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Motivating Example (Ben-Sasson et al. 2007)

Imagine the following two-player game:

I Player 1 presents player 2 with an m-bit
number N .

I Player 2 responds with a list p1, . . . , pk .

I If p1, . . . , pk are the prime factors of N , then
Player 1 pays Player 2 $10; otherwise Player 2
pays Player 1 $10.
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1. Quick review of game theory

2. Games where the Players are Automata

3. Interlude on Probabilistic Computation

4. Games Played by Probabilistic Turing Machines
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Quick Game Theory Review

Basic Elements of a Game

I Set of players: N = {1, 2, . . . , n}

I Possible actions Ai for each player i ∈ N

We write A = (A1, . . . ,An)

I Payoff function ui : A→ R for each player
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Quick Game Theory Review

Games in Normal Form

C D
C 3, 3 0, 4
D 4, 0 1, 1
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Quick Game Theory Review

Games in Normal Form

R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0
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Quick Game Theory Review

“Rational strategy choice by a given player in any
game always amounts to choosing a strategy
maximizing his expected payoff in terms of a
subjective probability distribution over the strategy
combinations available to the other players. But this
immediately poses the question of how this
probability distribution is to be chosen by a rational
player—more specifically, how this distribution is to
be chosen by a player who expects the other players
to act rationally, and also expects these other
players to entertain similar expectations about him
and about each other.”

—Harsanyi 1982
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Quick Game Theory Review

Strategies

Definition
A strategy σi for player i is an element of ∆(Ai),
the set of distributions over the action space Ai .

Let us write

Uσ
i = ∑

a∈A

(
σ1(a1)× · · · × σn(an)

)
ui(a)

for a vector σ = (σ1, . . . , σn) of strategies.
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Quick Game Theory Review

Nash Equilibrium

Uσ
i = ∑

a∈A

(
σ1(a1)× · · · × σn(an)

)
ui(a)

Definition
A vector of strategies σ = (σ1, . . . , σn) is a Nash
equilibrium if for all i ∈ N :

Uσ
i ≥ Uσ′

i

for any σ′ that differs only on σi .
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Quick Game Theory Review

C D
C 3, 3 0, 4
D 4, 0 1, 1

(D,D)
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Quick Game Theory Review

R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

(〈1
3
R ,

1

3
P ,

1

3
S〉, 〈1

3
R ,

1

3
P ,

1

3
S〉)
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Quick Game Theory Review

Theorem (Nash 1950)
Every finite game has a Nash equilibrium.
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Quick Game Theory Review

Repeated Games

Given a game G = (N ,A, u), we can imagine
playing this game infinitely many times. An
outcome is a sequence a = (a1, . . . , an). Let H be
the set of all finite sequences of outcomes.
Elements h ∈ H are called histories.

Definition
A strategy is now a function fi : H → ∆(Ai).
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Quick Game Theory Review

Imagine an infinite sequence of outcomes
~a = (a1, . . . , ak , . . . ). We can assess the utility for
player i using a discount γ < 1:

Ūi(~a) =
∞

∑
k=1

γk−1 ui(a
k)

The utility for i given strategy profile f is:

Ū f
i = E~a Ūi(~a)

Nash equilibrium is again defined analogously.
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Quick Game Theory Review

Theorem (Folk)
Suppose there is a set of (deterministic) strategies σ
for a single-shot game such that Uσ

i is better than
the minmax payoff for each i ∈ N .

Then there is a set of strategies f = (f1, . . . , fn) for
the repeated game, such that Ū f

i = ∑∞
k=1 γk−1 Uσ

i .

In particular this means that cooperation is an
equilibrium of the infinite prisoners dilemma!
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Games Played by Automata

Automata in Game Theory

The study of iterated games by finite automata has
been explored by a number of authors: Aumann,
Radner, Rubinstein, Neyman, Kalai, and many
others. Here we largely follow Rubinstein (1998)
and Kalai & Stanford (1988).
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Games Played by Automata

Moore Automata

(Qi , q
0
i , oi , τi)

I Qi a finite set of states

I q0i a distinguished initial state

I oi : Qi → Ai an output function

I τi : Qi × A→ Qi a transition function
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Games Played by Automata

Example: “Always Cooperate”

q0

C ,D

oi(q0) = C
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Games Played by Automata

Example: “Always Defect”

q0

C ,D

oi(q0) = D
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Games Played by Automata

Example: “Trigger”

qC qD

C C ,D

D

oi(qC ) = C oi(qD) = D
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Games Played by Automata

Example: “Tit-for-Tat”

qC qD

C D
D

C

oi(qC ) = C oi(qD) = D
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Games Played by Automata

Example: “3-Punisher”

q0 q1 q2 q3

C

C ,DD C ,D

C ,D

oi(q0) = C oi(q1) = oi(q2) = oi(q3) = D
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Games Played by Automata

Fact
Every (deterministic) strategy fi can be represented
as a (possibly infinite) automaton.

Proof.
Let H be the set of states, ε the initial state, define
τi(h, a) = h · a, and let oi(h) = fi(h).

Many strategies can be played by finite automata.
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Games Played by Automata

Given a strategy fi and a history h, let us write
fi � h for the function

fi � h (h′) = fi(h · h′).

Definition
The complexity of a strategy fi is given by the
cardinality of the set

{fi � h : h ∈ H}.
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Games Played by Automata

Definition
The complexity of a strategy fi , written C (fi), is
given by the cardinality of the set

{fi � h : h ∈ H}

i.e., the number of equivalence classes on H, where
h1 ≡ h2 iff fi � h1 = fi � h2.

Theorem (Kalai & Stanford)
The smallest fi automaton has exactly C (fi) states.
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Games Played by Automata

Definition
The cost-adjusted utility of strategy fi is given by

Uf
i = Ū f

i − λC (fi)

for some λ ≥ 1.

Example
When γ = 3

4 , λ = 3, and the other player is playing
Tit-for-Tat (Cooperate, Trigger, 3-Punisher), the

utility of Tit-for-Tat is
(

∑∞
k=1

(
3
4

)k−1
3
)
− 6 = 6.
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Games Played by Automata

Question: Does the folk theorem still hold?

Answer: No. Just consider Tit-for-Tat . . .

Notice also that the pair of machines playing
Tit-for-Tat are no longer in equilibrium!

Thomas Icard: Models of Bounded Rationality, Lecture 2: Game Theory 27



Games Played by Automata

Funny Example (from Rubinstein 1998)

qD qC

C C
D

D

oi(qD) = D oi(qC ) = C
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Games Played by Automata

Further Questions
I Characterize when machine players are in

equilibrium (Rubinstein).

I Extend to other types of equilibria, e.g.,
subgame perfect (Kalai & Stanford).

I Extend to other types of games, e.g.,
congestion games (Bar-Sasson et al.).

I Study reinforcement learning in this context
(Bar-Sasson et al.).

I Investigate computational conditions for
cooperation (Anderlini).
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Interlude: Probabilistic Computation

When considering computational devices, it is useful
to allow probabilistic computers. In fact, these can
take the place of mixed strategies:

Theorem (Kuhn 1953)
Under the assumption of perfect recall, probabilistic
strategies and mixed strategies are equivalent.

But instead of moving to probabilistic automata, we
consider more powerful probabilistic machines.
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Interlude: Probabilistic Computation

Probabilistic Turing Machines

I Add to TMs ability to read a random bit tape.

I The bits on the random bit tape can be
thought of flips of a fair coin.

I In this way, a PTM can be thought of as
defining a distribution over outputs.
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Interlude: Probabilistic Computation

Definition (Turing)
A real number r ∈ [0, 1] is computable if there is a
(deterministic) TM M , which on input n outputs a
number r ′ such that

|r − r ′| < 1

2n

Definition
A computable distribution on {0, 1}∗ is one for
which the probability of each string is a computable
real number, uniformly in the string.
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Interlude: Probabilistic Computation

Theorem (Universality)
The distributions definable by a PTM are exactly
the computable distributions.
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Interlude: Probabilistic Computation

Example
Build a machine to output 1, 11, and 111, each
with probability 1

3 .

Note that 1
3 = ∑∞

k=1 2−(2k+1), so its binary
representation is 0.01010101 . . . .
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Players as PTMs

Bayesian Machine Games (Halpern, Pass)
I Agents are represented by PTMs

I Nature chooses types ti ∈ {0, 1}∗ for each
player, with distribution Pr over

(
{0, 1}∗

)n
I A machine Mi takes in t = (t1, . . . , tn) and a

random bit r , outputs ai ∈ Ai = {0, 1}∗

I Machines Mi ∈ M with inputs t; r are
associated with costs:

Ci :M×{0, 1}∗; {0, 1}∞ →N

I ui : T ×
(
{0, 1}∗

)n ×Nm → R
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Players as PTMs

Bayesian Machine Games (Halpern, Pass)

G = (N ,M,T ,Pr ,C1, . . . ,Cn, u1, . . . , un)

uG,Mi (t, r) = ui
(
t,M1(t1, r1), . . . ,Mn(tn, rn),

C1(M1, t1; r1), . . . ,Cn(Mn, tn; rn)
)

UGi [M ] = EPr∗ [U
G,M
i ]
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Players as PTMs

Definition
A list of choices M = (M1, . . . ,Mn) of PTMs is a
Nash equilibrium of G if for all i ∈ N , Mi is a best
response to M−i . I.e., if

UGi [(Mi ,M−i)] ≥ UGi [(M
′
i ,M−i)]

for all M ′i ∈ M.
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Players as PTMs

Nash Equilibria do not Always Exist

R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

Ci(Mi) =

{
1 if Mi is deterministic

2 if Mi involves randomization
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Players as PTMs

R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

Ci(Mi) =

{
1 if Mi is deterministic

2 if Mi involves randomization

I If M1 used randomization, player 1 would do
better by playing best response to highest
probability action for M2.

I Likewise, M2 cannot use randomization. Yet
there are no deterministic equilibria!
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Players as PTMs

R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

Ci(Mi) =

{
0 if Mi uses fewer than 10,000 steps

1 otherwise

I Note that Mi cannot with probability 1
simulate the uniform distribution on {R ,P , S}!

I Thus, there can be cases with no equilibria even
when all constant time strategies are costless!
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Players as PTMs

Another Difference

If standard game theory, any deterministic strategy
in the support of a mixed strategy equilibrium is as
good as the mixed strategy.

E.g., in Rock-Paper-Scissors R is as good as
〈13R , 1

3P , 1
3S〉, given the other plays 〈13R , 1

3P , 1
3S〉.

This is not so in Bayesian machine games!
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Players as PTMs

The type t1 of player 1 is distributed uniformly
among all odd numbers between 2100 and 2101. The
goal is to determine whether t1 is prime.

UM
1 =


2 if correct, using fewer than K steps

0 if correct, using at least K steps

−1000 if wrong

1 if abstain

There may well be probabilistic primality tests that
are very accurate and run in time less than K , while
no deterministic algorithm does.
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Players as PTMs

Existence of Nash Equilibria?

I Are there natural conditions guaranteeing the
existence of Nash equilibria in Bayesian
machine games?

I Halpern & Pass (2008) show that, in a certain
sense, if randomization is free, then equilibria
will always exist.

I Assumptions: game is computable, meaning
that Pr [t] and ui(t, a, c) are all computable
real numbers.

Thomas Icard: Models of Bounded Rationality, Lecture 2: Game Theory 43



Players as PTMs

Lemma
In a computable game, if there is no charge for
computation, then an equilibrium exists.

This is just a standard Bayesian game, so it has a
solution. But how do we know this solution can be
implemented by PTMs?
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Players as PTMs

Lemma (Halpern & Pass)
In a computable game, if there is no charge for
computation, then an equilibrium exists.

Proof Sketch.
First show that there is a mixed strategy solution
with computable probabilities. Then by universality
of PTMs, we know we can find machines that have
this behavior. The first step uses the
Tarski-Seidenberg Theorem.
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Players as PTMs

Theorem (Tarski-Seidenberg)
If R ⊆ R ′ are real closed fields, and P is a finite set
of polynomials with coefficients in R , then P has a
solution in R iff it has one in R ′.

Note that σ is a Nash equilibrium iff for all ti , ai , a
′
i :

σ(ti , ai) ≥ 0 ∑
ai∈Ai

σ(ti , ai) = 1

∑
t−i

∑
a

Pr(t) ui(t, a)∏
j∈N

σj(tj , aj)

≥ ∑
t−i

∑
a−i

Pr(t) ui(t, a′i , a−i) ∏
j∈N\i

σj(tj , aj)

Now replace each σj(tj , aj) with a variable xj ,tj ,aj .
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Players as PTMs

Corollary (Halpern & Pass)
Under the same assumptions, if M is the
computable convex closure of some finite set M0 of
TMs, then the game has an equilibrium.

Proof Sketch.
Given M0, we can consider this a Bayesian game
with payoffs cost-adjusted. This has an equilibrium,
and using the same trick as before, we can find
PTMs that simulate mixtures.
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Players as PTMs

Many Questions about Games with PTMs

I Sequential games

I Games with communication

I Cryptographic applications

I See Halpern & Pass for more
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Conclusions
I When taking computational costs seriously,

important theorems (Nash, Folk) may fail.

I Once we take computational considerations
into account, is (standard) game theory still the
right tool to analyze multiagent interaction?

I How might this work be brought closer to
empirical work on social reasoning? (Cf.
Halpern & Pass for some ideas.)

I How does all of this relate to bounded
optimality?
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