

N2 , we have
that in the worker-proposing DA algorithm, the given worker is matched to one of his top r firms,
where

r = 24
n+ u

n
log2(N).

Proof of Lemma E.1. First, note that without loss of generality, N ≥ 100 because otherwise, r > N .
Label the fixed worker to be worker 1. Label the available firms 1 through n, and the unavailable

firms n+1 through n+u. Consider the firm-optimal stable match in the sub-market without worker
1 and without the unavailable firms, and call this matching µ1. Note that µ1 does not depend on
worker 1’s preferences, nor does it depend on the preference of firms for worker 1. Define E1 as
the event that the total rank of workers in matching µ1 (ignoring the unavailable firms) does not
exceed R = 4e(m − 1) logN . We lower bound the probability of E1 using a proposition we prove
in Appendix F about the average rank of workers in this setting (Proposition 2). By plugging in
z = 2 logN into Proposition 2, we have that the probability of event E1 is at least 1− 8

N2 .
Let µ2 be the matching formed by running the worker-proposing DA algorithm from initializa-

tion µ1. In other words, suppose that we start with everyone else matched according to µ1 and have
worker 1 propose to his top choice as in the DA algorithm. This may cause a previously matched
worker to be rejected from a firm, and we will have this worker apply to his next choice, which
may result in a chain of rejections leading to someone applying to one of the n−m+ 1 unmatched
available firms. µ2 is a stable matching (with respect to the entire market). Because the rank of
worker 1 in µ2 is no better than in the worker-optimal stable match, it suffices to upper bound the
rank obtained by worker 1 in µ2.

First, let us make a few structural observations on µ1 and µ2 under event E1. For each firm
j ≤ n, let Bj be the set of workers who weakly prefer firm j to their partner in µ1. (We use the
letter B because this is the set of workers who want to block with j in µ1.) In µ1, firm j is matched
to the firm’s favorite worker in Bj . Furthermore, the sum

∑n
j=1Bj ≤ R = 4e(m− 1) logN , as this

sum always equals the total rank obtained by workers in µ1 (ignoring the unavailable firms). Now,
consider running the DA algorithm with initialization µ1, drawing only as needed the preference
of firms for worker 1. When worker 1 applies to an available firm j, the probability that he is
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accepted is exactly pj = 1
1+|Bj | , because this is his chance of being the firm’s favorite worker among

a set of size 1 + |Bj |. If the worker is rejected, then the worker apply to his next choice, and
the same formula for acceptance probability will apply. If the worker is accepted, then this will
trigger a rejection chain that ends with one of the n − m + 1 unmatched available firms. Note
that this rejection chain can never circle back to firm j and cause worker 1 to be rejected, because
that would contradict the assumption that µ1 is the firm-optimal stable match in the sub-market
without worker 1. For the unavailable firms j ≥ n, define pj = 0. We have that by Jensen’s
inequality,

n+u∑
j=1

pj =
n∑
j=1

pj ≥
n

4e logN + 1
. (17)

Now, conditional on event E1, let P be the probability that worker 1 is not matched to his top
r firms in the worker-proposing DA algorithm. Let A be all subsets of the n+u firms of cardinality
brc. We have,

P ≤ 1

|A|
∑
S∈A

∏
j∈S

(1− pj) (18)

≤

(
1−

∑n
j=1 pj

n+ u

)r
(19)

≤ exp

(
− nr

(n+ u)(4e logN + 1)

)
(20)

<
1

N2
(21)

Inequality (18) follows from the independence between the preference of worker 1, the event E1,
and each firm j’s preference for worker 1. Inequality (19) follows from the fact that the sum of
product in the inner part of equation 18 increases if we replace any two different pi, pj with their

average
pi+pj

2 , so the maximum is attained when all of them are equal. Inequality (20) follows from
inequality 17 and the bound (1−x) ≤ exp(−x), and inequality (21) follows from the fact that when

N ≥ 100, we have 24 log2N
4e logN+1 > 2 logN .

Since the probability that E1 does not occur is at most 8
N2 , we have that the total probability

that worker 1 does not get one of his top r choices is at most 8
N2 + 1

N2 = 9
N2 , which is what we

needed.

Claim 1 follows from Lemma E.1 and taking an union bound over the m + n ≤ 2n agents,
observing that in the tiered DA matching, every agent is in a scenario described by Lemma E.1.
So with probability at least 1− 18

N , the tiered DA matching is contained in the subgraph of signals.

E.2 Proof of Claim 2

We break the proof of Claim 2 into two parts.

1. Claim 2a) Whenever the subgraph of signals contains a stable matching, running worker-
proposing DA with preferences restricted to this subgraph returns a matching µ that is stable
with respect to complete preferences.

46



2. Claim 2b) Whenever the above happens, the targeted signaling protocol returns the same
matching µ.

We first show Claim 2b). Let µ denote the matching that arises from running worker-proposing
DA with preferences restricted to the subgraph of signals. If µ is stable (with respect to complete
preferences), then it must match every worker i who has a target tier: i.e. there exists firm tier
l such that tl ≥ sk(i). Now, observe that the output of the targeted signaling protocol is simply
running the worker-proposing DA with respect to the subgraph of signals plus certain additional
edges. Precisely speaking, these edges are the ones ruled out in Definition 11, which are tuples
(i, j) where j signaled to i and they sk(i) = tl(j). Since the DA algorithm without these edges ended
up matching every one of these agents i incident to one of these edges, and the favorite partner of
agent i are already included in the subgraph of signals, running DA with these edges would not
change the result. Therefore, the targeted signaling protocol returns µ.

CLaim 2a) follows from the following structural result (Lemma E.2) on the subgraph of signals.
First, let us give a few definitions. For any subgraph (defined as a collection of worker-firm tuples
(i, j)), we say that a matching µ is stable with respect to the subgraph if every matched agent in µ
prefers to be matched than unmatched, and there are no blocking pairs to µ within the subgraph.
Define the complete graph as the Cartesian product I × J . (The original definition of stability is
equivalent to stability with respect to the complete graph.) Define a matching to be full if it has
cardinality min(nI , nJ), which corresponds to matching all agents of at least one of the sides.

Lemma E.2. Any matching µ that is full and stable with respect to the subgraph of signals is stable
with respect to the complete graph.

To see why Claim 2a) follows from Lemma E.2, note that when the subgraph of signals contains
a stable matching, then running worker-proposing DA with preferences restricted to the subgraph
returns a matching that is full and that is stable with respect to the subgraph. Lemma E.2 implies
that this matching is stable with respect to the complete graph.

Proof of Lemma E.2. Let the subgraph of signals be G. let µ be a full matching stable with respect
to G, we show that µ is stable with respect to the complete graph. It suffices to show that µ does
not contain any blocking pairs.

We show that no tuple (i, j) in the complete graph can be a blocking pair. Let worker i be in
worker-tier k and firm be j in firm-tier l. Firstly, any (i, j) ∈ G cannot be a blocking pair by the
definition of µ being stable in G.

Suppose first that sk 6= tl. Without loss of generality, let sk < tl. In this case, worker i must
be matched in µ, say to firm j′. Let l̃ be the target tier of worker i and let l′ be the tier of firm
j′. Note that l′ ≤ l̃ because G can only contain edges between i and weakly better tiers than l̃.
Moreover, we have l̃ ≤ l, since l̃ = min{l : tl ≥ sk} by definition. Combining the two inequalities,
we have l′ ≤ l̃ ≤ l. Suppose that l′ < l, then i would prefer j′ to j, so (i, j) cannot be a blocking
pair. Suppose that l′ = l, then both must equal l̃, which is the target tier of workers Ik. This
means that the target tier of firms Jl must be a strictly worse tier of workers than Ik. (Otherwise,
we would need sk = tl.) So the only reason that (i, j′) ∈ µ is in the subgraph of signals G is that i
signals to j′. But i does not send a signal to j, and both j and j′ are in the same tier, so i must
prefer j′ to j, so (i, j) cannot be a blocking pair.

The only remaining case is sk = tl. In this case, the subgraph of signals (Definition 11) only
includes signals from Ik to Jl. Thus, i must be matched in µ, say to j′, and we have that j′ is either
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in a better tier than j or is signaled to by i. In either cases, i must prefer j′ to j, so (i, j) cannot
be a blocking pair.

Since there are no blocking pairs, µ must be stable with respect to the complete graph.

E.3 Proof of Claim 3

We complete the proof of Theorem 3 by proving Claim 3.

Lemma E.3. The total number of signals sent during the signaling round of the targeted signaling
protocol is at most 60n log3 n.

Proof of Lemma E.3. The result is trivially true if n ≤ e4 < 60, since the average number of signals
is at most n. Assume now that log n ≥ 4.

Define a grouping of tiers as the set of all tiers of agents that share the same target tier. For
example, if the shared target tier is firm-tier Jl, then the grouping is all worker-tiers Ik such that
tl−1 < sk ≤ tl.

Consider an arbitrary grouping. Without loss of generality, let the shared target tier be Jl as
above. Let Ak = {k : tl−1 < sk ≤ tl} as above. Let the minimum and maximum element of Ak be
k0 and k1 respectively. For each k ∈ Ak, define rk as the target number of workers in tier Ik (see
Definition 8).

Let the total number of signals sent by this grouping be σ =
∑k1

k=k0
mkrk. Note first that

rk0 = 24 log2 n since the competitiveness of workers (see Definition 7) in Ik0 must be 1. For
Ak\{k0}, we have

k1∑
k=k0+1

mkrk = 24nl log2 n

k1∑
k=k0+1

mk

tl − sk−1

≤ 24nl log2 n

k1∑
k=k0+1

(
1

tl − sk−1
+ · · ·+ 1

tl − sk + 1

)
≤ 24nl log2 n

(
1

tl − sk0
+

1

tl − sk0 − 1
+ · · ·+ 1

2
+

1

1

)
≤ 24nl log2 n log(tl − sk0 + 1)

≤ 24nl log3 n

This shows that

σ ≤ 24mk0 log2 n+ 24nl log3 n ≤ (6mk0 + 24nl) log3 n.

From this the desired result follows because the sum of all possible mk0 is at most 2n, and the same
holds for the sum of all possible nl.

F Average rank in unbalanced matching market

The proof of Lemma E.1 requires a concentration bound for the average rank obtained by workers in
any stable matching in a uniformly random matching market with strictly more firms than workers.
When there are n− 1 workers and n firms, Ashlagi et al. (2017) implies that this is asymptotically
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log n as n→∞. Compared to their result, the following proposition gives up a constant factor of
2e in the asymptotics, but obtains a stronger probabilistic guarantee that holds for any n. The
proof builds on the techinques from Pittel (1989) and Pittel (1992), which are based on an Integral
formula due to Knuth (1976).

Proposition 2. Consider a uniformly random matching market with n − 1 workers and n firms.
For any z ≥ 2, we have that with probability at least 1 − 8 exp(−z), the average rank obtained by
workers in any stable matching is no more than

r̄ = e(2 log n+ z).

Proof of Proposition 2. Define m = n − 1. Let P0 be the probability that a uniformly random
matching market with m workers and n firms has a stable matching in which the average rank of
workers is greater than r̄. We upper bound P0 by 8 exp(−z). Observe that this is trivially true if
m ≤ 7 because r̄ ≥ 3e > 8, so we assume from now on that m ≥ 8.

As in Pittel (1989), define the standard matching µ0 as the matching in which for each 1 ≤
i ≤ m, worker i is matched to firm i. The unmatched firms are denoted by indices j > m. For
each tuple (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, let Xij and Yij be i.i.d. draws from Uniform[0, 1]. These
values induce the preferences of workers and firms as follows: the smaller the value of Xij , the more
worker i prefers firm j. Similarly, the smaller the value of Yij , the more firm j prefers worker i. For
simplicity, define xi = Xii and yi = Yii for 1 ≤ i ≤ m. We call the matrices X and Y the cardinal
preferences of workers and firms, and the vectors x and y the matching values of workers and firms.

Adapting Equation (2.2) of Pittel (1989), we have that given the matching values x and y, the
probability that the standard matching is stable and the total rank of workers equals R is exactly

[ξR−m]{
m∏
i=1

(1− xi)
∏

1≤i 6=j≤m
(1− xi + ξxi(1− yj))}, (22)

where [ξa]{f(ξ)} denotes the coefficient of ξa in the expansion of polynomial f(ξ). This formula is
analogous to Equation (2.2) of Pittel (1989), and we provide a brief explanation below. The rank
obtained by each worker is exactly one plus the number of firms the worker wants to block with, so
the total rank of workers is R if and only if the total number firms workers want to block with is
R−m, counting with multiplicity. The expression in the braces computes the probability that the
standard matching µ0 is stable while keeping track of who wants to block with whom using dummy
variable ξ. The expression is a product of various terms, and is based on the i.i.d. assumptions of
entries of X and Y . In the first product, (1 − xi) is the probability that worker i does not want
to block with the unmatched firm, as P (Xin > Xii) = 1− xi. In the second product, we have the
linear combination of two terms: 1 − xi is the probability that worker i does not want to block
with firm j, and xi(1 − yj) is the probability that worker i wants to block with j but j does not
reciprocate. Expanding the product as a polynomial in ξ and examining the coefficient of ξR−m

obtains exactly the probability that the matching is stable and the total rank of workers is R.
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Define A = {(x, y) : 0 ≤ xi, yi ≤ 1, 1 ≤ i ≤ m}. We have

P0 ≤ n!

∫
A

∞∑
R=bmr̄c+1

[ξR−m]


m∏
i=1

(1− xi)
∏

1≤i 6=j≤m
(1− xi + ξxi(1− yj))

 dx dy (23)

≤ n!

∫
A

inf
ξ≥1

ξm(1−r̄) exp(−m
m∑
i=1

xi + ξ
∑

1≤i 6=j≤m
xi(1− yj))

 dx dy (24)

Inequality (23) follows from integrating equation (22) over the uniform distribution of matching
values, then using a union bound over all n! matchings based on symmetry. Inequality 24 comes from
the Chernoff method of bounding the tail of power series43, and using the fact that bmr̄c+1 ≥ mr̄.

Define µ = r̄
e = 2 log n + z. Partition the region of integration A into A1 = {(x, y) ∈ A :∑m

i=1 xi ≥ µ}, and A2 = A\A1. Define the above integral in regions A1 and A2 to be P1 and P2

respectively. It suffices to bound P1 and P2. For convenience, define s =
∑m

i=1 xi.

To bound P1, we set ξ = 1. Let si = s − xi, Ψ(x) =
∫ 1

0 exp(−xy)dy = 1−exp(−x)
x , and

Ax1 = {x : 1 ≤ xi ≤ 1,
∑m

i=1 xi ≤ µ}. For clarity, we write a series of inequalities and explain them
one by one afterward.

P1 ≤ n!

∫
A1

exp(−s−
m∑
i=1

siyi) dx dy (25)

= n!

∫
Ax1

exp(−s)
m∏
i=1

Ψ(si) dx (26)

≤ e2n!

∫
Ax1

exp(−s) 1

sm
dx (27)

≤ e2n!

∫ m

µ
exp(−s) 1

sm
sm−1

(m− 1)!
ds (28)

≤ e2n(n− 1)

∫ m

µ
exp(−s) dx (29)

≤ e2 exp(−z) (30)

Inequality (25) follows from plugging in ξ = 1 into inequality (24). In equation (26), we integrate
with respect to each yi. In inequality (27), we make use of the fact that for each a > 0,

(log Ψ(a))′ =
1

exp(a)− 1
− 1

a
≥ − 2

a+ 2
.

43For any power series f(ξ) with positive coefficients,
∑∞
a [ξa]{f(ξ)} ≤ ξ−a infξ≥1{f(ξ)}.
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So

log

(
m∏
i=1

Ψ(si)

)
≤ 2 +

m∑
i=1

(
log(Ψ(si))−

2xi
s+ 1

)

≤ 2 +
m∑
i=1

(
log(Ψ(si))−

2xi
si + 2

)

≤ 2 +
m∑
i=1

log(Ψ(si + xi))

= 2 +m log(Ψ(s))

≤ 2−m log(s)

In inequality (28), we use a standard change of variable from x to s (see equation (3.2) and inequality
(3.3) of Pittel (1989)). In inequality (29), we use the fact that 1

s is decreasing in s and that µ ≥ 1.
In inequality (30), we integrate out s and make use of the definition of µ and z ≥ 1.

To bound P2, we set ξ = eµ
s . As before, we state a series of inequalities and explain them

afterward.

P2 ≤ n!

∫
A2

(eµ
s

)m(1−eµ)
exp(−ms+ e(m− 1)µ) dx dy (31)

≤ n2

∫ µ

0

(eµ
s

)m(1−eµ)
exp(−ms+ e(m− 1)µ)sm−1 dx dy (32)

≤ n2

∫ µ

0
exp(−(m+ e)µ+m)µm−1 ds (33)

= [n2 exp(−µ)][exp(−(m+ e− 1)µ)µm] exp(m) (34)

≤ 1

e
exp(−z) (35)

Equation (31) substitutes in ξ = eµ
s to inequality (24) and uses the fact that

∑
1≤i 6=j≤m xi(1−

yj) ≤ s(m − 1). Inequality (32) again integrates out each yi and uses the change of variable
from x to s as in inequality (3.3) of Pittel (1989). Inequality (33) uses the fact that the function
f(s) = exp(−ms)semµ−1 is increasing in [0, µ]. Equation (34) simplifies the formula and arrange
into groups, denoted by square brackets. Inequality 35 comes from bounding each group. We
bound the first group by exp(−z) using the formula for µ. We bound the second group using the
observation that the function f(µ) = exp(−(m + e − 1)µ)µm is maximized when µ = m

m+e−1 , so

f(µ) exp(m) ≤ ( m
m+e−1)m = (1− e−1

m+e−1)m ≤ exp(− (e−1)m
m+e−1) < exp(−1), since m ≥ 8.

Combining inequalities (30) and (35), we have

P0 = P1 + P2 ≤
(
e2 +

1

e

)
exp(−z) < 8 exp(−z),

which completes the proof.

Remark 5. The above proof can be modified to show the following statement. Consider a uniformly
random matching market with m men and n = m + d women, where 1 ≤ d ≤ (e − 1)m. For any
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z ≥ 2, with probability at least 1− 8 exp(−z), the average rank of men in any stable matching is no
more than

r̄ = e

(
log
(n
d

)
+

logm+ z

d
+ 1

)
.

G Proofs of incentive properties (Theorems 4 and 5)

In a matching protocol, we say that the agent complies with the protocol if she truthfully partici-
pates according to what is prescribed, and that the agent deviates from the protocol otherwise.

Before proving that both protocols in this paper are as incentive compatible as DA with high
probability (Theorem 4), we establish two lemmas. This allows us to prove the desired properties
for both protocols simultaneously under one framework.

Define the subgraph of signals in the targeted-signaling protocol as in Definition 11 in Appen-
dix D. For CEDA, define the subgraph of signals as follows.

Definition 13. In the CEDA protocol, for a given realization of preferences, define the subgraph
of signals as the set of tuples (i, j) for which worker i applies to j at some point during the protocol.

Let G be the subgraph of signals in either protocol, assuming everyone complies. In either
protocol, define the worker-optimal stable match restricted to subgraph G as the result of running
the worker-proposing DA algorithm using only preference information within pairs of agents in G.
Similarly define the firm-optimal stable match restricted to G. Furthermore, we say that a matching
is stable with respect to G if it is individually rational44 and there are no blocking pairs (i, j) ∈ G,
with respect to true preferences. A matching is stable with respect to complete preferences if it is
stable with respect to the complete graph I × J .

Lemma G.1. In either CEDA (Protocol 2) or targeted signaling (Protocol 3), let the subgraph of
signals be G. The produced matching µ is not blocked by any edge (i, j) ∈ G. Then we have, with
high probability:

1. The worker-optimal stable match restricted to G (defined assuming everyone complies) is
stable with respect to complete preferences.

2. The firm-optimal stable match restricted to G is also a stable with respect to complete prefe-
rences.

Proof of Lemma G.1. In CEDA, the outputted matching µ is simply the result of running the
worker-proposing DA on G, so µ is not blocked by any edge G. In the targeted signaling protocol,
the outputted matching is the result of running the worker-proposing DA on a graph that contains45

G, so µ must not be blocked by any edge of G.
In CEDA, with high probability, the outputted matching is stable with respect to complete

preferences (Theorem 1). When this happens, the worker-optimal stable match restricted to G,
which is µ, is stable. The firm-optimal stable match restricted to G is also µ. (To see this, note
that by definition of G, every firm in µ gets their favorite partner in G.)

44A matching is individually rational if agents are only matched to partners they find acceptable.
45Specifically, the graph is the collection of tuples (i, j) in which at least one signaled to the other during the

signaling round. By Definition 11, this is G
⋃
{(i, j) : j signaled to i, sk(i) = tl(j)}.
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In the targeted signaling protocol, with high probability, the subgraph of signals contains a
stable matching by Claim 1 of Appendix D. When this happens, the result of the worker-optimal
and firm-optimal DA must be full46 and stable with respect to the subgraph of signals. Therefore,
by Lemma E.2, both matchings are stable with respect to complete preferences.

We are now ready to prove Theorem 4 and 5.

Proof of Theorem 4. We prove that both protocols are as incentive compatible as DA with high
probability. In either protocol, let G be the subgraph of signals when everyone complies.

Suppose, to the contrary, that a certain agent can unilaterally deviate from the protocol and
cause the resultant matching to be µ′, which gives the deviating agent someone other than the
agent’s best stable partner under complete, true preferences. By Lemma G.1, we have that with
high probability, the agent obtains a better partner in µ′ than what the agent gets in either the
worker-optimal or firm-optimal stable match restricted to G (defined above with respect to true
preferences). Note that regardless of the agent’s deviation, µ′ must be individual rational for all
agents. We apply the following Blocking Lemma due to Gale and Sotomayor (1985) (The version
below is from Roth and Sotomayor (1990), Lemma 3.5).

Lemma G.2 (Blocking Lemma, Gale and Sotomayor (1985)). Let µW be the worker optimal stable
match. Let µ be any individually rational matching with respect to strict preferences R and let I ′ be
all workers who prefer µ to µW. If I ′ is non-empty, there is a worker-firm pair (i, j) which blocks
µ such that i 6∈ I ′ and µ(j) ∈ I ′.

The strict preferences R we use for the above lemma are the true preferences restricted to G,
treating everything else as unacceptable. In other words, worker i’s preference is induced by her
true preferences over {j : (i, j) ∈ G}, and if (i, j) 6∈ G, then she treats firm j as unacceptable.
Similarly defined preferences of firms. The matching we use is the µ′ above.

An implication of the lemma is that there exists (i, j) ∈ G such that

1. neither i or j is the same as the deviating agent, so are assumed to be complying to the
protocol;

2. (i, j) blocks µ′ (under the true preferences of i and j).

Let G′ be the subgraph of signals under the deviating action by the agent. (Regardless of the
deviation, this is well defined at the end of both protocols). Since (i, j) blocks µ′, (i, j) 6∈ G′ by
Lemma G.1. However (i, j) ∈ G by construction. We show that this discrepancy can happen with
vanishing probability in either protocol, thus proving the desired result. The common idea is that
the deviating agent has limited control over the edges of subgraph of signals involving complying
agents only.

In the targeted signaling protocol, (i, j) ∈ G implies that (i, j) ∈ G′ because both i and j send
the same set of signals in the signaling round regardless of what the deviating agent does. This
proves that targeted signaling is as incentive compatible as DA with high probability.

In the CEDA protocol, (i, j) ∈ G implies that (i, j) ∈ G′ with high probability. This is because
by construction, both i and j prefer each other to their partners in µ′. Suppose on the contrary
that (i, j) 6∈ G′, then i skipped firm j in her application decision, which implies that the firm must
not have sent her a preference signal and that she must not have systematically qualified for the

46A matching is full if it matches min(nI , nJ) pairs of agents
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firm, aji < zj , where zj is the qualification requirement of firm j at the end of the protocol. Let xj
be the matched utility of firm j at the end of the protocol. The fact that j prefers i to its matched
partner in µ′ implies

xj < uji = aji + εji.

Which means that either εji > γj or zj > aji > xj − γj . In other words, either it’s the case that
εji > γj but firm j does not send a preference signal to i, or it’s the case that zj > max

(
0, xj − γj

)
for some firm j at the end CEDA. But since firm j (by construction) complies to the protocol,
the first case happens with vanishing probability by Lemma A.1. The second also happens with
vanishing probability by the proof Lemma A.2. The key is to note that for a compliant firm, the
invariant proved in Lemma A.2 that zj ≤ max(0, xj−γj) holds with high probability by a statistical
argument, based on the randomness of idiosyncratic scores, and is independent of the application
decisions of agents, and also independent of whatever strategic actions that influence applications.
This proves that CEDA is as incentive compatible as DA with high probability.

Proof of Theorem 5. By Theorem 4, it suffices to show that under general imbalance and when the
number of agents of every tier is large, the probability that any given agent has multiple stable
partners is vanishing. By the decomposition result in Theorem 7 in Appendix D, the desired result
follows from the following Lemma, which is based on techniques from Ashlagi et al. (2017).

Lemma G.3. There exists a non-increasing function δ : N→ R such that δ(y)→ 0 as y →∞ with
the following property. In a matching market with a single tier of m workers and a single tier of
n ≥ m + 1 firms, the probability that any given agent, conditional on being matched, has multiple
stable partners is upper bounded by δ(n).

Proof of Lemma G.3. Consider two cases, suppose that m ≥ n
2 , then by Lemma B.1. ii) in the

Online Appendix of Ashlagi et al. (2017), there exists m0 such that for all m > m0, with probability
at least 1 − exp(− log0.4 n), the number of workers with multiple stable partners is no more than

m
log0.5m

, and the same statement holds for firms. This implies that for n ≥ 2m0, the probability

that any given worker has multiple stable partners is at most

exp(− log0.4 n) + log−0.5
(n

2

)
.

Similarly, the probability that a firm, conditional on being matched, has multiple stable partners is
also upper bounded by this. Define function δ1 : N→ R has δ(n) = 1 for n < 2m0 and as the above
quantity when n ≥ 2m0. Then function δ1 satisfies the desired result in the region when m ≥ n

2 .
Suppose now that m < n

2 , then we show that the probability that a given matched agent has
multiple stable partners is still small. Consider the outcome of the worker-proposing DA algorithm.
Consider any firm that is matched in this worker-optimal stable match (WOSM). Let u = n−m ≥ n

2 .
As in Ashlagi et al. (2017), suppose that the firm has multiple stable partners, then the chain of
proposals triggered by the firm rejecting its current partner must come back to this firm before
going to the u unmatched firms. The chance that this happens is at most 1

u . Moreover, if the
firm has more than two stable partners, then when the firm rejects the second stable partner, the
chain of proposals triggered also needs to come back to the firm rather than go to the u unmatched
firms. So the number of stable partners of this firm is stochastically dominated by Geometric( 2

n).
For n ≥ 11, the expectation of this is less than 3

n . Thus, the expected total number of worker-firm
pairs that can be in a stable match and that is not already in the WOSM is at most 3m

n for any
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n ≥ 11. By symmetry, for any agent, conditional on being matched, the chance the agent has
multiple stable partners is no more than 3

n when n ≥ 11. Define δ2 : N → R to be δ(n) = 1 for
n < 11 and δ(n) = 3

n , we have that δ2 satisfies the desired result in the region when m < n
2 .

Finally, we note that δ = max(δ1, δ2) satisfies the desired property for any n ≥ m+ 1.

H Impossibility of Two-Round Protocol for General Separable
Markets

In this section, we show a simple example of a separable market for which no two-round protocol
that uses o(n) bits of communication per agent computes a stable matching with high probability.

For clarity of exposition, the example is described with certain agents preferring any partner of
a specific type over any partner of another type. This can be approximated with high probability
with idiosyncratic scores distributed as Exp(1) by having a systematic score difference of 3 log n for
the type that one prefers.

Example 1. Consider an academic job market with two types of departments and two types of
applicants. The types are teaching-focused departments and applicants, and research-focused de-
partments and applicants. An agent prefers to be matched with a partner of his or her own focus,
and otherwise preferences are drawn uniformly at random. Research-focused departments and te-
aching focused candidates are in short supply: here are n research-focused departments, n + 2
teaching-focused departments, n+ 2 research-focused applicants and n teaching-focused applicants.

In this example, in any stable matching, there are two research-focused applicants and two
teaching-focused departments who are matched with each other. However, a priori, the chance
that any two agents of different focus are matched in a stable matching is 2

n . So in a two-round
protocol, it’s never worthwhile for agents to signal across their own focus. The communication-
efficient method is to first let research-focused departments and teaching-focused applicants pick
their partners in a two-round protocol, and then run an additional aftermarket to match the
remaining agents.

I Optimal communication cost in tiered random markets

The targeted signaling protocol in Section 4.4 uses Θ(log4 n) bits of communication per agent. In
this section, we show that the best possible is Θ(log2 n).

Consider the protocol based on the generic algorithm for tiered markets in Theorem 7, in which
in Step 1, if |I1| ≤ |J1|, we simulate the worker-proposing DA algorithm, and if |I1| > |J1| then we
simulate the firm-proposing. Because we only allow private messages, each time an agent propose to
a partner, the agent does not know whether or not the partner is taken by agents from better tiers.
This results in wasted proposals. Nevertheless, one can show that the number of wasted proposals
is not too high. In fact, one can show that with high probability, this protocol terminates with a
stable matching using Θ(n log n) proposals. This shows that there exists a stable matching protocol
that only uses private messages and that succeed with high probability, using communication cost
Θ(log2 n) per agent and preference learning cost of Θ(log n) per agent.

The following shows that this bound on average communication cost is the best possible.
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Theorem 8 (Lower bound on communication cost with private messages). Consider a uniformly
random market with n − 1 workers and n firms. In such a market, any matching protocol that
is stable with high probability and only uses private messages must incur a communication cost of
Ω(log2 n) bits per agent.

The following Theorem says that in certain tiered-random markets, esome agents must expe-
rience up to

√
n bits of communication, even though the average is only poly-logarithmic in n.

Theorem 9 (Lower bound on agent specific communication). Consider a market consisting of
n − 1 workers, each worker in a tier of her own, and n firms all in a single tier. Consider the
worker in the

√
n-th worst tier. In any matching protocol that is stable with high probability and

only uses private messages, this worker must incur a communication cost of at least Ω(
√
n) bits.

We now prove the theorems in turn.

Proof of Theorem 8. The market in question is the same as that in Ashlagi et al. (2017). It suffices
to prove the lower bound for any one worker, since all workers are ex ante the same. Some features
of this market that we know from Ashlagi et al. (2017) are:

• In all stable matchings, the average rank of workers for their matched firms is very close to
log n, and a vanishing fraction of workers (firms) have multiple stable partners. (The average
rank of workers for their matched firms is at least 0.99n/ log n.)

• Fix a worker i. Whp (with high probability), the worker has a unique stable partner. Con-
ditioned on the stable partner being unique, the distribution of worker i’s rank of her stable
partner is asympototically close to Geometric(1/ log n). In particular, the conditional pro-
bability that the unique stable partner is one of worker i’s top log n most preferred firms is
p ∈ (1− 1/e− 0.01, 1− 1/e+ 0.01) for large enough n.

• Run the worker proposing deferred acceptance algorithm with worker i excluded. Whp, all
but n0.99 firms receive between 0.9 log n and 1.1 log n proposals from workers.

Our proof approach is as follows: we consider some worker i and an oracle who knows the
preferences of all other agents, and seek to find, whp, a stable partner of i. A slight complication
here is that workers may have multiple stable partners in these markets. We work around this by
defining a communication problem P1 as follows: The correct answer is “Yes” if the unique stable
partner of i occurs in her top log n most preferred firms, and the correct answer is “No” if the
unique stable partner of i does not occur in her top log n most preferred firms. In the case that i
does not have a unique stable partner, either a “Yes” or a “No” is considered correct. Note that
given a candidate stable partner of i, one can output “Yes” if the stable partner is among i’s top
log n most preferred firms, and a “No” if not. If the candidate stable partner is truly a stable
partner, the output is a correct answer. Hence, the problem of producing an output that is correct
whp for problem P1, is no harder than the problem of finding an agent j who, whp, is a stable
partner of i.

Call a firm j “accessible” if it satisfies the following: Fix preferences of all agents except worker i.
Suppose worker i moves agent j to the top of her preference list, keeping the rest of her preferences
unchanged. Then worker i will be matched to agent j under the worker optimal stable matching.
Denote by Ja the set of firms accessible to worker i. Note that whether j ∈ Ja or not does not depend
on the preferences of worker i. This follows immediately from the fact that the worker optimal
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stable matching can be computed using the worker proposing deferred acceptance algorithm, and
this algorithm makes no use of worker i’s preferences unless she is rejected by firm j, in which case
we already know that j /∈ Ja. Finally, note that when i has a unique stable partner, this is his most
preferred firm in Ja.

We now control the size of set Ja, showing that its size is close to n/ log n. We make use of an
analysis resembling that in Ashlagi et al. (2017) (with revelation of preferences as needed) and using
the third bullet stated above. Consider the worker optimal stable matching with worker i excluded.
Let J ′ be the set of firms that have each received between 0.9 log n and 1.1 log n proposals. Using
the third bullet, we have

|J − J ′| ≤ n0.99

For each of these firms, independently, the probability that they prefer i over their currently matched
worker is at least 1/(1 + 1.1 log n) ≥ 0.8/ log n and at most 1/(1 + 0.9 log n) ≤ 1.2/ log n. Let J ′′ be
the set of firms in J ′ who prefer i over their currently matched worker. It follows using a standard
concentration bound that whp, we have

0.7n/ log n ≤ |J ′′| ≤ 1.3n/ log n .

The probability that a rejection chain starting at a firm in J ′′, cf. Ashlagi et al. (2017), will return
to the firm with a proposal that the firm prefers over worker i, before it terminates by going to the
unmatched firm is at most 1/(2+0.9 log n) ≤ 1.2/ log n. Call the set of firms for which the rejection
chain returns Ĵ . These firms may or may not be in J ′′. With high probability, using Markov’s
inequality, we have |Ĵ | ≤ fn|J ′′|1.2/ log n, for any fn = ω(1). Using fn =

√
log n we obtain a bound

of

|Ĵ | ≤
√
n1.3n/ log n · 1.2/ log n ≤ 2n/(log n)3/2 .

All firms in J ′′\Ĵ (here the rejection chain terminates without returning to the firm) are for sure a
part of Ja. Thus, we have, whp,

|Ja| ≥ |J ′′\Ĵ | = |J ′′| − |Ĵ | ≥ 0.7n/ log n− 2n/(log n)3/2 ≥ 0.5n/ log n .

On the other hand, we have Ja ⊆ J ′′ ∪ (J − J ′), leading to, whp,

|Ja| ≤ |J ′′|+ |J − J ′| ≤ 1.3n/ log n+ n0.99 ≤ 1.5n/ log n .

Let the set of the worker’s most preferred log n firms be Jp. Now again consider the communi-
cation problem P1 and take any protocol that solves it. In cases where worker i has a unique stable
partner and the protocol finds a correct answer, the answer is exactly I(Ja ∩ Jp 6= φ). Recalling
that whp, worker i has a unique stable partner, and since the output of the protocol matches
I(Ja ∩ Jp 6= φ) correctly whp in these cases, the protocol finds I(Ja ∩ Jp 6= φ) correctly with high
probability overall.

We are now close to obtaining a lower bound on the expected number of bits needed for the
protocol using the second part of Proposition 3. Suppose, we gave the worker i access to |Ja|.
Recall that Ja is a uniformly random subset of J and independent of Jp, conditioned on |Ja|. Let
the lower bound in Proposition 3 be C(log n)2 (i.e., we just named the constant factor C). We
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prove our result by contradiction. Suppose the protocol requires less than (C/2)(log n)2 bits in
expectation. We found that whp, we have

|Ja| ∈ (0.5n/ log n, 1.5n/ log n) .

(Notice that these are the same bounds that are needed in Proposition 3.) Combining this fact and
Markov’s inequality on the expected number of bits used by the protocol conditioned on |Ja|, we
deduce that with probability at least 1/3,47 the protocol is faced with problem with |Ja| bounded
as required, and such that the expected number of bits the protocol uses for that ‘bad’ |Ja| is at
most 2(C/2)(log n)2 = C(log n)2 bits. For each such bad |Ja|, the protocol must output something
different from I(Ja ∩ Jp 6= φ) with probability at least ε, using Proposition 3. Since such bad |Ja|’s
occur with probability at least 1/3, the overall probability of outputting something different than
I(Ja ∩ Jp 6= φ) is at least ε/3. This contradicts that the protocol finds I(Ja ∩ Jp 6= φ) correctly
whp. Thus, we have a contradiction. We conclude that any protocol solving problem P1 must use
at least (C/2)(log n)2 bits in expectation. Returning to the fact that problem P1 is at least as hard
as finding j who is a stable partner of i with high probability, we conclude that the agent-specific
communication complexity for worker i has the same lower bound. Finally, using symmetry over
workers (all are in the same tier), we obtain the bound of Ω((log n)2) on the average agent-specific
communication complexity.

Proof of Theorem 9. This market always has a unique stable matching, which can be constructed
by serial dictatorship: workers choose their most preferred unmatched firm in the order of worker
tiers. Let i be the worker in question, whose tier is the (n −

√
n + 1)th from the top. When it

is i’s turn to choose under serial dictatorship, there is uniformly random subset of
√
n unmatched

firms remaining. Call this subset of firms J ′. Worker i’s unique stable partner is the firm in subset
J ′ that appears highest in her preference list. Let j be i’s unique stable partner. We prove our
lower bound by showing that an even easier problem requires Ω(

√
n) bits of communication: The

problem is that of determining, with high probability, if i’s unique stable partner is one of the top√
n entries in her preference list. Now this occurs if and only if the set I ′ consisting of the

√
n firms

that worker i most prefers, intersects with set J ′. Note that I ′ and J ′ are independent, uniformly
random subsets of the set of n firms, each of size

√
n and I ′ is known only to agent i whereas J ′

is known only to the oracle. The lower bound of Ω(
√
n) follows from first part of Proposition 3,

which is implied by Theorem 8.3 of Babai et al. (1986). Note that for the tier structure described,
the same lower bound (up to constant factors) can be obtained for each worker who has rank
n−Θ(

√
n).

I.1 Communication complexity of set disjointness

In this section, we prove the a technical result that is used in the proof of Theorem 8.
Consider a set N such that |N | = n.48 Suppose there is a uniformly random subset A ⊂ N

with |A| = la known to agent a, and an independent uniformly random subset B ⊂ N with |B| = lb
known to agent b. Agents a and b are able to interactively communicate with each other and the
goal is to determine whether A and B have a nontrivial intersection or not. We are interested in
lower bounds for the communication complexity of determining the correct answer with probability

47We use 1/3 instead of 1/2 to accommodate that with small probability, |Ja| may not fall in the desired range.
48We redefine n here. For the purposes of this section there are no workers or firms.
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of error that vanishes as n grows, although the bounds below hold even for a constant positive error
independent of n. Note that the prior probability of intersection between the sets is bounded away
from 0 and 1 for any la and lb such that la, lb = o(n) and la · lb/n ∈ [0.1, 10].

Proposition 3. There exists ε > 0 such that the following holds:

• With la = lb =
√
n, the communication complexity of finding I(A ∩ B 6= φ) correctly with

probability 1− ε is Ω(
√
n) bits.

• With la = log n and lb = cn/ log n for some c ∈ [1/2, 2], the communication complexity of
finding I(A ∩ B 6= φ) correctly with probability 1 − ε is Ω((log n)2) bits, uniformly over c in
the specified range.

Proof of Proposition 3. The first part of the proposition is just the lower bound part of Theorem 8.3
of Babai et al. (1986).

The second part can be deduced with some work using general results about the communication
complexity of disjointness Braverman et al. (2013). We include, a simpler direct proof, inspired by
the proof of Babai et al. (1986) for the first part of the proposition. Since the communication setting
in the proposition is distributional (i.e. the inputs come from a specified distribution of inputs),
it suffices to consider deterministic protocols (since a randomized protocol over a distribution of
inputs can be converted into a deterministic one by fixing the random seed that gives the lowest
error over the inputs distribution.

Let A and B denote the sets of inputs to Alice and Bob. Thus |A| =
(
n
la

)
and |B| =

(
n
lb

)
. Assume

that there is a protocol π of communication cost d. The randomized protocol π induces a partition
of A×B into at most 2d combinatorial rectangles, on each of which the output is either 0 or 1. For
all values of c, the probability that the output is 0 (i.e. that the sets are disjoint) is a constant,
and therefore, for a sufficiently small ε, a constant fraction of the mass is covered by 0-rectangles,
on each of which the error rate is < c1ε for an absolute constant c1 > 0. We will show that the
maximum possible mass of each such rectangle is at most 2−Ω(log2 n), and therefore there must be
at least 2Ω(log2 n) such rectangles, and thus d = Ω(log2 n).

Let R1 = A1 × B1 be a combinatorial rectangle in A× B such that at most a (c1ε)-fraction of
the elements of R are not disjoint (and thus the 0 output is wrong). We need to show that the size
of R is relatively small. Let A2 denote the elements in A1 that intersect at most a (2c1ε)-fraction
of the elements in B1. Note that we must have |A2| ≥ |A1|/2. Let B2 := B1, and R2 := A2 × B2.

It suffices to show that R2 has mass at most 2−Ω(log2 n).
Construct a sequence of elements S1, . . . , Sk of A2 with the following property: for each i,

|Si \ ∪i−1
j=1Sj | ≥ la/2. We continue constructing this sequence incrementally until one of two things

happens: (1) we cannot add another element to the sequence; or (2) we have | ∪kj=1 Sj | ≥
√
n. We

consider each of these cases separately:
Case (1): There are sets S1, . . . , Sk of A2, such that | ∪kj=1 Sj | <

√
n, and each element S ∈ A2

satisfies |S \ ∪kj=1Sj | ≤ la/2. Then this gives the following uper bound on the size of A2:

|A2| ≤
(√

n

la/2

)
·
(

n

la/2

)
< n−Ω(la) ·

(
n

la

)
= 2−Ω(log2 n) ·

(
n

la

)
,

and thus A2 is small in this case, and we are done.
Case (2): There are sets S1, . . . , Sk of A2, such that

√
n ≤ | ∪kj=1 Sj | ≤

√
n+ la, and for each i,

|Si \∪i−1
j=1Sj | ≥ la/2. Each of the Si’s intersects at most a (2c1ε)-fraction of the elements in B2, and
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thus at least half the elements in B2 intersect at most 4c2εk of these sets. Denote these elements
in B2 by B3. We have |B3| ≥ |B2|/2. Each element T in B3 can now be described as follows: first
specify the Si’s which T intersects, there are at most k ·

(
k

4c2εk

)
ways of doing this. Notice that

the union of the Si’s which T does not intersect is at least (k − 4c2εk)la/2 > kla/3, since each set

contributes at least la/2 new elements to the union. Therefore, there are at most
(n−kla/3

lb

)
ways to

select the elements of T from the remaining elements. Putting these together we get:

|B2|(
n
lb

) ≤ 2|B3|(
n
lb

) ≤ 2k ·
(

k
4c2εk

)
·
(n−kla/3

lb

)(
n
lb

) ≤ 2k ·
(

e

4c2ε

)4c2εk

·
(

1− kla
3n

)lb
≤1 2k · ek/12 · e−klalb/3n ≤2 2k · ek/12 · e−k/6 = 2k · e−k/12 �3 2−Ω(log2 n).

Here ≤1 holds for a sufficiently small ε, since when 4c2ε < e−5,
(

e
4c2ε

)4c2ε
< e1/12; ≤2 holds because

lalb ≥ n/2, and �3 holds because k >
√
n/la � log2 n. Thus B2 is very small in this case, and so

is R2, concluding the proof.
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