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I End of last time: Jaynes on Probability as Extended Logic.

I Motivated by patterns of plausible reasoning (Pólya).

I Another important inference pattern: nonmonotonicity.

I Today:

• Nonmonotonic Logic, Belief Revision, and Probabilistic Semantics

• Graphical Models

• Markov Logic
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Part I:
Nonmonotonic Logic, Belief Revision, and

Probabilistic Semantics
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Nonmonotonic Logic

Example
Recall the example of the jewelry thief. We had:

The masked man across the street is carrying a bag of jewelry

That man is dishonest

But now suppose the police officer learns this man was at a masquerade,
that he was the owners of the store, and that the broken window was due
to a rock from a passing truck. In fact, he is only protecting his store.
This additional information renders the pattern much less reasonable:

The masked man across the street is carrying a bag of jewelry

The man owns this store and tonight was a masquerade party

That man is dishonest
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Nonmonotonic Logic

Nonmonotonicity of Inference

Classical logic:
Γ ` ϕ =⇒ Γ ∪ {ψ} ` ϕ .

Note that this pattern fails for conditional probability. It may well be that

P(ϕ|χ) > P(ϕ|ψ ∧ χ) .
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Nonmonotonic Logic

Some people think it is possible to
try to save monotonicity by saying
that what was in your mind was
not a general rule about birds
flying but a probabilistic rule. So
far these people have not worked
out any detailed epistemology for
this approach, i.e. exactly what
probabilistic sentences should be
used. Instead AI has moved to
directly formalizing nonmonotonic
logical reasoning.

—John McCarthy, 1990
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Nonmonotonic Logic

Many systems developed for nonmonotonic reasoning:

I Circumscription (McCarthy, . . . )

I Default Logic (Reiter, . . . )

I Autoepistemic Logic (Moore, . . . )

I Inheritance Networks (Touretzky et al., . . . )

...
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Nonmonotonic Logic

Gabbay (1985) first suggested studying nonmonotonic from an abstract
proof theoretic point of view, investigating consequences relations

ϕ |∼ ψ

between individual propositional formulas ϕ and ψ.

All such consequence relations will allow for nonmonotonicity—there may
be ϕ, ψ, and χ for which

ϕ |∼ ψ but ϕ ∧ χ |� ψ .
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Nonmonotonic Logic

Preferential Consequence Relations: Logic P

(Refl.)
ϕ |∼ ϕ

` ϕ1 ↔ ϕ2 ϕ1 |∼ ψ
(L-E)

ϕ2 |∼ ψ

` ψ1 → ψ2 ϕ |∼ ψ1
(R-W)

ϕ |∼ ψ2

ϕ |∼ ψ1 ϕ |∼ ψ2
(And)

ϕ |∼ ψ1 ∧ ψ2

ϕ1 |∼ ψ ϕ2 |∼ ψ
(Or)

ϕ1 ∨ ϕ2 |∼ ψ

ϕ |∼ ψ1 ϕ |∼ ψ2
(Cautious Monotonicity)

ϕ ∧ ψ1 |∼ ψ2
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Nonmonotonic Logic

Semantics for Logic P: Preferential Models

A preferential model is a triple (W ,�,V ) of a set W of ‘worlds’, a
preorder � on W , and a propositional valuation V : Prop→ ℘(W ).

Given a model M = (W ,�,V ), define:

[[ϕ]]M = {w ∈ W | w ∈ V̂ (ϕ)}

BestM(A) = {w ∈ A | there is no w ′ ∈ A, such that w ′ ≺ w}

We can then extend our propositional language L to include a
conditional belief operator Bϕ(ψ):

M |= Bϕ(ψ) iff BestM([[ϕ]]M) ⊆ [[ψ]]M .
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Nonmonotonic Logic

Theorem (Kraus et al. 1990; inter alia)
For any consequence relation |∼ satisfying the axioms of P, there is a
model M, such that:

ϕ |∼ ψ iff M |= Bϕψ .

Conversely, given any model M, there is a P-consequence relation |∼
satisfying the above equivalence.
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Nonmonotonic Logic

I How does system P relate to probability?

I Recall Adams’ semantics for probabilistic entailment:

Γ �a ϕ iff for all ε > 0, there is δ > 0 s.t. for all P :

if P(¬γ) < δ for all γ ∈ Γ,P(¬ϕ) < ε ,

I Similar idea here. Main theme: relate a ‘default’ or ‘conditional’
ϕ |∼ ψ to conditional probability P(ψ|ϕ).
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Nonmonotonic Logic

Adams Conditionals

Let ∆ be a finite set of default statements {α1 |∼ β1, . . . , αn |∼ βn}.

We write
∆ �A ϕ |∼ ψ ,

if for all ε > 0, there is a δ > 0, such that for all P : L → [0, 1]:

if P(βi |αi ) > 1− δ for all i ≤ n, then P(ψ|ϕ) > 1− ε.
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Nonmonotonic Logic

Theorem (Adams 1966)
A default statement ϕ |∼ ψ is derivable from a set ∆ of default
statements using the rules of P, if and only if ∆ �A ϕ |∼ ψ.
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Nonmonotonic Logic

Example (Soundness of Cautious Monotonicity)

ϕ |∼ ψ1 ϕ |∼ ψ2

ϕ ∧ ψ1 |∼ ψ2

We need to show that for any ε there is a δ such that,

if P(ψ1|ϕ),P(ψ2|ϕ) > 1− δ, then P(ψ2|ϕ ∧ ψ1) > 1− ε.

Given ε, let δ = 1
2ε. Then:

P(ψ2|ϕ ∧ ψ1) =
P(ψ1 ∧ ψ2|ϕ)

P(ψ1|ϕ)
≥ P(ψ1 ∧ ψ2|ϕ)
= P(ψ1|ϕ) + P(ψ2|ϕ)− P(ψ1 ∨ ψ2|ϕ)
≥ P(ψ1|ϕ) + P(ψ2|ϕ)− 1

> (1− 1

2
ε) + (1− 1

2
ε)− 1

= 1− ε .

Wesley Holliday & Thomas Icard: Logic and Probability, Lecture 2: Probability and Nonmonotonicity 15



Nonmonotonic Logic

Example (Soundness of Cautious Monotonicity)
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Nonmonotonic Logic

Rational Consequence Relations: Logic R

Some have proposed a stronger rule than Cautious Monotonicity:

ϕ |∼ ψ1 ϕ |� ¬ψ2
(Rational Monotonicity)

ϕ ∧ ψ2 |∼ ψ1

The system that results from adding this rule to P is called R.

Example

If I don’t see a car, it’s okay to cross the street

Not seeing a car is no reason to think it’s not August

If I don’t see a car and it’s August, it’s okay to cross the street
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Nonmonotonic Logic

Semantics for Logic R

The models for R are just like those for P, namely triples (W ,�,V ),
except that � is now assumed to be a total preorder:

for all w ,w ′ ∈ W , either w � w ′ or w ′ � w (or both).

Theorem (Lehmann & Magidor 1992; inter alia)
R consequence relations correspond to conditional belief in total models.
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Nonmonotonic Logic

Alchourrón-Gärdenfors-Makinson (AGM) Belief Revision

1. K ∗ ϕ is consistent and logically closed ;

2. ϕ ∈ K ∗ ϕ ;

3. K ∗ ϕ ⊆ Cl(K ∪ {ϕ}) ;

4. If ¬ϕ /∈ K, then Cl(K ∪ {ϕ}) ⊆ K ∗ ϕ ;

5. K ∗ ϕ = Cl({⊥}), if and only if ` ¬ϕ ;

6. If ` ϕ1 ↔ ϕ2, then K ∗ ϕ1 = K ∗ ϕ2 ;

7. K ∗ (ϕ ∧ ψ) ⊆ Cl(K ∗ ϕ ∪ {ψ}) ;

8. If ¬ψ /∈ K ∗ ϕ, then Cl(K ∗ ϕ ∪ {ψ}) ⊆ K ∗ (ϕ ∧ ψ) .
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Nonmonotonic Logic

Theorem (Folklore)

1. Suppose we are given a knowledge base K and a revision operation
∗. Define a consequence relation |∼ so that

ϕ |∼ ψ iff ψ ∈ K ∗ ϕ .

Then |∼ satisfies all the rules of R.

2. Suppose |∼ is a consequence relation satisfying R, and such that
ϕ |∼ ⊥ only if ` ¬ϕ. If we define

K := {ψ | > |∼ ψ} and K ∗ ϕ := {ψ : ϕ |∼ ψ} ,

then this gives us an AGM belief revision operation.
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Nonmonotonic Logic

I What is the relation between logic R (and hence AGM belief
revision) and probability?

I It is easy to see that Rational Monotonicity is not sound with
respect to Adams’ semantics.

I But we can obtain an adequate probabilistic semantics by moving to
so called Popper functions, taking conditional probability as primitive
and relating defaults to statements of conditional probability 1.
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Nonmonotonic Logic

Popper Functions

1. For some ϕ, ψ, we have P(ϕ|ψ) 6= 1

2. P(ϕ|ϕ) = 1

3. P(¬ϕ|ψ) = 1− P(ϕ|ψ)

4. P(ϕ ∧ ψ|χ) = P(ϕ|ψ ∧ χ)P(ψ|χ)

(Cf. Jaynes; also Leitgeb 2012 on semantics of counterfactuals.)
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Nonmonotonic Logic

Theorem (Harper 1975; Hawthorne 1998)

1. Given Popper function P, define a consequence relation ϕ |∼ ψ,
which holds just in case P(ψ | ϕ) = 1. Then |∼ is an R relation.

2. For any R relation |∼, there is a Popper function P such that:

• P(ψ | ϕ) = 1, iff ϕ |∼ ψ ;

• P(ψ | ϕ) = 0, iff ϕ |∼ ¬ψ ;

• 0 < P(ψ | ϕ) < 1, iff ϕ |� ψ and ϕ |� ¬ψ .
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Nonmonotonic Logic

I The probabilistic semantics of these logics all involve what one
might call ‘extreme probabilities’.

I If we use ‘intermediate probabilities’ more straightforwardly, and e.g.,
define ϕ |∼ ψ to hold when P(ψ|ϕ) > θ, for some fixed threshold θ,
the resulting logic merely validates Refl, L-E, and R-W.

I Pearl (1988) argued that both styles of reasoning may be
appropriate in different circumstances. For instance, the Cautious
Monotonicity rule is analogous to a commonsense—but strictly
speaking, invalid—pattern for natural language Most:

Most students will get an ‘A’ Most students are male

Most male students will get an ‘A’
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Nonmonotonic Logic

I Nonetheless, for many other intuitive reasoning patterns—including
some we saw in Lecture 1—we seem to need genuine degrees.

I In the late 80s / early 90s, there was a sense that a theory of
defeasible reasoning needs a theory of causality.

I The locus classics for probabilistic graphical models with a causal
interpretation is Pearl (1988).
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Part II:
Graphical Models
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Graphical Models

More Patterns of Plausible Reasoning

1. Nonmonotonicity

2. Explaining Away: If X ⇒ Z and Y ⇒ Z independently, and Z is
true, then finding out Y makes X less credible. (Recall jewel thief.)

3. Screening Off: If both X ⇒ Y and X ⇒ Z , then a priori, learning
about Y can tell you something about Z , and vice versa. However,
after learning that X is true, Y and Z become independent.

Several others. See Pearl (1988).
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Graphical Models

We take it for granted that
probability calculus is unique in the
way it handles context-dependent
information and that no competing
calculus exists that closely covers
so many aspects of plausible
reasoning.

—Judea Pearl, 1988

(Though see Darwiche & Ginsburg 1992; Halpern 2003.)
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Graphical Models

Explaining Away (and Nonmonotonicity)

X Y

Z

X : The man across the street is stealing jewelry.

Y : The man across the street owns the store.

Z : The man across the street is running with a bag of jewelry.
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Graphical Models

Explaining Away (and Nonmonotonicity)

X Y

Z

⇓

X : The man across the street is stealing jewelry.

Y : The man across the street owns the store.

Z : The man across the street is running with a bag of jewelry.
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Graphical Models

Screening Off

X

Y Z

X : Hannes Leitgeb is giving a talk tonight

Y : Konrad is here today

Z : The lecture tonight will be interesting
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Graphical Models

Screening Off

X

Y Z⇑

X : Hannes Leitgeb is giving a talk tonight

Y : Konrad is here today

Z : The lecture tonight will be interesting
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Graphical Models

Screening Off

X

Y Z

X : Hannes Leitgeb is giving a talk tonight

Y : Konrad is here today

Z : The lecture tonight will be interesting
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Graphical Models

Screening Off

X

Y Z⇑

X : Hannes Leitgeb is giving a talk tonight
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Graphical Models

Screening Off

X

Y Z

X : Hannes Leitgeb is giving a talk tonight

Y : Konrad is here today

Z : The lecture tonight will be interesting
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Graphical Models

Bayesian Networks

Suppose we have a number of random variables X = X1, . . . ,Xn, with
possible values Val(X1), . . . ,Val(Xn).

A Bayesian network over X is a DAG (V ,E ), in which the nodes V
correspond to the variables X , and the distribution on X ‘factorizes’ as:

P(X1, . . . ,Xn) =
n

∏
i=1

P(Xi |PaXi
)

where PaXi
denotes the set of parents of Xi in the graph.

Wesley Holliday & Thomas Icard: Logic and Probability, Lecture 2: Probability and Nonmonotonicity 36



Graphical Models

X Y

Z

P(X ) = 0.1 P(Y ) = 0.2

P(Z |X ,Y ) = 0.9

P(Z |X ,Y ) = 0.8

P(Z |X ,Y ) = 0.6

P(Z |X ,Y ) = 0.2
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Graphical Models

Typical computational tasks:

1. Determining independence: d-separation.

2. Finding the right DAG.

3. Estimating the parameters of the graph.

4. Computing marginal probabilities.

5. Computing conditional probabilities.

For tasks 4 and 5 there are many approaches. One of the most
interesting, and arguably most powerful, uses logic in a central way.
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Graphical Models

Weighted Model Counting

Given a Bayes net over random variables X1, . . . ,Xn, define a new
propositional logical language with a new set Atom of atoms:

I A propositional atom Bv for each value v ∈ Val(Xi ) ;

I A propositional atom Cv ,~u for each value v ∈ Val(Xi ) and vector of
values ~u ∈ Val(PaXi

).
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Graphical Models

Weighted Model Counting

Define the weight of an atom W (A) as follows

W (A) =

{
P(Xi = v | PaXi

= ~u) if A = Cv ,~u

1 otherwise

Define the weight of an atomic valuation ν : Atom→ {0, 1} by:

W (ν) = ∏
A:ν(A)=1

W (A) .

Finally, define the weight of a set of formulas Γ to be:

W (Γ) = ∑
ν:ν(Γ)=1

W (ν) .
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Graphical Models

Weighted Model Counting

We finally build a particular theory Γ as follows:

1. For each i ≤ n, where Val(Xi ) = {v1, . . . , vk}, we add to Γ

Bv1 ⊕ · · · ⊕ Bvk ,

where ⊕ is shorthand for ‘exclusive or’.

2. For each v ∈ Val(Xi ) and ~u ∈ Val(PaXi
), we add

Cv ,~u ↔ (Bv ∧ Bu1 ∧ · · · ∧ Bum ) .

Then, in general we have

W (Γ) = 1, while, for example, W (Γ ∪ {Bv}) = P(Xi = v) .
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Graphical Models

Weighted Model Counting

I To determine P(Xi |~Y ), we can simply ask for the weight ratio:

W (Γ ∪ {Bv ,Bu1 , . . . ,Bum})
W (Γ ∪ {Bu1 , . . . ,Bum})

.

I Boolean model counting is well studied, a canonical example of a
#P-complete problem. Inference in graphical models is also #P.

I Weighted model counting is a powerful inference technique for
inference in Bayes nets. See, e.g., Chavira & Darwiche (2008).
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Graphical Models

X Y

Z

P(X ) = 0.1 P(Y ) = 0.2

P(Z |X ,Y ) = 0.9

P(Z |X ,Y ) = 0.8

P(Z |X ,Y ) = 0.6

P(Z |X ,Y ) = 0.2

Variables: BX0,BX1,BY 0,BY 1,BZ0,BZ1,CX0,CX1,CY 0,CY 1
CZ0,X0,Y 0,CZ1,X0,Y 0,CZ0,X1,Y 0,CZ0,X0,Y 1
CZ1,X1,Y 0,CZ1,X0,Y 1,CZ0,X1,Y 1,CZ1,X1,Y 1

B formulas: weight 1; C formulas: according to conditional probabilities.
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Graphical Models

Variables: BX0,BX1,BY 0,BY 1,BZ0,BZ1,CX0,CX1,CY 0,CY 1
CZ0,X0,Y 0,CZ1,X0,Y 0,CZ0,X1,Y 0,CZ0,X0,Y 1
CZ1,X1,Y 0,CZ1,X0,Y 1,CZ0,X1,Y 1,CZ1,X1,Y 1

B formulas: weight 1; C formulas: according to conditional probabilities.

BX0 ⊕ BX1 BY 0 ⊕ BY 1 BZ0 ⊕ BZ1

CZ0,X0,Y 0 ↔
(
BZ0∧BX0∧BY 0

)
CZ1,X1,Y 0 ↔

(
BZ1∧BX1∧BY 0

)
...

Then, e.g.,

P(X ,Y ,Z ) = W (Γ ∪ {BX1,BY 1,BZ0}) = 0.1 ∗ 0.2 ∗ 0.1 = 0.002 .
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Graphical Models

I Bayes nets limit what kinds of independence structure among
variables can be represented: no cycles, asymmetric.

I A more general class of models can be defined using potential
functions, i.e., functions φi : Val(X ′)→ R+ from sets of values for
some subset X ′ ⊆ X to real-valued weights.

I A set of potential functions φ1, . . . , φt determines a probability
distribution over X :

P(X1, . . . ,Xn) ∝
t

∏
i=1

φ(X ′) .

I Bayes nets are a special case, with a potential function for each
variable node together with its parents.

I But so are, e.g., log-linear models:

P(X1, . . . ,Xn) ∝ exp
(

∑
i

wi fi (X ′)
)

.
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Graphical Models

Example (Markov Network)

W

X Y

Z

φ1 : Val({W ,X})→ R

φ2 : Val({W ,Y })→ R

φ3 : Val({X ,Z})→ R

φ4 : Val({Y ,Z})→ R

Wesley Holliday & Thomas Icard: Logic and Probability, Lecture 2: Probability and Nonmonotonicity 46



Graphical Models

Part III:
Markov Logic

Wesley Holliday & Thomas Icard: Logic and Probability, Lecture 2: Probability and Nonmonotonicity 47



Markov Logic

I Basic idea (see, e.g., Lowd & Domingos 2009): use (first-order)
logic to build (potentially quite large) graphical models.

I Serve as an interface layer between users working in concrete
domains, and engineers working on general inference techniques.
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Markov Logic

Begin with a pure first-order language without constants, and a finite set
of weighted formulas:

(ϕ1,w1), . . . , (ϕn,wn)

Given a set of constants C, we build a Markov network as follows:

I For each grounding of each atomic formula from ϕ1, . . . , ϕn, we
include a node in the network, i.e., a new binary random variable.

I For each grounding of each ϕi , we include a feature that receives
value 1 if this grounding is true, 0 otherwise. The weight of the
feature is wi .

I The probability of a given state, i.e., valuation of atomic formulas is:

P(v) ∝ exp
(

∑
i≤n

wini (v)
)

,

where ni (v) is the number of true groundings of ϕi under v .
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Markov Logic

Example
Suppose we have predicates Friend(x , y), Smoke(x), and Cancer(x):

I ∀x∀y∀z Friend(x , y) ∧ Friend(y , z) ⊃ Friend(x , z) 0.7 ;

I ∀x
(
¬∃y Friend(x , y)

)
⊃ Smoke(x) 2.3 ;

I ∀x Smoke(x) ⊃ Cancer(x) 1.5 ;

I ∀x∀y Friend(x , y) ⊃
(
Smoke(x) ≡ Smoke(y)

)
1.1 ;
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Markov Logic

Given constants A and B, we generate the following Markov network:

We can then make queries as in general graphical models, e.g.:

P
(
Cancer(B) | Smokes(A)

)
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Markov Logic

I General inference techniques are available, but one can also combine
probabilistic inference techniques with logical inference techniques,
e.g., resolution-based methods, to devise lifted inference algorithms.

I Many applications: named entity recognition, information extraction,
textual entailment, etc. See especially work by P. Domingos & co.

I Note: The role of first-order logic is in defining Markov networks,
given a set of constants. We do not, e.g., obtain probabilities over
first-order expressions as such. That is the topic for tomorrow.
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Summary and Preview

I Popular nonmonotonic logics capture what many view as intuitive
reasoning patterns.

I From the perspective of probability, these can be seen as reasoning
with ‘extreme probabilities’, witness Adams’ semantics and Popper
function semantics.

I For other types of reasoning graphical models have become a useful
tool, indeed ubiquitous in AI, machine learning, NLP, etc.

I Such models nonetheless can be seen as a generalization of logic,
viz. weighted model counting.

I Tomorrow: probabilistic programs (stochastic λ-calculus), and
first-order logics of probability.
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