(More) Efficient Reinforcement Learning via Posterior Sampling
Ian Osband, Daniel Russo and Benjamin Van Roy - Stanford University

Introduction
- We study efficient exploration in reinforcement learning.
- Most provably-efficient learning algorithms introduce optimism about poorly understood states and actions.
- Motivated by potential advantages relative to optimistic algorithms, we study an alternative approach: posterior sampling for reinforcement learning (PSRL).
- This is the extension of the Thompson sampling algorithm for multi-armed bandit problems to reinforcement learning.
- We establish the first regret bounds for this algorithm.

Problem Formulation
- We study learning to behave near optimally in a fixed but unknown (randomly drawn) MDP M^*.
- Repeated τ-length episodes of interaction with the MDP.
- In episode k, actions selected based on chosen policy μ_k.
- As a result of a_t, the reward r_t and next state s_{t+1} are drawn according to on M^*.
- Goal: Maximize cumulative reward earned.
- Requires managing exploration / exploitation tradeoff.

Motivation - Advantages of PSRL
- Conceptually simple, separates algorithm from analysis:
 - PSRL selects policies according to the probability they are optimal without need for explicit construction of confidence sets.
 - UCRL2 bounds error in each (s, a) separately, which allows for worst-case mis-estimation to occur simultaneously in every (s, a).
- We believe this will make PSRL more statistically efficient.
- The algorithm is computationally efficient:
 - Optimistic algorithms often require optimizing simultaneously over all policies and a family of plausible MDPs.
 - PSRL computes the optimal policy under a single sampled MDP.
- Can naturally incorporate prior knowledge:
 - Crucial for practical applications - Tabula Rasa is often unrealistic.
 - Our bounds apply for any prior distribution over finite MDPs.
 - PSRL can use any environment model, not just finite MDPs.

Experimental results
We compared the performance of PSRL to UCRL2 (an optimistic algorithm with similar regret bounds) on several MDP examples.

- We tested the algorithm on RiverSwim (an MDP designed to require efficient exploration) as well as random MDPs.
- We saw that PSRL outperforms UCRL2 by large margins.
- PSRL learns quickly even with a mis-specified prior.

Key lemma - posterior sampling
The true and sampled MDPs are equal in distribution at the start of an episode (when the sample is taken).

$$E[g(M^*)|H_{t_k}] = E[g(M_k)|H_{t_k}]$$

Any H_{t_k}-measurable function of these MDPs must therefore be equal in expectation.

Regret bounds
The regret of an algorithm π at time T is the random variable equal to the cumulative reward of the optimal policy minus the realized rewards of π.

Our main result bounds expected regret under the prior:

$$E[\text{Regret}(T, \pi^*_T)] = O(\tau S \sqrt{AT \log(SAT)})$$

• This is not a worst-case MDP bound as per UCRL2 etc.
• But, the two bounds are related via Markov’s inequality:
 $$\frac{\text{Regret}(T, \pi^*_T)}{T^\alpha} \rightarrow 0.$$
 $$\alpha > 0.5$$
• Corresponding results for UCRL2/REGAL deal with non-episodic learning, and replace τ with Diameter/Span.
• In the episodic case, all three give $O(\tau S \sqrt{AT})$ bounds.
• These are close to the lower bounds in S, A, and T of \sqrt{SAT}.

Summary
- PSRL is not just a heuristic but is provably efficient
- First regret bounds for an algorithm not driven by “OFU”.
- Regret bounds are competitive with state of the art.
- Bounds allow for an arbitrary prior over finite MDPs.
- Conceptually simple, computationally efficient.
- Statistically efficient, separating algorithm from analysis.
- Performs well in simulation on benchmark MDPs.

References