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AN EFFICIENT DYNAMIC MECHANISM

BY SUSAN ATHEY AND ILYA SEGAL1

This paper constructs an efficient, budget-balanced, Bayesian incentive-compatible
mechanism for a general dynamic environment with quasilinear payoffs in which agents
observe private information and decisions are made over countably many periods.
First, under the assumption of “private values” (other agents’ private information does
not directly affect an agent’s payoffs), we construct an efficient, ex post incentive-
compatible mechanism, which is not budget-balanced. Second, under the assumption
of “independent types” (the distribution of each agent’s private information is not di-
rectly affected by other agents’ private information), we show how the budget can be
balanced without compromising agents’ incentives. Finally, we show that the mecha-
nism can be made self-enforcing when agents are sufficiently patient and the induced
stochastic process over types is an ergodic finite Markov chain.

KEYWORDS: Dynamic mechanism design, dynamic incentive compatibility, perfect
Bayesian equilibrium, budget balance, Markov games with private information, folk
theorems with private.

1. INTRODUCTION

THE RENOWNED VICKREY–GROVES–CLARKE (VCG) mechanism established
the existence of an incentive-compatible, efficient mechanism for a general
class of static mechanism design problems. In these problems, a public deci-
sion must be taken that affects the payoffs of agents, and agents have private
information about the costs and benefits of the alternative decisions. The VCG
mechanism provides incentives for truthful reporting of private information
under the assumption that values are private (other agents’ private information
does not directly affect an agent’s payoff) and that preferences are quasilinear
so that incentives can be provided using monetary transfers. Subsequently, a
pair of classic papers, Arrow (1979) and d’Aspremont and Gerard-Varet (1979)
(AGV), constructed an efficient, incentive-compatible mechanism in which the
transfers were also budget-balanced, using the solution concept of Bayesian-
Nash equilibrium, under the additional assumption that private information is
independent across agents. Together, these results have served as benchmarks
and formed the building blocks for a large literature on static mechanism de-
sign as well as on folk theorems in repeated games with private information.

Of course, many real-world allocation problems are dynamic in nature. Pri-
vate information may evolve over time, as when a firm’s production costs
change, and it may be influenced by allocation decisions, as when firms who
produce more learn by doing. In this paper, we extend both the VCG and the
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AGV mechanisms to general dynamic settings, under the natural extensions
of the private values and independence assumptions considered by these au-
thors. In particular, we consider a general infinite-horizon dynamic model in
which agents observe private signals over time and decisions are made over
time, with the distribution of private signals affected by both past signals and
past decisions. Agents’ payoffs are quasilinear, but otherwise can depend on
the signals and decisions in an arbitrary way. Under the assumption of private
values, we construct an efficient, incentive compatible mechanism that gener-
alizes the VCG mechanism and under the additional assumption that private
information is independent across agents conditional on the past public ac-
tions, we construct a mechanism where the transfers are budget- balanced. We
also show that when agents are sufficiently patient and the efficient decision
policy induces an ergodic finite Markov chain over types, the mechanism can
be made self-enforcing (so that all the decisions and payments are chosen by
the agents themselves without an external enforcer). In particular, the mecha-
nism will satisfy a strong form of participation constraints.

We begin by ignoring budget balance, and observing that under private val-
ues, it is possible to induce truthtelling using the dynamic “team mechanism,”
where transfers give each agent the sum of the other agents’ utilities in each
period. Such transfers make each agent the residual claimant for total surplus
and provide him with the incentive to be truthful as long as the mechanism pre-
scribes an efficient decision rule. The problem with the team mechanism is that
it is not budget-balanced. As we illustrate using a simple example in Section 3,
a naive attempt to balance the budget using the idea of the AGV mechanism
runs into the following difficulty. In a static setting, the AGV mechanism gives
every agent an incentive to report truthfully given his beliefs about opponents’
types, by giving him a transfer equal to the “expected externality” his report
imposes on the other agents. Thus, an agent’s current beliefs about opponents’
types play an important role in determining his transfer. However, in a dy-
namic setting, these beliefs evolve over time as a function of opponent reports
and the decisions those reports induce. If the transfers are constructed using
the agents’ prior beliefs at the beginning of the game, the transfers will no
longer induce truthful reporting after agents have gleaned some information
about each other’s types. If, instead, the transfers are constructed using beliefs
that are updated using earlier reports, this will undermine the incentives for
truthful reporting at the earlier stages.

Despite these difficulties, we show that dynamic efficiency can be imple-
mented with balanced budget in the case of independent types and private val-
ues. We construct a mechanism that achieves this, a mechanism that we call the
balanced team mechanism. This mechanism sustains an equilibrium in truthful
strategies by giving each agent in each period an incentive payment equal to the
change in the expected present value (EPV) of the other agents’ utilities that is
induced by his current report. We show that on the one hand, these incentive
payments cause each agent to internalize the expected externality imposed on
the other agents by his reports. On the other hand, we show that the expected
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incentive payment to an agent is zero when he reports truthfully no matter
what reporting strategies the other agents use. The latter property allows us to
balance the budget by letting the incentive payment to a given agent be paid by
the other agents without affecting those agents’ reporting incentives.

We also show that the balanced team mechanism can be made self-enforcing
in the infinite-horizon setting in which the agents are sufficiently patient and
the induced stochastic process is an ergodic finite Markov chain. Intuitively,
the ergodicity condition ensures that agents’ private information in a given pe-
riod is not “too” persistent and so has relatively little effect on the continuation
payoffs of patient agents (thus ruling out, for example, the polar case of per-
fectly persistent types, where the logic of Myerson and Satterthwaite (1983)
implies that budget-balanced, incentive-compatible transfers cannot, in gen-
eral, be made self-enforcing). Under these conditions, the payments in the bal-
anced team mechanism stay bounded even as the continuation payoffs grow
with the agents’ patience. Hence we can ask agents to implement all the deci-
sions and payments without relying on an external enforcer, instead punishing
any detected deviation with a breakdown in cooperation.2

2. RELATED LITERATURE

Much of the existing literature on dynamic mechanism design has avoided
dealing with the problem of contingent deviations by focusing on one of the
following simple cases: (i) a single agent with private information (e.g., Courty
and Li (2000), Battaglini (2005)), (ii) a continuum of agents with independent
and identically distributed (i.i.d.) private information whose aggregate is pre-
dictable (e.g., Atkeson and Lucas (1992)), or (iii) information that is indepen-
dent across periods, and preferences and technology that are time-separable
(e.g., Fudenberg, Levine, and Maskin (1994), Wang (1995), Athey and Bagwell
(2001), Athey and Miller (2007), and Miller (2012), but see Athey and Bagwell
(2008) for an exception).3 In each of these cases, an individual agent learns
nothing in the course of the mechanism about the others’ types that is rele-
vant for the future, hence there is no need to consider contingent deviations.
In more general settings, however, even if the mechanism hides the agents’
reports from each other, an agent would typically be able to infer something
about the other agents’ types from the prescribed decisions and try to exploit
this information in contingent deviations. Thus, a dynamic mechanism has to

2This conclusion obtains when the discrete-time stochastic process is held fixed while the par-
ties grow patient. It need not apply to situations where we hold fixed a continuous-time stochastic
process and increase the frequency of interactions, thus increasing the persistence of the dis-
crete snapshots of the stochastic process at the same time as we increase the discount factor (see
Skrzypacz and Toikka (2012)).

3Part of the literature on dynamic contracting considers the case of imperfect commitment
(e.g., Bester and Strausz (2001), Battaglini (2007), and Krishna and Morgan (2008)). We sidestep
this issue by allowing the agents to commit to the mechanism in advance.
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satisfy more incentive constraints than a corresponding static mechanism, in
which no information leaks out.

Among the literature that has considered more general dynamic games,
most studies have analyzed incentive compatibility in more special settings
than that considered in this paper. For example, Pavan, Segal, and Toikka
(2014) used a first-order approach to characterize incentive-compatible and
profit-maximizing mechanisms in situations where each agent observes a one-
dimensional real-valued signal in every period (see also references therein). In
contrast, this paper makes no assumptions about the nature of agents’ private
information, but instead of a general characterization of incentive-compatible
mechanisms, it focuses on achieving two goals: efficiency and budget balance.

Subsequent to our working paper (Athey and Segal (2007a)), Bergemann
and Valimaki (2010) proposed an alternative efficient dynamic mechanism,
which is not budget-balanced and which requires the property of indepen-
dent types, in contrast to our Proposition 1.4 In fact, Pavan, Segal, and Toikka
(2014) established that in continuous-type settings in which the first-order ap-
proach is valid and in which the agents’ types follow independent and exoge-
nous stochastic processes, all the mechanisms that implement the same deci-
sion rule must give every type sequence of an agent the same expected present
value of payments, up to a constant, where the expectation is taken over the
other agents’ type sequences. Hence, under these assumptions, all the efficient
mechanisms can only differ in either the “constants” chosen (e.g., Bergemann
and Valimaki’s (2010) mechanism chooses the constants to satisfy agents’ ex
post participation constraints and “efficient exit” conditions) or in how the ex-
pected payments are “spread” into the ex post payments (e.g., our balanced
team mechanism spreads the payments so as to satisfy ex post budget balance),
or both.

3. A TWO-PERIOD EXAMPLE

Consider a seller (agent 1) and a buyer (agent 2) who engage in a two-period
relationship. In each period t = 1�2, they can trade a contractible quantity xt ∈
[0�1]. Before the first period, the seller privately observes a random type θ̃1 in
[1�2], whose realization θ1 determines his cost function 1

2θ1(xt)
2 in each period

t = 1�2. The buyer’s value per unit of the good in period 1 is equal to 1, and in
period 2 it is given by a random type θ̃2 in [0�1] whose realization she privately
observes between the periods.

An efficient (surplus-maximizing) mechanism must have trading decisions
x1 and x2 determined by the decision rules χ1(θ1) = 1/θ1 and χ2(θ1� θ2) =

4Earlier versions of non-budget-balanced efficient mechanisms for more special dynamic set-
tings were proposed by Friedman and Parkes (2003), Schwarz and Sonin (2003), Bapna and We-
ber (2005), and Cremer, Spiegel, and Zheng (2009).
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θ2/θ1, respectively. Note, in particular, that the first-period trade will reveal
the realization of the seller’s realized type θ1 to the buyer.

The problem of designing an efficient mechanism comes down to designing
transfers to each agent as a function of their reports. In this simple setting, each
agent makes only one report. Let us first consider the AGV mechanism for this
problem, for the case where the buyer does not learn the seller’s type before
making his announcement. To give the buyer an incentive for truthful report-
ing, she is charged an “incentive payment” equal to the expected externality he
imposes on the seller, that is, the seller’s expected cost

γ2(θ2)= −Eθ̃1

[
1
2
θ̃1

(
χ1(θ̃1)

)2 + 1
2
θ̃1

(
χ2(θ̃1� θ2)

)2
]

= −1
2
Eθ̃1

[1/θ̃1] · (1 + (θ2)
2
)
�

Similarly, the seller’s incentives are provided by paying him an “incentive pay-
ment” equal to the expectation of the buyer’s utility

γ1(θ1)= Eθ̃2

[
χ1(θ1)+ θ̃2 ·χ2(θ1� θ̃2)

] = (
1 +Eθ̃2

[
(θ̃2)

2
])
/θ1�

Now, since each party’s incentive payment does not depend on the other’s
report, we can balance the budget simply by charging each party’s incentive
payment to the other party, that is, letting the total transfer to each agent i be
ψi(θi� θ−i)= γi(θi)− γ−i(θ−i).

Now we turn to the case of interest, where the buyer makes his announce-
ment after the seller’s type θ1 is revealed. If we use the AGV transfers de-
scribed above, the buyer anticipates that the second-period trade will be de-
termined by χ2(θ1� ·). However, the buyer must pay (through γ2(θ2)) the ex-
pectation (over θ̃1) of the cost of the seller, rather than the seller’s actual cost.
Then if the seller’s type θ1 is known to be high, the buyer has the incentive
to induce inefficiently high trade by “overreporting” his value. Similarly, the
buyer does not internalize the benefit of an unexpectedly low cost, and in that
case he “underreports” his value to induce less-than-efficient trade.

To fix this problem, we could instead give the buyer an incentive transfer
based on the actual externality he imposes given the seller’s report: γ̃2(θ1� θ2)=
− 1

2θ1
· (1 + (θ2)

2). This will give the buyer the incentive to report θ2 truthfully,
no matter what θ1 the seller reports. However, this transfer depends on the
seller’s report θ1. Thus, if we attempted to balance the budget by having it be
paid by the seller, making his total transfer ψ̃1(θ1� θ2)= γ1(θ1)− γ̃2(θ1� θ2), the
seller would want to reduce γ̃2(θ1� θ2) by overreporting his cost θ1 in period 1,
thus exaggerating the externality imposed on him by the buyer.

The problem of contingent deviations illustrated here arises not only when
types are persistent as in the above example, but in any dynamic setting in
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which the agents’ preferences and/or technology are not separable across peri-
ods.

In this paper, we propose a different way to construct transfers that resolves
the problem. Similarly to the AGV mechanism, our construction proceeds in
two steps: (i) construct incentive transfers γ1(θ), γ2(θ) to make each agent
report truthfully if he expects the other to do so and (ii) charge each agent’s
incentive transfer to the other agent, making the total transfer to agent i equal
ψi(θ) = γi(θ)− γ−i(θ). However, in contrast to AGV transfers, the incentive
transfer γi(θ) to agent i will now depend not just on agent i’s announcements
θi, but also on those of the other agents. How do we then ensure that step
(ii) does not destroy incentives? For this purpose, we ensure that even though
agent −i can affect the other’s incentive payment γi(θi� θ−i), he cannot manip-
ulate the expectation of that payment given that agent i reports truthfully. We
achieve this by letting γi(θi� θ−i) be the change in the expectation of agent −i’s
utility, conditional on all the previous announcements, that is brought about
by the report of agent i. (In the general model in which an agent reports in
many periods, these incentive transfers would be calculated in each period for
the latest report.) No matter what reporting strategy agent −i adopts, if he be-
lieves agent i to report truthfully, his expectation of the change in his expected
utility due to agent i’s future announcements is zero by the law of iterated
expectations. Hence agent −i can be charged γi(θi� θ−i) without affecting his
incentives.

In our example, our construction entails giving the buyer an incentive trans-
fer of

γ2(θ1� θ2)= − 1
2θ1

· ((θ2)
2 −E

[
(θ̃2)

2
])
�

which, on the one hand, gives him correct incentives by letting him internalize
the seller’s expected cost and, on the other hand, ensures that the expecta-
tion of this transfer cannot be manipulated by seller: Eθ̃2

[γ2(θ1� θ̃2)] = 0 for
any θ1. Therefore, we can now charge this incentive transfer to the seller—
that is, let ψ1(θ1� θ2) = γ1(θ1)− γ2(θ1� θ2)—without undermining the seller’s
incentives for truthful reporting. Also, letting then ψ2(θ1� θ2)= −ψ1(θ1� θ2)=
γ2(θ1� θ2)− γ1(θ1) balances the budget and provides incentives for the buyer
to report truthfully.

In the rest of this paper, we generalize the idea of using incentive payments
that give an agent the change in the EPV of opponent utilities induced by his
report to design an efficient mechanism for a general dynamic model. The ar-
gument that the EPV of one agent’s incentive payments cannot be manipulated
by other agents remains the same in the general model, but it becomes more
subtle to show that the EPV of an agent’s own incentive payments provides
him with the correct incentives.
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4. THE SETUP

We consider a model with I agents and a countable number of periods, in-
dexed by t ∈N = {0�1� � � �}. In each period t, each agent i ∈ {1� � � � � I} privately
observes his realized private state (type) θit ∈Θi and then all agents observe the
realized verifiable public state θ0

t ∈Θ0. The state space is thusΘ= ∏I

i=0Θ
i. Af-

ter the state θt ∈Θ is realized, a public decision xt ∈X is made. (All the above
sets will be treated as measurable spaces and the product sets will be endowed
with the product measures.) Also, each agent i is given a transfer yit ∈R.

The payoff of each agent i is given as a function of the sequences of states
(θt)

∞
t=0, decisions (xt)∞t=0, and monetary transfers (yt)∞t=0, as follows,

∞∑
t=0

δt
[
ui(xt� θt)+ yit

]
�

where δ ∈ (0�1) is a discount factor, and the functions ui :X × Θ → R are
assumed to be measurable and bounded.

The initial state θ0 ∈Θ is assumed to be publicly known. The distribution of
subsequent states is governed by transition probability measure μ :X ×Θ→
Δ(Θ) (where the function μ is measurable). Specifically, for any period t ≥ 0,
given the current state θt and the current decision xt , the next-period state
is a random variable θ̃t+1 distributed according to the probability measure
μ(xt� θt) ∈ Δ(Θ) (so that for any measurable set A ⊆ Θ, μ(xt� θt)(A) is the
probability that θ̃t+1 ∈A).

We note that our Markov formulation is without loss of generality, since
any dynamic model can be described using Markov notation by defining large
enough private states to memorize complete histories of private signals, and a
public state large enough to memorize calendar time and public decisions (see
Appendix A for details).

We consider mechanisms in which, following a publicly observed initial state
θ0 ∈Θ0, a decision x0 ∈X is made, and then in each period t ≥ 1, every agent i
makes a public report of his private state θit ∈Θi, then the public state θ0

t ∈Θ0

is observed, and based on the reports and the public state, a decision xt ∈X
is implemented and a transfer yit ∈ R is made to each agent i.5 The truthtelling
strategy of agent i always reports his current state θit in every period t ≥ 1 truth-
fully, regardless of the observed past (in particular, regardless of whether he
has lied in the past). We will consider perfect Bayesian equilibria (PBE) in
truthtelling strategies, with beliefs that assign probability 1 to the other agents’
latest reports being truthful.6

5See Appendix A for a discussion of the way we have specified timing in the Markov formula-
tion.

6Our focus on sustaining truthful strategies in a direct revelation mechanism is innocuous since
our goal is to propose particular mechanisms rather than to characterize the set of all possible
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5. THE TEAM MECHANISM

A decision policy is a measurable function χ :Θ→X , where χ(θ) represents
the decision made when the realized state in this period is θ. (Note that the
focus on Markov decision policies is again without loss of generality, since the
state space can be expanded to remember everything that a policy conditions
upon.) Starting from an initial state θ0 ∈ Θ, a decision policy χ together with
the transition probability measures μ uniquely determine a probability mea-
sure over the sequence of states (θt)∞t=0 ∈ΘN.7

We say that a measurable policy function χ∗ :Θ→X is an efficient decision
policy if it maximizes the total expected surplus for any starting state. Formally,
we denote the total surplus in a period as a function of the period’s decision
x and state θ by s(x�θ)= ∑I

i=1 u
i(x�θ). Then we can characterize an efficient

decision policy χ∗ and the associated measurable social value function S :Θ→
R recursively using the principle of dynamic programming:8,9

S(θ)= s
(
χ∗(θ)�θ

) + δEμ(χ∗(θ)�θ)[S(θ̃)](1)

= sup
x∈X

{
s(x�θ)+ δEμ(x�θ)[S(θ̃)]} for all θ ∈Θ�

The team mechanism consists of an efficient decision policy χ∗ together with
the transfer functions that pay each agent the sum of the other agents’ utilities
according to the announcements:

ψ∗i(θ)=
∑
j �=i
uj

(
χ∗(θ)�θ

)
�(2)

DEFINITION 1: We have private values if the utility ui(x�θ) of each agent i
depends only on x, θ0, and θi.

mechanisms. However, if we were interested in such a characterization, we could make use of a
revelation principle proposed by Myerson (1986) for general dynamic games. In this revelation
principle, agents’ reports are kept private, so as to minimize the scope for contingent deviations.
In contrast, the mechanisms proposed in this paper are incentive compatible even with all the
reports being public and, therefore, would remain incentive compatible if agents were only shown
imperfect signals of the reporting history.

7The existence and uniqueness of this measure follow from the Tulcea product theorem (Pol-
lard (2002, Chapter 4, Theorem 49)).

8Due to our assumption of bounded flow payoffs and discounting, this characterization follows
from Theorems 9.2 and 9.4 and Exercise 9.2 in Stokey and Lucas (1989). For sufficient conditions
for (1) to have a measurable solution, see Stokey and Lucas (1989, Chapter 9). When the sets Θ
and X are finite, (1) always has a (trivially measurable) solution (see Puterman (1994)).

9The notation E
υ[θ̃] denotes the expected value of a random variable θ̃ distributed according

to a probability measure ν ∈ Δ(Θ).
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This property simply means that each agent can calculate his payoff as a
function of his own information.10

PROPOSITION 1: Suppose that we have private values. Then in the team mech-
anism, truthtelling strategies form a perfect Bayesian equilibrium. Furthermore,
truthtelling strategies form a subgame-perfect equilibrium of the modified game in
which the private types are publicly observed.

PROOF: Since the result for publicly observed types implies the result for
private types, we establish the former. By the one-stage deviation principle,11 it
suffices to check that a one-stage deviation of an agent i to reporting θ̂i in any
given period t when the true state is θ is unprofitable. By private values, the
agent’s period-t team transfer from the deviation only depends on θ̂i through
its impact on other agents’ payoffs through the public decision,

ψ∗i(θ̂i� θ−i) =
∑
j �=i
uj

(
χ∗(θ̂i� θ−i)� (θ̂i� θ−i)) =

∑
j �=i
uj

(
χ∗(θ̂i� θ−i)� θ)�

and so his period-t payoff from the deviation is ui(χ∗(θ̂i� θ−i)� θi) + ψ∗i(θ̂i�
θ−i)= s(χ∗(θ̂i� θ−i)� θ). Furthermore, reversion to truthtelling in period t + 1
will yield flow payoffs of ui(χ∗(θτ)�θiτ) + ψ∗i(θτ) = s(χ∗(θτ)�θτ) in the team
mechanism in all periods τ ≥ t + 1, whose EPV evaluated in period t + 1
is S(θt+1). Hence, the agent’s period-t EPV of his deviation payoff can
be expressed as s(χ∗(θ̂i� θ−i)� θ) + δEμ(χ

∗(θ̂i�θ−i)�θ)[S(θ̃)]. By (1), this expres-
sion is maximized by reporting θ̂i = θi, which induces the optimal decision
χ∗(θ). Q.E.D.

10It is well known that when the property of private values is violated, efficiency may not be
implementable even in a static setting (see, e.g., Jehiel and Moldovanu (2001)). Note, however,
that the assumption of private values allows one agent’s type to affect other agents’ future payoffs
through the stochastic process, as long as each agent observes his realized payoffs. For example,
this assumption is satisfied in the setting of Mezzetti (2004), whose proposed efficient mechanism
is a special case of our team mechanism.

11The one-stage deviation principle obtains by applying the principle of optimality to an agent’s
discrete-time dynamic stochastic program in which his state includes everything he observes, and
his action (report) along with his current state determines the probability distribution of his next
state (holding fixed the other agents’ strategies). The principle of optimality implies that to verify
that a given strategy is optimal, it is sufficient to verify that, in all states, the agent is deterred
from deviating for one period and then following the given strategy. The principle of optimality
for discrete-time dynamic stochastic programming can be found in Stokey and Lucas (1989, The-
orem 9.2 and Exercise 9.2). While the setting covered by Stokey and Lucas (1989) is more general
than the complete-information setting considered in Fudenberg and Tirole (1991, Theorem 4.2),
the idea of the proof for the one-stage deviation principle is the same in both cases: it proceeds
by first showing, using backward induction, that if one-stage deviations are deterred, finite devia-
tions are deterred as well, and then extending this to infinite deviations using discounting and the
assumption of bounded flow payoffs.
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The intuition for the proof is that the team transfers make each agent into
a claimant for the total expected surplus in each period, which is maximized
when all agents adhere to truthful strategies. Hence, no agent has an incentive
to deviate. This is a straightforward extension of the Vickrey–Groves–Clarke
mechanism to our dynamic model.

The fact that truthtelling is a subgame-perfect equilibrium under publicly
observed types means that the mechanism is robust to agents’ observation of
each other’s current types, i.e., truthtelling is a within-period ex post equilib-
rium. Note that requiring the mechanism to be robust to observation of future
types would be too strong for the dynamic setting, even with a single agent:
the agent might want to report differently and induce different decisions if he
could foresee his future types.12,13

6. BALANCING

A major problem with the team mechanism is that its transfers are not
budget-balanced. However, we now show that they can be balanced. Rather
than focusing on the team mechanism, however, we assume that we are
given a general direct Markov mechanism with a measurable decision policy
χ :Θ→X and a bounded measurable transfer policy ψ :Θ→ R

I .14 Supposing
that truthtelling is a PBE of this mechanism, we construct a new mechanism
that implements the same decision policy χ in a PBE, but whose transfers are
budget-balanced. Our construction requires that the transition probabilities
have the following property:

12One exception is given by settings in which the transition probabilities μ(x�θ) are indepen-
dent of decisions x and so an efficient decision policy χ∗ simply maximizes the current surplus
s(x�θ). In such settings, truthtelling is a subgame-perfect equilibrium even if the agents observe
all the information before the game starts. In more general settings, Pavan, Segal, and Toikka
(2014) found that it is sometimes possible to construct mechanisms that are robust to an agent’s
observation of other agents’ future types, but not of his own future types.

13There does exist a “detail-free” version of the team mechanism if the mechanism can be sup-
plemented by “cheap talk” among agents. In this version, agents report to the mechanism their
realized nonmonetary payoffs (instead of states) and the mechanism gives each agent a transfer
equal to the sum of the other agents’ reported payoffs. (These transfers make the agents into
a “team” in the terminology of Marschak and Radner (1972).) In addition, agents make non-
verifiable public announcements of their states and implement decisions upon observing these
announcements. The resulting game will have an equilibrium that implements an efficient de-
cision policy. However, this mechanism heavily relies on common knowledge and coordination
among agents, and requires (at least one of) them to be able to calculate an efficient decision
policy.

14Recall that Markovness is merely for notational convenience, since we do not impose any
restrictions on the state space. As for the boundedness restriction, we use it to ensure that trans-
fers have an expected present value in the sense of double Lebesgue integration, permitting us
to interchange expectation and infinite-horizon summation in calculating this expected present
value.
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DEFINITION 2: We have independent types if the transition probability mea-
sure can be written in the form μ(x�θ)= μ0(x�θ0) · ∏I

i=1μ
i(x�θ0� θi) for each

x ∈X , θ ∈ Θ, where μ0 :X ×Θ0 → Δ(Θ0) and μi :X ×Θ0 ×Θi → Δ(Θi) for
each agent i.

This definition means that, conditional on decisions and public states, an
agent’s private information does not have any effect on the distribution of the
current and future types of other agents or of the public states. (Note that it
still allows one agent’s reports to affect the future types of other agents as well
as the future public state through the implemented decisions.)

To construct the balanced transfers, first let Ψi(θ) denote the EPV of agent
i’s transfers in the original mechanism in state θ, which is characterized by the
recursive equation

Ψi(θ)=ψi(θ)+ δEμ(χ(θ)�θ)[Ψi(θ̃)
]
�(3)

Now we define the following “balanced transfers” ψ̄ :Θ × Θ → R
I , where

ψ̄(θ� θ̄) describes the transfers paid when the current state is θ and the previous
state was θ̄:15

ψ̄i(θ� θ̄)= γi(θi� θ̄) − 1
I − 1

∑
j �=i
γj

(
θj� θ̄

)
� where(4)

γi
(
θi� θ̄

) = E
μ(χ(θ̄)�θ̄)

[
Ψi

(
θi� θ̃−i)] −E

μ(χ(θ̄)�θ̄)
[
Ψi(θ̃)

]
�(5)

To understand the balanced transfers (4), note that γj(θj� θ̄), interpreted as
agent j’s incentive term, gives the change in the EPV of agent j’s transfers in
the original mechanism that results from his current report given the previous
state θ̄. As in the standard AGV mechanism, all the other agents pitch in the
same amount γj/(I − 1) to pay agent j’s incentive term, which ensures that
the transfers are budget-balanced:

∑I

i=1 ψ̄
i(θ� θ̄) = 0 for all θ� θ̄ ∈ Θ. (Also,

note that if the original transfers ψ are bounded by K, then their EPVs Ψ are
bounded byK/(1−δ), so the balanced transfers ψ̄i are bounded by 4K/(1−δ).
This ensures that the balanced transfers have an EPV in the sense of double
Lebesgue integration and that the one-stage deviation principle applies to the
mechanism; see footnote 11.)

PROPOSITION 2: If truthtelling is a PBE of the Markov mechanism (χ�ψ) and
we have independent types, then truthtelling is a PBE of the balanced mechanism
(χ� ψ̄), where transfers ψ̄ are given by (4).

15These transfers can be “Markovized” by expanding the state to be (θ� θ̄), but we do not do it.
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PROOF: For any agent i, θi ∈ Θ, and θ̄ ∈ Θ, let γi+(θ
i� θ̄) = E

μ(χ(θ̄)�θ̄)[Ψi(θi�

θ̃−i)] and γi−(θ̄) = E
μ(χ(θ̄)�θ̄)[Ψi(θ̃)], so that (5) is written as γi(θi� θ̄) =

γi+(θ
i� θ̄) − γi−(θ̄). Observe that for any θ̂ ∈ Θ such that θ̂i = θ̄i and θ̂0 = θ̄0,

using independent types, we have

E
μ(χ(θ̂)�θ̄)

[
γi

(
θ̃i� θ̂

)] = E
μi(χ(θ̂)�θ̂0�θ̂i)

θ̃i

[
γi+

(
θ̃i� θ̂

)] − γi−(θ̂)
= E

μi(χ(θ̂)�θ̂0�θ̂i)

θ̃i
E
μ−i(χ(θ̂)�θ̂−i)
θ̃−i

[
Ψi

(
θ̃i� θ̃−i)]

−E
μ(χ(θ̂)�θ̂)

[
Ψi(θ̃)

]
= 0�

Hence, using the law of iterated expectations, the time-t expectation of
γi(θ̃iτ� θ̃τ−1) in every period τ ≥ t is zero if agent i reports truthfully in peri-
ods τ− 1 and τ, regardless of the other agents’ reports, or (crucially) of agent
i’s reports in the other periods.

By the one-stage deviation principle (see footnote 11), to verify PBE it suf-
fices to show that for any given t, a one-stage deviation of any agent i to report-
ing any θ̂i ∈ Θi instead of his true realized type θi ∈ Θi in period t is unprof-
itable following any reported state θ̄= (θ̄i� θ̄−i) ∈Θ in period t− 1. (The agent
believes the reports θ̄j of all other agents j �= i to have been truthful; as for his
own previous report θ̄i, it does not matter whether it was truthful or not, since
his true past types are payoff-irrelevant given the observed period-t type θi.)
Consider the EPV of agent i’s balanced transfers following this deviation. By
the previous argument, the expectations of γj(θ̃jτ� θ̃τ−1) for all agents j �= i in all
periods τ ≥ t, as well as the expectations of γi(θ̃iτ� θ̃τ−1) in periods τ ≥ t+2, are
zero. Thus, using independent types, the EPV of agent i’s balanced transfers
following the deviation is

γi
(
θ̂i� θ̄

) + δEμ−i(χ(θ̄)�θ̄−i)
ϑ̃−i E

μi(χ(θ̂i�ϑ̃−i)�ϑ̃0�θi)

θ̃i

[
γi(θ̃i�

(
θ̂i� ϑ̃−i)]

= γi+
(
θ̂i� θ̄

) − γi−(θ̄)
+ δEμ−i(χ(θ̄)�θ̄−i)

ϑ̃−i E
μi(χ(θ̂i�ϑ̃−i)�ϑ̃0�θi)

θ̃i

[
γi+(θ̃

i�
(
θ̂i� ϑ̃−i)]

− δEμ−i(χ(θ̄)�θ̄−i)
ϑ̃−i

[
γi−

(
θ̂i� ϑ̃−i)]

= E
μ(χ(θ̄)�θ̄)

ϑ̃

[
Ψi

(
θ̂i� ϑ̃−i)](6)

−E
μ(χ(θ̄)�θ̄)

ϑ̃

[
Ψi(ϑ̃)

]
(7)

+ δEμ(χ(θ̄)�θ̄)
ϑ̃

E
μ(χ(θ̂i�ϑ̃−i)�θi�ϑ̃−i)
θ̃

[
Ψi(θ̃)

]
(8)

− δEμ(χ(θ̄)�θ̄)
ϑ̃

E
μ(χ(θ̂i�ϑ̃−i)�θ̂i�ϑ̃−i)
θ̃

[
Ψi(θ̃)

]
�(9)
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ExpressingΨi(θ̂i� ϑ̃−i) with the recursive formula (3), terms (6) and (9) add up
to E

μ(χ(θ̄)�θ̄)

ϑ̃
[ψi(θ̂i� ϑ̃−i)], which is the agent’s expected period-t payment in the

original mechanism following the deviation. Term (8) is the EPV of the agent’s
payments ψi(θ̃τ) in periods τ ≥ t + 1 in the original mechanism following the
deviation. Finally, (7) does not depend on θ̂i. Hence, the EPV of agent i’s gain
from the deviation in the balanced mechanism is the same as in the original
mechanism, which is nonpositive by assumption. Q.E.D.

We define the balanced team mechanism to be a mechanism with an effi-
cient decision plan, together with the balanced team transfers ψ̄∗ that are con-
structed from the team transfers (2) according to (4).

COROLLARY 3: With independent types and private values, the balanced team
mechanism has a perfect Bayesian equilibrium in truthtelling strategies.

7. A SELF-ENFORCING MECHANISM

In this section, we suppose that there is no external enforcer; instead, de-
cisions and payments must be made by the agents themselves. Formally, we
consider the decentralized game, which differs from the game described in Sec-
tion 4 as follows: In each period, after each agent i reports his private type
θi and the public state θ0 is publicly observed, each agent i chooses a publicly
observed action xit ∈ Xi and makes a publicly observed payment zijt ≥ 0. The
agents’ actions result in the decision xt = (x1

t � � � � � x
I
t ) ∈X = ∏I

i=1X
i and the

payments result in the total net payment of yit =
∑

j �=i(z
ji
t −zijt ) received by each

agent i. (Note that
∑I

i=1 y
i
t = 0 by construction.) We provide sufficient condi-

tions for the decentralized game to have an efficient equilibrium for discount
factors close enough to 1. This can be viewed as a folk theorem-like result for
Markov games with private states.16

To sustain an equilibrium in the decentralized game, agents must be deterred
not only from misreporting their private information, but also from choosing
incorrect actions and/or payments based on the preceding reports—so-called
off-schedule deviations. For example, if agent i has a “nonparticipation action”
x̂i ∈Xi that gives him a zero utility regardless of the other actions, then deter-
ring his deviations to this action requires, in particular, that his continuation
equilibrium expected payoff always be nonnegative, paralleling the traditional
“participation constraints” in static mechanism design.17 Note, however, that
deterring off-schedule deviations is, in general, more difficult than the satis-
faction of traditional participation constraints due to (a) the agent’s ability to

16For a folk theorem for Markov games with public states, see Dutta (1995).
17In a follow-on paper (Athey and Segal (2007b)), we explore weaker sufficient conditions for

participation constraints to hold in some special cases of our model.
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misreport his type and learn the other agents’ types before deciding whether
to deviate off-schedule (as in Compte and Jehiel (2009)) and (b) his ability to
receive payments from the other agents when he deviates off-schedule (while
withholding any payments to them).

The usual way to deter off-schedule deviations is by showing that the short-
term gain from any deviation is outweighed by the long-term loss of coopera-
tion surplus when agents are sufficiently patient. When considering the bal-
anced team mechanism, however, we must overcome the problem that the
balanced team transfers in each period are expressed through the EPV of fu-
ture payoffs, and so they could potentially grow with the discount factor, giving
agents an incentive to withhold the prescribed payments. However, we show
that if the stochastic process forms an ergodic finite Markov chain, the bal-
anced team transfers are bounded uniformly in the discount factor. Intuitively,
the assumption of ergodicity means that the starting state has a geometrically
vanishing effect on the probability distributions of future states and, there-
fore, on the agents’ expected future payoffs, which implies that the effect on
the EPV of these payoffs is bounded uniformly in the discount factor. By the
construction of balanced team transfers, they inherit this uniform bound, so
sufficiently patient agents can be induced to make the prescribed transfers by
offering them shares in the expected surplus from future cooperation.18

PROPOSITION 4: Suppose that we have private values and independent types.
Suppose also that Θ and X are finite sets, that χ∗ is an efficient decision policy
for any discount factor δ < 1 close enough to 1, and that χ∗ induces a Markov
chain that has a unique ergodic set19 and whose invariant distribution generates a
positive expected total surplus. Finally, suppose that there exists an action profile
x̂ ∈X such that ui(xi� x̂−i� θ)= 0 for all i, θ ∈Θ, and xi ∈Xi.20 Then there exists
δ∗ < 1 such that for all δ ∈ (δ∗�1), decision policy χ∗ can be sustained in a PBE
of the decentralized game.

A decision policy that is efficient for δ close enough to 1 is known as a
Blackwell-optimal policy, and it always exists and can be constructed using a

18This intuition suggests that ergodicity is crucial for preventing a given period’s report from
having a long-run impact. To see formally why the ergodicity assumption is indispensable for the
proposition below, note that in the contrasting case in which states are perfectly persistent, a
self-enforcing mechanism would have to satisfy the same incentive constraints and participation
constraints as in the corresponding static model, and these constraints would preclude efficiency
in many settings (see Myerson and Satterthwaite (1983), Segal and Whinston (2012)). The same
would happen if agents were myopic (i.e., δ= 0), which justifies our focus on patient agents.

19Recall that a set of states S ⊆ Θ is ergodic if, starting in S, the process remains in S with
probability 1, and this is not true for any proper subset of S.

20Interpreting action x̂i ∈ Xi as “quitting” by agent i, this assumption fixes an agent’s util-
ity (and normalizes it to zero) when all the other agents quit (but does not restrict his utility
when others do not quit). This assumption ensures that, for any beliefs, the stage game has a
Bayesian-Nash equilibrium in which all agents quit and make no payments, allowing us to use
this equilibrium to punish off-schedule deviations.



AN EFFICIENT DYNAMIC MECHANISM 2477

simple algorithm (Puterman (1994, Theorem 10.1.4 and Section 10.3)). Simi-
larly, checking the ergodicity of a Markov chain is a well known problem. For
example, a Markov chain has a unique ergodic set if and only if there exists a
state θ ∈Θ such that the chain has a positive probability of eventually visiting
θ starting from any state θ0 ∈Θ (Stokey and Lucas (1989, Theorem 11.2)).21

8. CONCLUSION

In conclusion, we mention several extensions of our results. One extension
permits agents to take private actions, such as investments or other choices
that influence their payoffs directly or through their effects on agents’ future
types.22 In our working paper (Athey and Segal (2007a)), we showed that all
of the present paper’s results extend to this setting, provided that the private
values assumption incorporates that an agent’s private actions have no direct
effect on other agents’ payoffs, while the independent types assumption in-
corporates that these private actions have no direct effect on the distribution
of other agents’ types. This extends Rogerson’s (1992) efficient and budget-
balanced mechanism in a two-period setting with private actions.

Our construction also yields an efficient mechanism for settings with dy-
namic populations, where agents may enter and exit. While our team mech-
anism has the potentially problematic feature of making transfers to agents
after they have exited, under the assumption of independent types, the incen-
tive terms (5) in the balanced team mechanism implement efficiency without
making transfers to agents who have exited (by construction, the term is zero
for agents who do not have reports).23

While we have focused on direct revelation mechanisms for notational sim-
plicity, our Proposition 2 easily extends to mechanisms with other message
spaces (for example, with message spaces reduced due to communication costs,
as in Fadel and Segal (2009)).

While we have made heavy use of quasilinear utilities, in the case of general
payoffs it is possible to approximate the balanced team transfers by transfer-
ing the agents’ future continuation utilities when they are sufficiently patient
(similarly to Fudenberg, Levine, and Maskin’s (1994) approximation of static

21A substantial part of the literature on Markov decision processes (MDPs) has focused on
so-called unichain MDPs, in which every decision policy induces a Markov chain with a unique
ergodic set (Puterman (1994, Sections 8.3–8.8)). Even though checking whether a given MDP
is unichain is, in general, NP-hard (Tsitsiklis (2007)), it is easy in some important special cases
(described in Kallenberg (2002) and Feinberg and Yang (2008)).

22In particular, private actions could involve information acquisition about own types, as in
Cremer, Spiegel, and Zheng (2009) or as in the model of computational efforts of Larson and
Sandholm (2001).

23As pointed out by Gershkov and Moldovanu (2009), when agents’ types are correlated, it is
generally impossible to implement efficiency without making transfers to agents who have exited.
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budget-balanced mechanisms in repeated games with serially i.i.d. private in-
formation). This approach is used by Horner, Takahashi, and Vielle (2013) to
prove a folk theorem for dynamic games with private information.24

Propositions 2 and 4 may be viewed as considering the polar opposite
cases of “complete contracting” and “no contracting,” respectively. Lewis and
Kuribko (2010) considered an intermediate case of “incomplete contracting”
in which agents can only contract on the current decision and on simple “prop-
erty rights” that determine their participation constraints in the next period.
They constructed a procedure for renegotiating property rights every period
that sustains efficiency by mimicking the balanced team mechanism. This re-
sult (which requires neither ergodicity nor patience) extends the observation
of Cramton, Gibbons, and Klemperer (1987) to a dynamic setting.

Finally, our Propositions 2 and 4 have focused on the setting of independent
types. In static mechanism design, this case is viewed as the “hardest” case; with
correlated types, efficiency with budget balance is achievable under generic
conditions, as shown by d’Aspremont, Cremer, and Gerard-Varet (2004, 2003).
We expect these results to extend to dynamic settings, but this would require
different techniques than those we have used, so we leave this extension for
future research.25

APPENDIX A: MARKOVIZATION

Consider a general model in which, in every period t, each agent i observes a
private signal sit ∈ Sit , a public verifiable signal s0

t ∈ S0
t is observed, and a decision

xt ∈X is made. This model can be “Markovized” (that is, written in Markov
notation without changing the underlying game) by defining each agent i’s state
space as Θi = ∏∞

t=0 S
i
t to memorize past signals, and using the public state to

memorize calendar time, public signals, and past decisions, so that Θ0 = N ×∏∞
t=0 S

0
t × XN. The transition probability measure μ(x� (t� s0�x)� (si)Ii=1) puts

probability 1 on the next state ((t̃� s̃0� x̃)� (s̃i)Ii=1) satisfying t̃ = t + 1, x̃t = x,
x̃τ = xτ for all τ �= t, and s̃iτ = siτ for all i and all τ �= t + 1.26,27

24See also Escobar and Toikka (2013), who established such a folk theorem using a different
proving method.

25For a two-period setting with a period of private actions followed by a period of private
signals, budget-balanced implementation of approximate efficiency that exploits correlation was
examined by Obara and Rahman (2006).

26With a finite horizon T , we can give agent i a total utility of Ui((xτ)
T
τ=1� (sτ)

T
τ=1) by giving it

in the final period T . In an infinite-horizon model, the utility functions Ui((xτ)
∞
τ=1� (sτ)

∞
τ=1) need

to be Lipschitz continuous at t = ∞ so as to be representable as the present values of bounded
utility flows; see Athey and Segal (2007a).

27Note, in particular, that the constructed public state s0 evolves deterministically based on
the previous state and the previous decision (which itself will be a deterministic function of the
previous public state and agents’ reports). Because of this, it makes no difference whether the
agents observe the public state before reporting their types or only after (but observe the previous
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The advantage of using Markov notation to describe a dynamic model is
that, as noted by Townsend (1982), it permits us to restrict attention to sustain-
ing reporting strategies in which every agent reports his whole payoff-relevant
state truthfully at all histories, including those in which he lied in the past. To
verify that such truthtelling strategies form a PBE, it suffices to establish that
one-stage lies followed by reversion to truthtelling are unprofitable at any his-
tory.28 The disadvantage of this approach is that it may result in a very large
state space, necessitating the need to check a very large number of incentive
constraints. (For example, in the above example, agent i should be induced
to report all signals si1� � � � � s

i
t truthfully in period t, even if he previously mis-

reported some of these signals.) Since our results (with the exception of Sec-
tion 7) do not depend on the size or structure of the state space, the Markov
notation proves convenient for our purposes.29

APPENDIX B: PROOF OF PROPOSITION 4

B.1. Technical Preliminaries

To bound the incentive payments (5) in a way that is independent of the
discount factor δ, we establish the following technical result, which makes use
of the fundamental concepts in the theory of Markov chains (see Stokey and
Lucas (1989) and Behrends (2000)).

LEMMA 5: LetΠ be a Markov transition matrix on a finite set Θ with a unique
ergodic set S ⊆ Θ, let λ ∈ Δ(Θ) be the invariant distribution of Π,30 and let
(π(t)θ0�θ

)θ0�θ∈Θ =Πt (the t-step transition matrix). Then there exists C ≥ 0 such that
for all δ ∈ (0�1) and all θ�θ0 ∈Θ,∣∣∣∣∣

∞∑
t=0

δt
(
π(t)θ0�θ

− λθ
)∣∣∣∣∣ ≤ C�

PROOF: Since Θ is a finite set, it suffices to establish a bound for any
given pair θ�θ0 ∈ Θ. If θ ∈ Θ\S, then it is a “transient” state, in which case

public state before reporting). In the paper’s main model, we make the latter assumption merely
for notational simplicity.

28In contrast, Myerson’s (1986) revelation principle for general settings, in which agents report
only new information in every period, does not restrict their reporting following lies. To establish
that such strategies form a Bayesian-Nash equilibrium would require checking multistage lying
deviations, while to establish that they form a PBE would require specifying the agents’ sequen-
tially optimal misreporting following own lies.

29Our working paper Athey and Segal (2007a) obtains the results of this paper without
Markovizing the model, instead asking each agent to report only the new information observed
in a given period. The proofs in that paper are sufficiently more complicated notationally, despite
being similar substantively.

30The invariant distribution is uniquely defined; see Stokey and Lucas (1989, Theorem 11.2).
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t=0 δ

tπ(t)θ0�θ
<

∑∞
t=0π

(t)
θ0�θ

<∞ and λθ = 0, hence the desired bound obtains. If
instead θ ∈ S, let G⊆ S denote the cyclically moving subset of Θ that contains
θ, let t0 = min{t ∈ N :π(t)θ0�θ

> 0}, and let n ≥ 1 denote the period of state θ,
so that π(t)θ0�θ

> 0 only if t = t0 + rn, r ∈ N. Then the n-step transition process
Πn forms an irreducible aperiodic chain on G with the invariant distribution
(nλθ)θ∈G, and it converges at a geometric rate to its invariant distribution, that
is, there exist ρ ∈ (0�1) and a≥ 0 such that |π(t0+rn)

θ0�θ
− nλθ| ≤ aρr for all θ ∈G.

(See Stokey and Lucas (1989, Theorem 11.4) and Behrends (2000, Chapter 7).)
Therefore,∣∣∣∣∣

∞∑
t=0

δt
(
π(t)θ0�θ

− λθ
)∣∣∣∣∣

≤
∞∑
r=0

δt0+rn∣∣π(t0+rn)
θ0�θ

− nλθ
∣∣ + λθ

∣∣∣∣∣n
∞∑
r=0

δt0+rn −
∞∑
t=0

δt

∣∣∣∣∣
≤

∞∑
r=0

aρr +
t0−1∑
t=0

δt + δt0
∞∑
r=0

δrn

(
n−

n−1∑
t=0

δt

)

≤ a

1 − ρ + t0 + 1
1 − δn

(
n− nδn−1

)
≤ a

1 − ρ + t0 + n� Q.E.D.

We apply the lemma to the transition matrixΠ of the Markov chain induced
by decision policy χ∗. Letting λ be the Markov chain’s invariant distribution,
letting, for every agent i,

ui =
∑
θ∈Θ
λθu

i
(
χ∗(θ)�θ

)
be the agent’s expected flow utility in that distribution, and letting

Di(θ0;δ)=
∞∑
t=0

δt
∑
θ∈Θ
π(t)θ0�θ

(
ui

(
χ∗(θ)�θ

) − ui)�
the lemma implies that there exists C ≥ 0 such that for all i, θ0 ∈ Θ, and δ ∈
(0�1), ∣∣Di(θ0;δ)

∣∣ ≤M|Θ|C� where M = max
i�θ∈Θ�x∈X

∣∣ui(x�θ)∣∣�(10)
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In particular, since the EPV of team transfers (2) can be expressed as

Ψ ∗i(θ)=
∑
j �=i

(
Dj(θ;δ)+ uj

1 − δ
)
�

(10) permits us to bound the incentive terms (5) for the team mechanism:

∣∣γ∗i(θi� θ̄)∣∣ =
∣∣∣∣Eμ(θ̄�χ(θ̄))[∑

j �=i

(
Dj

(
θi� θ̃−i;δ) −Dj(θ̃;δ))]∣∣∣∣(11)

≤ 2(I − 1)M|Θ|C�

B.2. Equilibrium Strategies

Define on-schedule histories as those in which all agents in all the previ-
ous periods have made decisions and payments consistent with the equilibrium
strategies given the reports and the public states, and call all other histories
off-schedule histories. Consider the following strategies:

• At any off-schedule history, agent i reports his true type, chooses action
x̂i, and makes zero payments to all other agents.

• At any on-schedule history, agent i reports truthfully. Also, given the last
reports θ̂t and the previous reports θ̂t−1 (regardless of whether or not he has
been reporting truthfully), he chooses action xit = χ∗i(θ̂t) and makes a payment
of

zij
(
θ̂
j
t � θ̂t−1

) = 1
I − 1

γj
(
θ̂
j
t � θ̂t−1

) + ui +M
I

+ 2M|Θ|C

to every agent j �= i. Observe that by construction and (11), for all δ ∈ (0�1)
and all (θ̂jt � θ̂t−1),

0 ≤ zij(θ̂jt � θ̂t−1

) ≤ 4M|Θ|C + 2M/I�

Observe that if all agents follow these strategies, only on-schedule histories
are realized and the game implements decision policy χ∗.

B.3. Verification of PBE

Now we show that when δ is close enough to 1, the strategies described above
form a PBE, coupled with beliefs in which each agent puts probability 1 on
the other agents to have reported truthfully in the previous period. First, note
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that an agent has no profitable deviation at any off-schedule history, since his
continuation payoff is then zero regardless of his beliefs or actions. Now we
show that no agent i has a profitable one-stage deviation at any on-schedule
history. First we observe that at all on-schedule information sets, no agent i
has a profitable misreport. This is because the net prescribed payment to agent
i is ∑

j �=i

[
zji

(
θ̂it � θ̂t−1

) − zij(θ̂jt � θ̂t−1

)] = ψ̄∗i(θ̂t� θ̂t−1)− ūi + 1
I

∑
j

ūj(12)

and so the agent faces a balanced team mechanism (up to a constant payment).
Hence, by Proposition 2, if δ is close enough to 1 so that χ∗ is an efficient
decision policy, truthtelling is optimal at all on-schedule information sets.

Now we show that each agent has no profitable one-stage deviation at an
on-schedule public history in period t in which, upon observing his true state
θit and making an announcement θ̂it (which may or may not be equal to θit), he
makes a public decision and/or payments that differ from those prescribed by
his strategy given the announcements. Observe first that the maximal period-t
gain from such a deviation is bounded above by

(I − 1) sup
i�j�θ�θ̄

zij
(
θj� θ̄

) + 2 max
i�θ�x

∣∣ui(x�θ)∣∣
≤ (I − 1)

(
4M|Θ|C + 2M/I

) + 2M

and that the deviation is followed by zero payoffs in all periods τ ≥ t + 1. Now
we calculate the time-t EPV of the agent’s future payoff if he does not devi-
ate. Given that the total payments to the agent are given by (12) and that the
period-t expectation of ψ̄∗i(θτ� θτ−1) for τ ≥ t + 2 is zero (see the first para-
graph in the proof of Proposition 2), the EPV of the agent’s future payoff if he
does not deviate can be written as

∞∑
τ=t+1

δτ−t
∑
θ∈Θ
π(τ−t)θt �θ

[
ui

(
χ∗(θ)�θ

) − ui + 1
I

∑
j

uj
]

+ δ
∑
θ∈Θ
πθt �θψ̄

∗i(θ�θt)

= δ
∑
θ∈Θ
πθt �θ

[
Di(θ;δ)+ ψ̄∗i(θ�θt)

] + δ

1 − δ · 1
I

∑
j

uj�

By (10) and (11), the first term on the right-hand side is bounded uniformly in
δ, while due to the assumption

∑
j u

j > 0, the second term goes to infinity as
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δ→ 1. Hence, for δ close enough to 1 the expected future payoff sacrificed by
the deviation exceeds the maximum possible present gain from it.
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