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Abstract

We introduce robust learning equilibrium and
apply it to the context of auctions.

1 INTRODUCTION

Learning in the context of multi-agent interactions has
attracted the attention of researchers in psychology,
economics, artificial intelligence, and related fields for
quite some time (Kaelbling, Littman, & Moore (1996);
Erev & Roth (1998); Fudenberg & Levine (1998)).
Much of this work uses repeated games (e.g. Claus
& Boutilier (1997); Kalai & Lehrer (1993); Hart &
Mas-Colell (2001); Conitzer & Sandholm (2003)) and
stochastic games (e.g. Littman (1994); Hu & Well-
man (1998); Brafman & Tennenholtz (2002); Bowl-
ing & Veloso (2001); Greenwald, Hall, & Serrano
(2002)) as models of such interactions. Roughly speak-
ing, work on learning in games consists of two differ-
ent paradigms. One paradigm, which extends upon
Bayesian learning (see Kalai & Lehrer (1993)) deals
with situations where there exists a known prior dis-
tribution on the set of possible games. The other
paradigm, which is more consistent with work on re-
inforcement learning in computer science, cognitive
psychology, adaptive control, and related disciplines,
deals with non-Bayesian models, where an agent aims
to adapt to its environment while not having exact
prior distribution on the environment’s structure. In-
deed, most recent work on multi-agent learning in com-
puter science fits this (latter) paradigm, which is the
paradigm that will be adopted in the rest of this paper.

Consider a class of one-stage games I',,. One of the
games in this class is chosen and is played repeatedly.
Had the agents known the chosen game they would
have used algorithms that are in equilibrium in the as-
sociated repeated game. However, the agents do not
have information about the chosen game, and can only
partially observe the other agents’ actions. Most of the

work on learning in games is concerned with the un-
derstanding of learning procedures that if adopted by
the different agents will converge at end to an equi-
librium of the (one-stage) chosen game. The learning
algorithms themselves are not required to satisfy any
rationality requirement; it is what they converge to, if
adopted by all agents that should be in equilibrium.
In most of these algorithms, a unilateral deviation by a
strategic agent from its learning algorithm may make
him better off in some of the possible games in the
class. That is, the learning algorithms themselves
are not in equilibrium. In contrast, in a Learning
Fquilibrium (Brafman & Tennenholtz (2004)) a uni-
lateral deviation is not beneficial to the deviator at
every possible game in the class. That is, in a learning
equilibrium the learning algorithms are repeated-game
equilibrium strategies for every game in the class.

The learning equilibrium perspective is in fact an
extension of the classical single agent reinforcement
learning paradigm to the context of multi-agent sys-
tems. In a classical reinforcement learning setup, such
as Q-learning (Watkins (1989)), we are given a class
of models and our aim is to devise an algorithm that
would be as successful as the optimal algorithm one
could have devised had he known the model to start
with. In fact, the "signature” of learning (when com-
pared to optimization) is that we aim for success for
any model taken from a given set of possible mod-
els, although initially we do not know what the actual
model is. When considering the multi-agent setup the
set of possible models is the set of possible games, and
instead of requiring optimality at every possible model
we require that the learning algorithms will be in equi-
librium at every possible game.

This paper consists of three logical parts.

The first part extends the domain of definition of learn-
ing equilibrium to allow general monitoring structure
and initial private information of the agents.

The second part introduces robust learning equilib-



rium. We define a robust learning equilibrium as a
learning equilibrium which is immune to failure of the
agents to follow their algorithms for some finite time.
The relation between learning equilibrium and robust
learning equilibrium resembles the relation between
equilibrium and sub-game perfect or sequential equi-
librium. However, we consider also the issue of sys-
tem failures in providing the correct information to
the agents. We model that by explicitly considering
failure patterns as part of our description. In this ex-
tended setting learning algorithms which form a robust
learning equilibrium recover from any of the possible
failure patterns. That is, in this context, a robust
learning equilibrium is immune against both agents’
failures and system failures.

In the third part we initiate the study of robust learn-
ing equilibrium in auctions. We present a family of
natural learning algorithms and prove that when all
agents adopt any of the algorithms in that family, a ro-
bust learning equilibrium is formed. Moreover, this ro-
bust learning equilibrium is immune against arbitrary
failure patterns. Our results are obtained under an
extremely weak monitoring structure where an agent
can observe only winning bids. Our study also com-
plements work on learning in auctions. While previous
work (Hon-Snir, Monderer, & Sela (1998)) has shown
learning algorithms that converge to equilibrium, our
work is the first to show learning algorithms that are
in equilibrium. Moreover, these learning algorithms
are robust and immune to system failures.

2 ROBUST LEARNING
EQUILIBRIUM IN REPEATED
GAMES

2.1 Repeated Games with Partial
Monitoring and Complete Information
About the Stage Game

Let N = {1,---,n} be a set of players. Every
player i has a finite set X; of available actions. Let
X = Xix,--- x X,, be the set of action profiles,
x = (#1,--+,z,). A game I' = I'(u) is defined by
a vector u = (uq,- - ,u,) of payoff functions, where
u; : X — R. In a repeated game associated with the
1-stage game I'(u), at each stage t > 1 every player 4
chooses z;(t), and hence a play, which is an infinite se-
quence of action profiles [x(1),x(2),- -] is generated,
where for every ¢t x(t) = (x1(t), -+, xn(t)).

This play generates a stream of payoffs for each agent 1,
[w;(2(1)),u;(2(2)),---]. Hence, in order to specify the
total payoff of every player in the repeated game one
must specify the way every player i evaluates streams
of payoffs. There are a few common ways to do it. In

this paper we assume that for every stream of payoffs
r = [r1,r2,- -], the total payoff of i is defined by the
payoff function V; as follows:
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The second ingredient in defining a repeated game is
to define the information available to every player ¢ at
stage t before she chooses z;(t). Let X', ¢t > 1 be the
set of all possible histories of action profiles of length ¢.
Thus, X! = X x X ---x X, t times. A typical member
of X! is denoted by h'. Hence, every h! € X* has the
form:

ht = (z(1),2(2), -, z(t)).

We call an element in Xf = X; x X; x---xX;, t times,
an action history for player i.

At stage 1 every player ¢ just chooses x;(1) € X,
and therefore the players jointly generate the first ac-
tion profile (1) = (z1(1), -+ ,x,(1)). After stage 1
is over, every player i receives a signal, s;(1) € S;,
where S; is a given set of signals player i can re-
ceive. The signal is produced through a pre-specified
monitoring device I} : X — ;. Based on s;(1),
and on his previous move x;(1) player i chooses
2;(2).  Therefore the players jointly generate the
profile of actions x(2) = (x1(2),---,z,(2)). Be-
fore choosing their third actions, every player i re-
ceives a new signal s?, through her monitoring device
I?. Hence, s;(2) = I?*(z(1),2(2)), and she chooses
a new action, z;(3), based on her available informa-
tion, (s;(1),s:(2),2;(1),2;(2)), and so on: At stage
t, after the players generated the history of actions
ht=1 = (z(1),2(2), -+ ,2(t — 1)) , player i receives
the signal s;(t — 1) = I'"*(h*~!). Player i adds this
recently received signal to the previous signals he re-
ceived in previous stages and form a sequence of signals
(si(1),--- ,s;(t —1)). Based on this sequence of sig-
nals, and on his past moves (z;(1), z;(2), - ,2;(t—1))
i chooses x;(t). Hence, the players jointly generate
x(t).!

To summarize: Fix the set of players N, and
the strategy sets X;. A repeated game G =
(T(u), S1,S2,-+ ,Sn, [1, 12, -, I;) is defined by a 1-
stage game I'(u), sets of signals S; , and by monitoring
devices I;, where I; = (I1){2, with I : X* — S,.

For example: If for every player i I!(h') = z(t) the
associated repeated game has a perfect monitoring of
actions.

'Note that our description implies that every i has a

perfect recall: At each stage he remembers his previous
signals and his previous actions.



On the other extreme hand, if If(h') = * constantly
(that is, for every history of action profiles of any
length, 4 receives the same signal, ) there is no moni-
toring at all. We call such a monitoring device trivial.

In the next section we will deal with repeated first-
price auctions. We will use the monitoring device,
which after each stage announces the winning bid and
the number of players who submitted the winning bid.
This monitoring device, which will be identical to all
players is less informative than the one announcing
all bids, but of course it is more informative than the
trivial device.

Similarly to histories of actions we denote by S! = S; x
S; X+ -x.8;, t times the set of signal histories of length ¢
for player i, and by S? the set of joint signal histories of
length ¢. The monitoring devices dictate the definition
of strategies. A strategy of i is a sequence of functions
fi = (fHse,, where f} € X;, and for every t > 1, f! is
a function that assigns an action in X; for every pair of
signals history 5;&_1 € Sit_1 and history hﬁ_l € Xit_1
for player i. Formally, ff: S x X7t — X;.
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Let 3; be the set of strategies of i, and let ¥ =
31 X --- x X, be the set of strategy profiles in the
repeated game. As described above, every f =
(f1i,-++,fn) € X defines recursively a play z(f) =
[z(f,1),2(f,2),---)] € X° where X is the set of all
infinite sequences of action profiles. The total payoff
of ¢ in the repeated game when every player j chooses

fj is:
where V; is defined at (1).

A profile f is in equilibrium in the repeated game if for
every player

Ui(fis f-i) = Uigi, [-i),

for every g; € %;.

2.2 Repeated Games With Partial
Monitoring and Incomplete Information

As in the previous section, let N = {1,--- ,n} be a
set of players, and for every player i let X; be his set
of available actions. The players are about to play a
repeated game which will be chosen out of a class of
repeated games G, indexed by a parameter w € €.
Each such w is called a state, and hence (2 is the set of
states. The parameter w defines the payoff functions
and the monitoring devices of the players. Therefore,
Gy = T(u(w,.)), (S)™,, (Li(w,.))").2 If all play-

2There is no loss of generality in assuming the set of
potential signals does not depend on the state. One can
always define this set as the union of all set of signals in
the system.

ers know the state, then they will play a repeated
game with partial monitoring with complete informa-
tion about the stage game. However, the fun begins
when the players do not know the chosen state. On the
other hand every player gets some initial partial infor-
mation about the state. Let I : 2 — S; describe the
device generating the initial information for i. That
is, when w is chosen, i receives the signal I} (w).

In most models in economics it is assumed that 2 is
a set of n-length sequences w = (wq, we, -+ ,w,), and
that the initial information of 7 is w;. We will make
the same assumption when we will deal with repeated
first-price auctions. In the auction model, every w;
represents the value of the item to be sold to player .

After receiving their initial information the players will
play the repeated game G,,, without knowing w. The
collection G = ((Gy,)wea, (I?)*,) defines a repeated
game with partial monitoring and incomplete informa-
tion. If a probability distribution p on € is given, the
players are engaged in a Bayesian repeated game ( see
e.g., Aumann & Maschler (1995)). If such a probabil-
ity is not given we say that the players are engaged in
a pre-Bayesian repeated game (see e.g., Ashlagi, Mon-
derer, & Tennenholtz (2006) for a discussion of one
stage pre-bayesian games).?

Note that in a repeated game with complete informa-
tion, player ¢ does not condition his initial choice x;(1)
on any information. In contrast, in G, ¢ bases his ini-
tial choice as well as any future choice on the initial
information. Hence a strategy for ¢ in G is a sequence
fi = (fHge,, such that f! : S; — X;, and for every
t>2 ft:Stx XI71 — X,. The total payoff of i
in the repeated game with incomplete information G
when every player j chooses the strategy f; is

Ui(w> f) = Vi[ui(w’x(fv 1))’ ui(w7x<f7 2))7 T 7]
where V; is defined at (1).

The main goal of the players in the repeated pre-
Bayesian game is to maximize their payoffs. How-
ever, their payoffs depend on the true state, which
they do not know, and on the strategies of the
other players, which they do not know as well. If
there is only one player, then a good optimizing
strategy will be one that will give him his opti-
mal total payoff at every state (whether he eventu-
ally knows the state or not). Brafman and Ten-
nenholtz introduced the concept of learning equilib-

3Note that the term pre-Bayesian does not mean that

we are about to assign probabilities to the states. It is just
a convenient way to describe the situation to experts in
Bayesian games: A pre-Bayesian game is a Bayesian game
without the specification of a prior probability.



rium into pre-Bayesian repeated games. Following
their idea* we define a learning equilibrium as fol-
lows. Let (f1, fa,+-+, fn) be a strategy profile in the
repeated game with incomplete information describe
above. For every w € (1 we define by f/” the in-
duced strategy of i in the repeated game G,,. That
is, fi"(si(1),5:(2),- -, si(t = 1), 2i(1), - ai(t = 1)) =
fi(IzQ(w)a Si(l)’ Si(2)’ e 75i(t_1)’-73i(1)’ e 7xi(t_1))'
A strategy profile in the pre-Bayesian game is a
learning equilibrium if for every state w the profile
(fie, fa2, -+ | f¥) is an equilibrium in the game defined
by w, Gy.?

2.3 Robust Learning Equilibrium

Let G be a repeated game with incomplete infor-
mation as described above. We are about to define
a learning equilibrium which is immune to strategic
”"mistakes”. Let f; and g; be a couple of strategy
profiles for player i and let T" be a positive integer.
We denote by < g;, fi > the strategy for player ¢ in
which she uses the strategy g; in the first T rounds
and the strategy f; in the rest of the game. That is,
< gis fi) >p =< @)zt (F)2rs1 >

We say that a strategy profile f = (f1, fo,..., fn) isa
robust learning equilibrium in G if for every T and for
every strategy profile ¢ = (g1, 92, ..., gn) the strategy

proﬁle (< g1, fl >T, < g2, f2 >T7 o< 9n, f’ﬂ >T) isa
learning equilibrium in G.

The following example demonstrates the notion of a
robust learning equilibrium.

Example 2.1
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The set of states is Q = {A, B}. The row and column
players are indexed by 1 and 2 respectively. The sig-
nals at the beginning of the game are: IY(A) = I?(B),
I9(A) = A and I9(B) = B. Thus the column player
knows the game which is played, while the row player
does not know which game is played. The monitor-
ing devices reveal to the players their own payoffs af-
ter each round. That is, for every history ht € X¢,
IH(w,h') = ui(w,x(t)) fori = 1,2 and for every w € Q.

Consider the following strateqy f for player 1: Begin
by playing a, regardless of the initial signal. If the

4The original definition of Brafman & Tennenholtz
(2004) deals with learning equilibrium for particular types
of monitoring devices, and they did not consider initial in-
formation.

5Technically, a learning equilibrium is an ex post equi-
librium in the associated pre-Bayesian repeated game.

history of payoffs is 1,5,1,5... then play b if the last
element in the history is 1, and play a if the last el-
ement in the history is 5. If the history of payoffs is
5,1,5,1,... then play a if the last element in the his-
tory is 1, and play b if the last element in the history
is 5. In all other cases play n. Observe that f is also a
strategy for player 2. We claim that the profile (f, f) is
a learning equilibrium. If both players follow this pro-
file then the total payoff for each of them is 3 at each
of the two games. If player 1 deviates then in game
A his total payoff will be at most 1 and in game B
his total payoff will be 0. Therefore, a deviation is not
profitable for agent 1. The same arguments apply to
possible deviations by player 2. However, we show that
(f, f) is not a robust learning equilibrium. Let g be a
strategy where a player chooses n at the first stage. We
will show that (< g, f >1,< g, f >1) is not a learning
equilibrium. If both players stick to their strategies in
(< g, f>1,<g,f>1) then the total payoff of player 1
equals 0 at both of the games. However, if player 1
deviates to the strateqy "play b forever” then at game
A the total payoff of player 1 is 1.

2.4 System Failures

In the previous section we defined robust learning equi-
librium in repeated games with incomplete informa-
tion. Robust learning equilibrium is immune to devia-
tions from the agents’ prescribed actions, but it is not
necessarily immune against failures of the monitoring
devices. In this section we address this issue.

In order to capture the notion of failures of the mon-
itoring devices, i.e. receiving incorrect signals from
the system, we use the following idea which is fully
formalized below. Every w € € determines a particu-
lar profile of monitoring devices (one for each player),
which in turn determines the correct information to be
communicated to each player. In order to deal with
failures we replace each state w with a set of states
of the form (w,.J) where each J is a particular (po-
tentially) faulty monitoring device profile. That is,
J = (J1,J2,...,Jn), where J; = (J})2,. With each
new state (w,J) we associate a new game G|, sy which
is obtained from G, by replacing the original profile of
monitoring devices by J. This process defines a new
and larger repeated game with incomplete information
where we can test whether a given strategy profile is
immune against the specified system failures.

Let G = ((Gu)wea,(IN)™,) be a repeated
game with partial monitoring and incomplete in-
formation where for every w € Q5 G, =

(F(u(w7 ')’ (Si)zn=1)’ (Ii(w’ ))?:1)

Denote by I(w) the profile of monitor devices
(I1(w, ), Ia(w,+), ..., In(w, ), where I;(w,-) =



(If(w7 ))gil

For every w € Q let F, be a set of profiles of monitoring
devices that satisfies the following:

o [(w) € F,,.

e For every J € F, there exists an integer
T such that J' = TI'(w) for every t >
T, where J' = (J},JL,...,J) and I'(w) =
(I{(wv')715(("')7')7"'7]:1("‘)7'))'

The second condition above implies that every J(w) €
F,, behaves identically to I(w) (the non-faulty profile
of monitoring devices in w) after a finite number of
rounds.

Let F = (F,)weq- F determines the possible failure
patterns at each of the states in 2. We are about
to define a new repeated game with incomplete infor-
mation derived from F and G = ((Gy)wea, (I?)™,),
which we will denote by G(F). We first define a
new state space Q'; Q' = {(w,J)|w € Q,J € F,}.
Secondly, for every (w,J) € Q' we define the as-
sociated repeated game with complete information
G,y = [T(u(w,.),(Si)i=y,J). We now define
G(F) = (Go)wear, (I?)™). Notice that in G and
G(F) the players receive the same initial information.
Observe that a strategy in G is also a strategy in G(F')

and vice versa.

Let G be a repeated game with partial monitoring and
incomplete information with a set of sates (2. Let F
determine the possible failure patterns at each of the
states in 2. We say that a profile of strategies f in
G is an F-robust learning equilibrium if f is a robust
learning equilibrium in the game G(F).

3 ROBUST LEARNING
EQUILIBRIUM IN AUCTIONS

We consider n potential buyers, N = {1,2,--- ,n}, a
seller, and a particular good. At every stage t > 1 the
seller is running a first-price auction in order to sell
a single unit of that good. Every buyer 7 has a fixed
valuation, v; € V. ={1,2,--- ,m}, for that good. That
is, v; is 4’s maximal willingness to pay for the good. We
define the set of states €2 to be the set of all vectors
v = (v1,...,v,) € V™. Each state v determines a
one-stage game, [';, as follows. The action set of each
player ¢ is X; = V. This is the set of bids that are
allowed in the auction. In order to define the payoff
functions we use the following notations. For every
profile of bids z € X = X7 x X5--- x X, let M(z) be
the maximal bid in z, i.e. M(z) = max;en x; and let
N(z) be the set of all players ¢ with @; = M(z). The

payoff function of 4, u; (v, z1, X2, -+ ,x,), is defined as
follows:
v; — M (z) o
u;(v,z) = mr %= M)
0 otherwise.

Note that this definition is a convenient way to model
a first-price auction with fair randomization as the tie
breaking rule. The payoff of 7 defined above, represents
his expected payoff with respect to this tie breaking
rule.

By Hon-Snir, Monderer, & Sela (1998) the following
profile of bids is in equilibrium in I';: z; = 1 for every
i such that v; = 1, and for every ¢ with v; > 1,

v;—1 i¢ N(v)
v;—1 7€ N(v) and
V(2) i€ N(v) and

IN()[>1 (2
IN(v)| =1,

Ty =

where v;) is the jth largest valuation among vy, ..., vy,.

In order to define the corresponding repeated game
G, we have to define the monitoring devices. In our
setting all players have the same monitoring device,
and the monitoring devices are state independent. Let
S; =V x{1,2,...,n}. For every history of bid profiles
he = (2(1),2(2),...,z(t)) € X* of length ¢, If(h:) =
(M(z(t)),|N(x(t))]). That is, every player i sees after
round ¢ the wining bid and the number of players that
made this bid.

To complete the definition of the repeated game with
incomplete information, which we denote by G we need
to describe the structure of the initial information:
Given the state v = (v1,v2,...,v,) the initial infor-
mation received by player i is v;.

Several algorithms (strategies) for playing in G were
presented in Hon-Snir, Monderer, & Sela (1998). It
was shown that when all players adopt these algo-
rithms the sequence of profiles of bids converges to the
equilibrium defined in (2), of the one stage game T,
where v is the true state. The sequence converges in
the following strong sense: There exist a time 7" such
the profiles of bids from time T on is the equilibrium
defined by (2). However, the issue of whether the re-
lated algorithms form a learning equilibrium was not
discussed.

Let ¢ = (4(t))$25 be a non-decreasing sequence of pos-
itive integers such that: 1 < ¢(t) < t — 1 for every
t > 2. For every such ¢ we define a learning algorithm
fo. Roughly speaking, when using f4, at every stage
t the player uses only the history observed in the last
o(t) stages.

We will first prove the following three theorems, and
then deal with the issue of failures.



Theorem 3.1 For every ¢, if the players adopt
(fos fos---, fo) then after a finite number of stages,
at each state v the players will play the equilibrium of
Ty, described in (2).

Theorem 3.2 If ¢(t) — oo when t — oo then
(fos fos---, fo) is a learning equilibrium.

Theorem 3.3 If ¢(t) — oo when t — oo, and also
(t — ()24 is a non-decreasing sequence converging
to oo, then (fg, fo, .-, fs) is a robust learning equilib-
TIUMm.

We now define the MaxBid algorithm f;. We define
the algorithm for an arbitrary player :.

The MaxBid Algorithm - f4:

Recall that at stage t player i’s signaling history is a
sequence

61?71 = ((Mk7 |Nk|))7 (Mk+17 ‘Nk+1|)7 oo (Mt*b |Nt*1|)7

where k = t — ¢(t), M; denotes the maximal bid in
stage j, and |Nj| denotes the number of players that
made that bid in stage j. At stage t player ¢ will base
his bid on 55_1 and on the history of his actions

R = (zi(k), .. it —1)).

Let — Mi(t) = Myto ) =
max,_g)<j<e{Mjlei(j) < M; or [N;| > 1}.
That is, M;(t) is the observed maximal bid of all
other players in the last ¢(t) stages. However, if
player 7, and only player ¢, submitted the highest bid
in all last ¢(t) stages then M;(¢) is defined to be 1.

o At stage t = 1 choose z;(1) = 1.

e At stage t,t > 2: for every signaling history ¢
and for every history of the player’s actions hﬁ_lz

If v; = 1 let x,(t) = 1.

For v; > 1 and M;(t) = 1 let z;(t) =
min[max(z;(t —1) — 1,1),v; — 1].

For v; > 1 and M;(t) > 1 let z;(t) =
min(M;(t) +1,v; — 1).

An immediate observation from the MaxBid algorithm
is:

Observation 3.4 In the MaxzBid alogrithm:(i) If v; =
1 then x;(t) = 1 for every t > 1. (ii) If v; > 2 then
zi(t) <wv; — 1 for every t > 1.

In the following example we illustrate the MaxBid al-
gorithm in a 2-player repeated first price auction with
incomplete information.

Example 3.5 Two players, both using MaxBid with
an arbitrary ¢:

The players’ types: v1 =7 wvy =25
Player 1’s bids:  1,2,3,4,5,5,...
Player 2’s bids:  1,2,3,4,4,4,..-

The total payoff for the first player is 2 and for the
second player is 0.

Observe that in Example (3.5) the players indeed reach
after five rounds the equilibrium of the one-stage auc-
tion given in (2).

Proof of Theorem 3.1: Let v = (v1,v2,...,0,).
We assume that there is at least one player with a
valuation larger than 1 (otherwise, the proof is trivial).
If v; = 1 then player ¢ bids 1 forever, as required by
(2). Let v; > 2 where v; is not the maximal type in
v. Player ¢ will raise her bid until she reaches v; — 1,
and then will continue submitting v; —1 indefinitely. If
v; > 2 and v; is the maximal type in v, and |[N(v)| =1
then ¢ will increase her bid (by 1) every round until
her bid reaches v(yy; if [N (v)| > 1 then player ¢ will
raise her bid until v; — 1, as required by (2). O

We now show that not for every ¢, (fs, fg,.-., fs) 1S
a learning equilibrium. In Example 3.6 we show that
if ¢(t) = 1 for every t > 2 then the profile in which
all players use the MaxBid algorithm is not a learning
equilibrium.

Example 3.6 Consider the case n =2 and let ¢p(t) =
1 for every t > 2. In order to prove that (fs, fg) is
not a learning equilibrium, we will show that player
2 has a deviating strategy which makes him better off
in the state v = (v1,v2) = (7,5). In the deviating
strategy player 2 submits the following sequence of bids
regardless of his type and the information available to
him: 1,1,8,1,1,3,1,1,5.... If both players adopted the
fo then player 2’°s payoff would be 0 from a certain
stage on, and therefore his total payoff in the game
is 0. When player 2 uses the deviating strategy, the
following bid history will be generated:

Player 1’s bids:  1,2,2,4,3,2,4,3,2,4,3,...
Player 2’s bids:  1,1,8,1,1,3,1,1,3,1,1,...
In this situation every 3" round the second player wins

the one-stage auction and her total payoff in the re-
peated game s %

It is possible to construct examples in the spirit of
Example 3.6 such that for any bounded sequence ¢ =

(0(t)29, (fo fos-- -, fs) is not a learning equilibrium.

We now prove Theorem 3.2, in which we provide a
sufficient condition on ¢ such that (fy, fy,. .., fs) will



be a learning equilibrium.

Proof of Theorem 3.2: Let ¢(t) — co. Recall that
¢(t) is non-decreasing in t. Let f; = f, for every j €
N. Let i € N. We need to show that U;(v, g;, f—;) <
U;(v, f) for every strategy g; and for every v € V™.
The following claim will be useful:

Claim 1: Let t > 2. S0 (v, 2((gi, f0), k) <
m? + U; (v, f)¢(t) for every strategy g; and for every
veVnm

Proof of claim 1 (sketch): Let t > 1, and let x(t), z(t+
1), ...z(t+¢(t)) be the sequence of action profiles gener-
ated by the strategy profile (g;, f—;). The proof follows
from the following observations which hold for every
j # i and every integer k,t < k <t + ¢(t):

1. Ifx;(k) < M(xz(k)) or |[N(z(k))| > 1, and z;(k) <
v; — 1, then x;(k + 1) > z;(k).

2. If z;(k) < zj(k +1) then z;(q) > z;(k + 1) for
every k+1 < g <t+ ¢(t).

If v < wv; for some j # ¢, then U;(v,f) =
0. Therefore, it is enough to show that

Z—:f(t) wi(v,2((gs, f—i),k)) < m2. In order to show
this it suffices to show that a player ¢, who uses g;,
can not a have positive payoff at more than m stages in
the interval between stage ¢ and stage t + ¢(t). By the
above observations, if t; < to are two stages in which
player ¢ has a positive payoff, then z;(t2) > z;(t1),
which implies that ¢ can not win at more than m
stages. The proof of the case where i’s type is maxi-
mal, is similar. (I

We define the following sequence. Let T7 = 1, and for
every k> 2let T, = Tp—1 + 1+ ¢(T—1 + 1).

The following holds:

T
1
(v 0. N = lim i 75 . . ) <
Ul(’l)“g“f,l) hTHi}OI(l)f T uz(vvx((glvf*l)at)) —

t=1

s T

liggf%z > wiva((gi, f-),1) <

S k=2t=T)_1

2 .
lim inf > + Ui, /)T,

5§—00 Ts

where the first inequality holds since liminf of a se-
quence is bounded above by any liminf of any of its
sub-sequences, and the second inequality follows from
claim 1.

It suffices to show that lim,_, ., T? = 0o. Notice that

Ty = s+ 37 _o¢(Tk—1 + 1) for s > 2. Therefore, it

Tp_00(Th—1+1)
S

suffices to show that — oo when s — oo.

Since T;—1 > k — 1 then ¢(T)—1 +1) > ¢(k) - o©
when k — oo. Therefore limy_—oop(Tp—1+1) = 00. It
is well known that if the limit of a sequence is oo then
the corresponding sequence of means also converges to
0. Our result follows. O

Before proving Theorem 3.3 we show that even when
d(t) — 00, (fo, fos---, fp) is not necessarily a robust
learning equilibrium, if ¢ — ¢(¢) does not go to co.

Example 3.7 Consider the case n = 2. Let ¢(t) =
t —1 for every t > 2. We know that (fy, fo) is a
learning equilibrium. In order to show that (fe, fs) is
not a robust learning equilibrium we need to provide
a couple of strategies g1 and go for players 1 and 2
respectively such that the strategy profile (< g1, fo >1
< g2, fs >1) is not a learning equilibrium for some
T. Let g1 be the strategy - "play 2 forever” and go
be the strategy “play 5 forever”. Suppose the state is
v=(v1,v2) = (7,3), and let T = 1.

The following bid history will be generated by (<
91, fo >2,< g2, fo >2):

Player 1’s bids:  2,6,6,6,0,...
Player 2’s bids:  5,2,2,2,2,...

The above history of bids generates a total payoff of
1 to player 1; however, she could have bid 5 on every
round and receive a total payoff of 2.

Proof of Theorem 3.3:

Let (g1, g2, - - ., gn) be a strategy profile and let T3 > 1.
We have to show that (< g1, fp >1,< 92, fs >nm
voo oy < gny fo >1,) is a learning equilibrium.

Since t — ¢(t) is non-decreasing and converging to oo,
we have that for every ¢ > 1 there exists an integer T'(¢)
such that ¢/ — ¢(¢') > ¢ for every t' > T'(t). Therefore,
for every ¢ the following holds: for every t' > T'(t), the
bid of a player who uses fy at ¢ does not depend on
any information received before time ¢. In particular,
this is true for ¢ = T;. Hence, the infinite sequence of
bids generated by (< g1, fo >1,< 92, f¢ >10s-. ., <
Gn, fo >, ) starting from T'(T;) coincides with the bids
generated by (fy, fo, ..., fs). Therefore, the proof of
Theorem 3.2 implies the desired result. [

Corollary 3.8 Let ¢ be as in Theorem 3.3, let g be a
strategy profile and let T > 1 be some integer. If every
player i adopts the strategy < gi, fs >7 then after a
finite number of stages, at each state v the players will
play the equilibrium of T, as in (2).

The proof follows from Theorem 3.1, and the proof of
Theorem 3.3.

System failures in auctions:



Let G = ((Gy)wea, (I?)™ 1) be a game with incom-
plete information, where for every w € Q, G, =
(T(u(w,.)), (Si)q, (I;(w,.))™;). In such games the
monitoring devices at w depend on w. However, in
our setting of first-price auction with incomplete infor-
mation the monitoring devices are state independent.
This state-independent profile of monitoring devices
is denoted by I. Therefore, in order to incorporate
system failures into the first-price auction setting, we
consider a set of possible monitoring devices which is
also state independent. That is, F,,, = F,,, for every
wy,ws € Q. In the first-price auction setting a generic
state is denoted by v (and not by w). For an arbitrary
state v, let F, be the set of all profiles of monitor-
ing devices J such that there exists an integer 7' for
which J* = I* for every t > T. That is, in the context
of first-price auction we allow any possible failure pat-
tern satisfying the standard constraint that the system
will re-cover from failure after finite time.

Theorem 3.9 If ¢(t) — oo when t — oo, and also
(t—(t))s2, is a non-decreasing sequence converging to
00, then (fg, fo,---,fs) is an F-robust learning equi-
librium.

The proof of the above theorem is similar to the proof
of Theorem 3.3, and is omitted from this version. Also
omitted is a generalization of Corollary 3.8 to the
model, which allows system failures.

4 Efficiency and Applicability

The paper introduces an approach to learning in multi-
agent systems and apply it to the context of auctions.
We consider multi-agent settings, where an organizer
provides algorithms, to be followed by rational agents.
Therefore, in the context of incomplete information,
where learning is needed, the requirement that the
learning algorithms provided will be in equilibrium
is appealing. Our model might be criticized for us-
ing infinite horizon average payoffs. One may wish
that convergence to desired outcomes will be efficient,
as well as require that a deviation will become non-
beneficial after a short time; these issues have been
raised in earlier work on learning equilibrium (Braf-
man & Tennenholtz (2004)). These efficiency prop-
erties do hold in the auction setting studied in this
paper, which makes our results applicable also to ”im-
patient” agents. In addition, in order to have applica-
ble results, one has to deal also with "non-strategic”
deviations. The reader should notice that we treat
the issue of agents’ non-strategic deviations by using
sub-game perfection, following the spirit of other def-
initions in the game-theory literature. However, we
also consider failures of the monitoring device, an is-
sue which to the best of our knowledge was not dis-

cussed in previous work. Our assumptions here refer
to failures of the environment, and the way these ef-
fect strategic behavior, assuming the environment will
eventually stabilize.
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