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“Fundamentally, communication is required to translate purpose into terms of the

concrete action required to effect it - what to do and when and where to do it [...] Under

very simple and usually temporary conditions and with small numbers of persons the

communication problem often appears simple, but under many conditions, even with small

numbers, a special channel of communication is required. For if all talk at once there is

confusion, and there is indecision particularly as to timing of actions. This creates the

necessity for a leader.”

Chester Barnard (1938)

1 Introduction

Before the 1840s, modern industrial enterprise administered by a set of managers did not exist

in the United States. Even though production had grown increasingly specialized, coordination

was achieved mostly by the “invisible hand” of the market mechanism. As the volume and speed

of economic activity grew and technology permitted many production activities to be carried on

simultaneously within a single technological unit, however, administrative coordination became in-

creasingly important. As Chandler (1977) writes, “in all these new enterprises - the railroads, the

telegraph, the mass marketers, and the mass producers - a managerial hierarchy had to be created

to supervise several operating units and to coordinate and monitor their activities.”

Consider, for example, the revolution in American transportation which occurred in the middle

of the last century. Before the advent of railroads, “the enterprises that constructed and maintained

the canals and turnpikes rarely operated the canal boat companies, stage lines, or mail routes that

used them” (Chandler, 1977). On the railroad, however, safety and efficiency required “careful

coordination of the movements of trains and the flow of traffic”. This coordination could only be

achieved by administrative means, by authority of the newly created class of professional managers.

This brought about “the first modern, carefully designed internal organizational structure used by

an American business enterprise”.

It is clear that technological changes played an important role in inducing the organizational
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changes. However, as Williamson (1985) points out, technological parameters by themselves do not

determine organizational form. For example, in theory trains could be owned independently, and

the owners could coordinate their schedules by a market mechanism.

Determination of organizational form has been largely unexplained by economic theory. In an

early economic analysis of organizations, Simon (1951) introduced economists to the concept of

authority as an important feature of administrative organizations:

“We will say that B[oss] exercises authority over W[orker] if W permits B to select

[his behavior] x. That is, W accepts authority when his behavior is determined by B’s

decision.”

This concept has been later used by Grossman and Hart (1986) and the subsequent literature on

incomplete contracts which models firms as clusters of authority in general, and control rights over

assets in particular. However, none of these contributions has formally explained why organizations

so often make decisions by authority, rather than using other decision mechanisms. Indeed, in-

complete contracts models usually admit only slightly more complicated mechanisms which achieve

significant improvements upon authority.

This paper puts forward a formal explanation of authority as the predominant decision mecha-

nism in organizations. This explanation is based on the idea put forward by Barnard (1938), Arrow

(1974), Chandler (1977), and, more recently, Milgrom and Roberts (1992), that administrative au-

thority is an efficient way of coordinating activities of many persons in complex environments with

limited communication opportunities (see e.g. the opening citation). In order to develop this idea

formally, we consider a model where two individuals need to coordinate on a course of action. The

necessity of coordination may, for example, come from the two individuals’ playing an n × n co-
ordination game with a very high payoff to coordination. (This payoff can be interpreted as the

benefit from avoiding collision on a railroad or explosion in a factory.) Following Crawford and

Haller (1990), we assume that coordination is difficult because the parties do not share a labeling of

actions which could provide them with a focal point.
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Standard economic theory usually dismisses the coordination problem on the grounds that if

players can talk long enough before the game starts, they will eventually agree on an action. To

avoid this criticism, Crawford and Haller restrict attention to the case where pre-play communication

is impossible, and coordination can only be achieved by repeated play. We are instead interested

in analyzing pre-play communication. Of course, in absence of barriers to communication, coor-

dination is not a problem. For example, the players can eventually publicly label all the actions,

and base their behavior on this common labeling. However, if the number of possible actions is

large, this communication would take extremely long. The question we ask, therefore, is, how long

is ‘long enough’? More precisely, how can coordination be achieved with a minimum amount of

communication?

To address this question, we apply a computer science notion of communication complexity (Yao

(1979), Karchmer (1989), Marschak (1995)) to measure the complexity of coordinating communica-

tion. Our first result shows that the simplest way to coordinate is by giving one of the players the

authority to specify what action to take. For example, consider two people who need to lift a log.

To do this, they need to apply their efforts simultaneously to both ends of the log, otherwise efforts

would be wasted. The simplest way to achieve such coordination is to give one person the authority

to say “up”.1,2

When authority serves a purely coordinating purpose, the allocation of authority is not impor-

tant, as long as the bearer of authority is commonly known. Authority could be delegated to any

participant of the coordination game, to an outsider, or even to a publicly observed mechanical de-

vice. For example, two cars at an intersection may be coordinated by either driver, by a policeman,

or by a traffic light. To extend our model to the more interesting situations where allocation of

1Unless some commonly observed characteritics of the two individuals (position, seniority, etc.) establish a focal
allocation of authority, the parties may need to communicate in advance in order to coordinate on the source of
authority. In the words of Barnard (1938), “every communication must be authenticated”, which means that “the
person communicating must be known to actually occupy the ‘position of authority’ concerned.” Since there are only
two possible authority allocations in the example, coordinating on such an allocation is bound to be much simpler
than coordinating on when to lift the log.

2For more examples of coordination by authority, see Milgrom and Roberts (1992, ch.4).
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authority is important, we postulate that the parties possess private information about the benefits

of different actions. In this case, an outsider or a mechanical device may be unlikely to pick a good

action. Authority should optimally be allocated to the party which has the best information to make

the decision.3

When different individuals possess different information, authority mechanisms have an obvious

disadvantage: they only utilize the information available to one of the players. For example, a

traffic policeman does not bother to find out the destinations and time preferences of the cars he

coordinates, which may result in certain inefficiencies. As a general matter, if the parties could

pool all their information costlessly, they would arrive at a better decision than that achieved by

authority. However, as has been emphasized by Hayek (1945), full revelation of all the information

relevant to a particular decision may require prohibitively extensive communication. According to

our first result, authority mechanisms achieve coordination in the simplest way possible, by describing

just one action. Our second result identifies conditions under which improvement upon authority

requires communication protocols of exponential complexity in the number of possible actions, i.e.

those which asymptotically describe infinitely many actions.

One reason communication is costly is because of associated delays. When parties communicate

using a channel with a finite bandwidth (transmission rate), a bound on communication complexity is

essentially a bound on communication time. Under this interpretation, our results make a strong case

for using authority in complicated situations requiring quick decision making, where time limitations

put a severe constraint on the amount of communication. The leading examples include emergency,

combat, and operating room. In these situations, a clear line of authority is a prerequisite for success.

However, we think that a model of communication costs can also be used to explain the role

of formal authority in situations where decisions are not urgent and informal communication is

3Barnard (1938) uses the term authority of position for the form of authority which is “to a considerable extent
independent of the personal ability of the incumbent of the position”, and the term authority of leadership for the
authority of individuals “whose knowledge and understanding regardless of position command respect”. For example,
a policeman substituting for a broken traffic light exercises authority of position. But when the same policeman
performs a more creative coordinating job, utilizing his knowledge of the location or traffic conditions, his authority
becomes that of leadership.
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extensive. Indeed, whenever parties’ interests diverge, formal (contractual) communication verifi-

able by a court has the additional benefit of committing the parties to act in certain ways on the

basis of messages they receive. When formal communication is much more costly than informal,

an organization may economize on these costs by writing simple contracts which allocate formal

authority over various decisions, while using extensive informal communication to complement the

formal mechanisms. We believe that an extension of our model along these lines can prove useful

for analyzing organizations as incomplete contracts.

The rest of the paper is organized as follows. Section 2 discusses the relation of our approach to

existing literature. Section 3 formalizes the notion of coordinating communication, and proves that

the simplest form of such communication is authority. Section 4 shows that under certain conditions,

improvement upon authority requires exponential communication. Section 5 discusses how our

analysis can be extended to incorporate the distinction between formal and informal communication.

Section 6 concludes. A non-technical reader is recommended to skip the subsections marked with

an asterisk (*) in the first reading.

2 Related Literature

Our approach is closely related to the team-theoretic literature which attempts to explain economic

organization with the costs of information processing, including those of communication. However,

most papers in this literature either do not model communication costs at all, or model them as

fixed costs of transmitting pieces of information (Radner (1993), Bolton and Dewatripont (1994),

Marschak and Reichelstein (1995)). Team-theoretic explanations of hierarchies can be traced back to

Arrow’s (1974) observation that when the number of agents is large, centralization yields substantial

savings on communication costs.

As noted by Geanokoplos and Milgrom (1991), in the traditional team-theoretic models with

a fixed cost of communication “there is no role for ‘instructions’ from any manager to any other.

That is, at an optimum, a superior may communicate information to his subordinate, but he never

limits the set of actions that the subordinate may undertake [...]”. This stands in stark contrast to
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Arrow’s (1974) observation that in presence of communication costs “ it may be cheaper for a central

individual or office to make the collective decision and transmit it rather than retransmit all the

information on which the decision is based”. In this view, complexity of the communication problem

stems not from the number of agents, but from the complexity of environment and the richness of

the agents’ knowledge (see also the opening citation). In order to formalize this view, we need to

allow for the agents’ communicating their information piecemeal, and to measure the amount of

such communication in a more refined way than it has been usually done in team theory. For this

purpose, we adopt the computer science definition of communication complexity which is roughly

equivalent to counting the number of bits transmitted between the two players (see Section 3.5).

This definition captures the huge difference between fully revealing one’s knowledge and sending an

‘instruction’ on the basis of this knowledge.

3 The Coordination Problem

3.1 Modeling Coordination

Consider a situation where two individuals - player 1 and player 2 - need to coordinate on an action

from a set A. To model the coordination problem, we need to postulate that the players do not have

a focal action or group of actions. Following Crawford and Haller (1990), we do this by assuming

that the players do not share an ordering of A. Indeed, if the players had a common ordering, it

could provide them with focal points: they would be able to coordinate on, say, “action number

one” without any communication.

At the same time, our players ought to have a common language to describe the actions. If they

did not, they would not be able to communicate at all and the coordination problem could not be

solved. Therefore, we would like to model a situation where the players do have a common language,

but this language does not provide them with a common ordering. To fix ideas, suppose the players

need to coordinate on one of three colors: Red, Blue, and Green: A = {R,B,G}. The two players
have a common language over the set of actions - both players know what the words Red, Blue,

and Green mean. However, the players do not have a common ordering (dictionary) of these three
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words.4

Absence of a common dictionary not only rules out tacit coordination, but also imposes a serious

constraint on how players can communicate. Consider, for example, the following communication

games:

Game 1. Player 1 describes an action, which is then undertaken.

Game 2. Player 2 describes an action. Player 2 describes another action, which is then undertaken.

In order for the players to understand each of the two communication games above, they need

not have a focal action or group of actions. The following two communication games, in contrast,

cannot be understood by the players unless they already have a focal action:

Game 3. Action R is chosen without any communication.

Game 4. Player 1 says “yes” or “no”. If player 1 says “yes”, action R is undertaken. Otherwise,

player 2 chooses between actions G and B.

In Game 3, action R is undertaken without being described first. This is clearly impossible unless

action R was focal to begin with. In Game 4, player 2 is supposed to understand that player 1’s

“yes” refers to action R, rather than to G or B. Player 2 can only understand this if action R has

a focal significance. But in that case, the two players could have coordinated on “the action that

player 1 can impose” without actually performing any communication! On the other hand, if action

R has no focal significance, player 1 must make his message clearer: for example, instead of “yes” he

must say “R”, and instead of “no” he must say “not R”. But since player 2 will have no prior idea

what action player 1 will be talking about, he will expect one of six possible messages: “R”,“not

R”, “B”,“not B”, “G”, and “not G”. But this basically means that player 1 actually has to describe

the action he is talking about, which requires more extensive communication than that performed

in Game 4.

4If both players are literate and know the alphabet, they could possibly coordinate on the alphabetic ordering
BGR, and tacitly agree to choose the “first” action, B. We essentially assume that the players do not know the
alphabet (they are illiterate), or that they do not understand how alphabetical ordering can be used for coordination.
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Another way to understand the fundamental difference between Communication Games 1 and

2 on the one hand, and Games 3 and 4 on the other, is to think of the players trying to agree

on a communication game in advance, when they do not yet know the names of actions.5 They

will have no trouble establishing common knowledge of Communication Games 1 and 2 without

using the names of actions. This is because these two communication games treat all the actions

symmetrically. On the other hand, it is impossible to explain Games 3 and 4 without using the

names of actions. This is because Games 3 and 4 do not treat all the actions symmetrically; in

particular, action R has a focal significance in both games.

Intuitively, if a communication protocol which treats all actions symmetrically is ever to achieve

coordination on an action, the action’s name will have to be publicly announced - i.e., the action

will have to be described by a player. This intuition suggests that the simplest coordinating commu-

nication is one where one player tells the other which action to choose (as in Game 1). We will call

such communication protocols “authority protocols”. In the rest of this section, we formally define

what it means for a protocol to treat all actions symmetrically. Using a computer science notion of

communication complexity, we prove that the simplest such protocol achieving coordination is an

authority protocol.

3.2 *Dictionaries

Suppose that the two players want to coordinate on an action from a finite set A, and that they

cannot base their behavior on the names of actions. At the same time, each player can privately

order the actions and base his behavior on this private ordering.6 We will call a player’s private

numbering of actions his dictionary. Formally, a dictionary could be represented as a one-to-one map

from the set of numbers {1, ..., |A|} which a player uses to rank actions onto A, the set of actions.

5This setup is similar to that of Maskin and Tirole (1995), who consider designing a contract when future actions
are not foreseen. The notion of welfare-neutrality which they use to capture this “unforeseebility” is analogous to the
notion of neutrality introduced in subsection 3.4 below. For more on the relationship between our setup and that of
Maskin and Tirole, see Conclusion.

6He can orders actions randomly or on the basis of some privately observed characteristics. These characteristics
may be payoff-relevant (as they will be in Section 4), but they do not have to.
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For example, if A = {R,B,G}, a dictionary d could have G as the first action, B as the second, and
R as the third, in which case we will write d = GBR, and d(1) = G, d(2) = B, d(3) = R. Define

the set of all possible dictionaries on A by DA. Observe that |DA| = |A|!.
The two players have two different dictionaries d1, d2 - two different orderings of the same set

of actions, and each player’s dictionary is not known to the other player. In order to achieve

coordination, the players need to communicate some information about their dictionaries.

3.3 *Communication Protocols

Suppose that player i’s private information takes the values from the set Θi, i = 1, 2, and that

A is the set of possible outcomes. (For modeling the coordination problem, we will be interested

in the case where each player’s private information is his dictionary, i.e. Θ1 = Θ2 = DA.) The

players communicate in order to implement an outcome contingent on their private information. As

in the standard mechanism design setup, we allow the players to communicate using an arbitrary

extensive-form mechanism (game form, message game). It will be convenient to adopt a computer

science definition of a communication protocol, which consists of an extensive-form game form and

of the two players’ strategies in this game form:

Definition. A communication protocol P on hA,Θ1,Θ2i consists of an extensive game form
with outcomes from A, and of the two players’ strategies defined in the standard game theoretic

sense (Player i’s strategy specifies his moves as a function of his private information from Θi and

his information set.)7

Observe that when incentive-compatibility is not an issue (and it will not be in our formal

analysis), without loss of generality one could restrict attention to protocols using games of perfect

information, where players’ moves may depend on all the history.

7In order to follow a communication protocol, the players need to have common knowledge of the protocol. As-
suming this common knowledge in a coordination problem may be problematic. However, ruling out coordination
on a protocol would trigger an infinite regress (how to coordinate how to coordinate how to ...). Coordination on a
protocol can result from the players’ having been in similar coordination problems before (but with different sets of
actions). Also, when the protocol takes the form of authority, coordinating on the source of authority may be easier
than coordinating on action (see footnote 2).
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As a result of the players’ communication, an action from A will be chosen. This action will be

a function of both players’ private information, and we will call this function f : Θ1 ×Θ2 → A the

choice rule. We will say that the choice rule f is implemented by the protocol P .

A useful way to represent communication protocols is by associating each terminal node of the

corresponding game form with a subset of Θ1 × Θ2 containing all the states of the world in which
this terminal node is achieved. Given the extensive game form and the players’ strategies, Θ1 ×Θ2
can be partitioned into such sets corresponding to the terminal nodes of the game. It can be easily

seen that these sets have a special structure: each such set T ⊂ Θ1 × Θ2 is a “rectangle” T1 × T2
with the choice rule f constant on it. To see this, suppose that player 1 moves first. Since his move

cannot depend on player 2’s private information, it will partition Θ1 ×Θ2 horizontally into several
rectangular subsets (events), and from this move player 2 can infer which of the events has occurred.

In his turn, player 2 partitions the received rectangular subset vertically, and so it continues until

a terminal node is reached. This simple inductive argument shows that the subset of Θ1 × Θ2
containing all the states of the world in which a terminal node is achieved has to be rectangular.

Moreover, since the node is terminal and there is no more communication, the choice rule f has to

be constant on every such subset. Karchmer (1989) calls such subsets “monochromatic rectangles”.8

Note that a monochromatic rectangle does not have to look like a geometric rectangle, since the

rows and columns of Θ1 ×Θ2 need not be adjacent. While any given monochromatic rectangle can
be transformed into a geometric rectangle with appropriate permutations of rows and columns of

Θ1×Θ2, it is not always possible to find permutations which represent all monochromatic rectangles
as geometric rectangles.

3.4 *Coordinating Communication

To model the coordination problem, we assume that each player’s private information is described

by his dictionary on the finite set A of actions, i.e. Θ1 = Θ2 = DA. We will assume that the two

8While for every communication protocol we have a corresponding partition of Θ1 × Θ2 into monochromatic
rectangles, not every such partition represents a deterministic protocol - see Marschak (1995).
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players cannot coordinate on an action on the basis of its name. Therefore, an action will have to

be chosen on the basis of its position in the two players’ dictionaries. As a result of the players’

communication, they reveal enough information about their dictionaries to establish a common

understanding of which action to take. Thus, the choice rule f specifies the action f(d1, d2) the

players choose when their dictionaries are d1, d2 ∈ DA.

The following examples with A = {G,B,R} present four protocols whose extensive-form com-

munication games correspond to the games discussed in Subsection 3.1:

Example 1 Player 1 specifies the action d1(1), which is implemented.

Example 2 Player 1 specifies a = d1(1). If d2(1) = a, player two specifies a. Otherwise, player 2

specifies d2(2).

Example 3 The action R is implemented without any communication.

Example 4 If d1(1) = 1, player 1 says “yes”, and action R is implemented. Otherwise, player 1

says “no”, and player 2 chooses from the remaining two actions the one which comes first in his

dictionary (i.e. argmina∈{2,3} d−12 (a)).

Extensive-form games and communication partitions corresponding to these protocols are de-

picted in Figures 1-4 respectively. The protocol in Example 1 simply lets player 1 choose an action.

Player 1 chooses the action which comes first in his dictionary. In Example 2, player 1 describes

the action which comes first in his dictionary. Player 2 agrees if this action also comes first in his

dictionary, otherwise player 2 describes the action which comes second in his dictionary. In Exam-

ple 3, action R is chosen without any communication. In Example 4, player 1 can either insist on

implementing action R or let player 2 choose between B and G. Player 1 insists on R only if this

action comes first in his dictionary.

As discussed above, the fundamental difference between Examples 1 and 2 on one hand, and

Examples 3 and 4 on the other, is that the former protocols treat all the actions symmetrically,
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while the latter do not. More precisely, in Examples 1,2 an action is never chosen on the basis of its

name, while in Examples 3,4 an action is sometimes chosen just because its name is R.

To formalize this idea, we will consider the set of SA of all permutations of the finite set A.

This set can be treated as a group, with multiplication of permutations naturally defined as their

composition. The unit element e of this group is the permutation keeping all elements of A constant.

This group is called the symmetric group of degree |A| and is denoted by SA; it contains |A|! elements,
and it is non-commutative for |A| ≥ 3 (Kargapolov and Merzljakov, 1979).9

Consider an arbitrary permutation π ∈ SA . This permutation can be interpreted as a change of
a language for describing the same physical actions. A physical action whose name used to be a ∈ A
in the old language obtains the name π(a) ∈ A in the new language. If the name of the physical
action occupying position i in player 1’s dictionary used to be d1(i), now the same physical action

is called π(d1(i)) = πd1(i), where πd1 is defined as the composition of π and d1. Therefore, the two

players’ dictionaries are expressed in the new language as πd1, πd2.

The choice rule f prescribes that for these dictionaries, action f(πd1,πd2) in the new language

should be chosen. We want to require that this is the same physical action as the action f(d1, d2)

in the old language, whose name in the new language is πf(d1, d2):

Definition. A choice rule f : DA ×DA → A is neutral if f(πd1,πd2) = πf(d1, d2) for every

d1, d2 ∈DA,π ∈ SA.

This definition says that the physical outcome does not depend on the names of actions, but

only on their positions in the two players’ dictionaries. This is nothing else but the property of

neutrality among alternatives, which may be familiar from the social choice context. This property

would be satisfied, for example, when f chooses an action yielding the highest payoff and the names

are payoff-irrelevant. In a world of boundless communication, therefore, the imposition of neutrality

does not constrain payoffs. It will thus be surprising to find that when communication is bounded,

9Formally, DA, the set of all dictionaries on A, is isomorphic to SA. This becomes clear once we let actions’ names
be numbers: A = {1, ..., n}. However, for expositional purposes we prefer not to think of actions’ names as being
numbers.
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the neutrality requirement becomes a serious constraint not only on protocols used (Section 3), but

also on payoffs achieved by these protocols (Section 4)!

Consider again Examples 1-4. By inspecting Figures 1-4, one can convince himself that the choice

rules in Examples 1,2 are neutral, while the those in Examples 3,4 are not. Intuitively, in Examples

1,2 an action is picked on the basis of its place in the two players’ dictionaries, and not because of

its name. The choice rules in Examples 3,4, on the other hand, are not neutral since, for example,

switching the names of actions R and B affects the physical action chosen.

Definition. A protocol P on hA,DA,DAi is coordinating if its choice rule is neutral.

3.5 *Communication Complexity

To measure the amount of communication we will use the notion of tree complexity from Karchmer

(1989):

Definition. The tree complexity of a protocol P , Γ(P ), is the number of terminal nodes in the

corresponding extensive game form, or, equivalently, the cardinality of the corresponding communi-

cation partition.

This definition will prove very convenient for our purposes. However, to give some perspective and

motivation for this definition, we will point out its relationship to the widely used notion of “worst-

case complexity” (Karchmer, 1989). This notion is defined for so-called binary protocols where

players’ moves consist of sending bits to each other (but clearly, every protocol can be approximated

by a binary protocol implementing the same choice rule):

Definition. The worst-case complexity of a binary protocol is the maximum over Θ1 × Θ2 of
the number of bits transmitted between the players.

In other words, the worst-case complexity of a binary protocol is the (maximum) depth of the

corresponding game tree. It is easy to see that the tree complexity of a binary protocol, which is the

number of terminal nodes of the binary tree, is bounded from above by two to the power of its depth.
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On the other hand, there exist very “unbalanced” binary protocols whose tree complexity can be

as low as their depth plus one. It turns out, however, that for a given choice rule such unbalanced

protocols need not be used, and that tree complexity and worst-case complexity are closely related

when we look at minimum complexity protocols implementing a given choice rule:

Definition. The tree [worst-case] complexity of a choice rule f , which we denote by CΓ(f)

[CW (f)], is the minimum tree [worst-case] complexity of a [binary] protocol P implementing f .

The following fact has been established by Karchmer (1989):

Fact. logCΓ(f) = O(CW (f)) and CW (f) = O(logCΓ(f)) for any choice rule f in any environ-

ment.

In words, the worst-case complexity and the log of tree complexity of any choice rule are within

constants of each other. For simplicity, all our results will be formulated for tree complexity. But it

is useful to keep in mind that a bound on tree complexity is equivalent to a bound on the number

of bits the parties exchange. Suppose, for example, that the parties communicate using a channel

with a finite bandwidth.. Then a bound on tree complexity is equivalent to a bound on the amount

of time the parties can spend communicating before reaching a decision.

3.6 *Authority as the Simplest Coordinating Protocol

A lower bound on communication complexity required to achieve coordination is given by the fol-

lowing lemma:

Lemma 1 Every coordinating protocol P on hA,DA,DAi satisfies Γ(P ) ≥ |A|.

Proof. Pick any dictionary d ∈ DA. Let f be the choice rule of P , and let f(d, d) = i. Since f is

neutral, we must have f((ij)d, (ij)d) = (ij)f(d, d) = (ij)i = j for any j ∈ A. Therefore, ((ij)d, (ij)d)
all belong to different monochromatic rectangles for different j ∈ A, and the communication partition
of P has at least |A| elements.
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The intuition behind Lemma 1 is very simple. Since a coordinating protocol is neutral, all actions

should be a priori equally likely to be chosen. Therefore, a coordinating protocol should have at

least |A| possible outcomes.
This lower bound on complexity of coordinating communication can be achieved by protocols

which we will call authority protocols. We define an authority protocol on hA,DA,DAi as a protocol
where, for some i = 1, 2, player i specifies an action on the basis of its position in his dictionary. If

player i specifies the action which comes kth in his dictionary, this will be action di(k).

Definition. A protocol P on hA,DA,DAi is an authority protocol if for some i = 1, 2 and

for some k ∈ {1, ..., |A|} its choice rule is f(d1, d2) = di(k), and its communication partition is

{{(d1, d2) ∈ DA ×DA| di(k) = a}| a ∈ A}.

The protocol in Example 1 is an authority protocol, while the protocols in Examples 2-4 are not.

Authority protocols are coordinating: f(πd1,πd2) = πdi(k) = πf(d1, d2), and it is easy to see that

authority protocols have complexity |A|. The non-authority protocol in Example 2 is coordinating,
but its complexity is 9, which is greater than |A| = 3. The protocol in Example 3 has complexity 1,
and the protocol in Example 4 has complexity |A| = 3, but both these protocols are not coordinating.
Our first theorem establishes that this is unavoidable: every coordinating protocol of complexity |A|
is an authority protocol.

Theorem 1 If P is a coordinating protocol on hA,DA,DAi and Γ(P ) = |A|, then P is an authority
protocol.

Proof. See the Appendix.

This result says that the simplest way to coordinate is by authority, but it has nothing to say

about comparing different allocations of authority. Coordination can be achieved by giving authority

to player 1, player 2, an outsider, or a mechanical device. In practice, however, allocation of authority

is very important, because different partied have different information about the benefits of different

actions. This situation is modeled in the next section.
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4 Coordination and Information Transmission

4.1 An Informal Argument

In the previous section, communication served a purely coordinating role. The two players possessed

the same information about possible actions, even though they used different dictionaries to order

them. In this section we consider a situation where the two players possess different information

about the benefits of different actions, and ideally an action should be chosen on the basis of both

players’ information. However, when the set of actions A is large, the optimal choice of action may

require extensive communication.

Let |A| = n. Suppose that player 1 privately knows a subset of kn1 actions which are better

than others, and that player 2 privately knows a subset of kn2 actions which are better than others.

Suppose that all the actions are a priori equally likely to be good for either player, and that the two

players’ subsets are independently realized. Suppose furthermore that kn1 /n → 0 and kn2 /n → 0 as

n → ∞. This guarantees that for a large n, an outsider is very unlikely to pick an action which is
good from either player’s viewpoint. It is clearly better to give authority to one of the players - at

least he will optimally choose an action on the basis of his own information.

Ideally, however, an action should be chosen using both players’ information. In order to do this,

the players need to find an “intersection” - an action which is good for both players. But will this

intersection exist with a positive probability? The probability of intersection can be computed as

1−
µ
n− k1
k2

¶
/

µ
n

k2

¶
= 1− (n− k1)!(n− k2)!

n!(n− k1 − k2)! .

Using Stirling’s formula N ! ∼ NNe−N
√
2πN , this probability can be asymptotically expressed as

lim
n→∞[1−

(n− k1)!(n− k2)!
n!(n− k1 − k2)! ] = lim

n→∞[1−
(n− k1)n−k1(n− k2)n−k2
nn(n− k1 − k2)n−k1−k2

s
(n− k1)(n− k2)
n(n− k1 − k2) ] =

= 1− lim
n→∞

(1− k1/n)n(1−k1/n)(1− k2/n)n(1−k2/n)
(1− (k1 + k2)/n)n(1−(k1+k2)/n) =

= 1− lim
n→∞

exp{−k1(1− k1/n) exp{−k2(1− k2/n)}
exp{−(k1 + k2)(1− (k1 + k2)/n)} =
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= 1− lim
n→∞ exp{k

2
1/n

2 + k22/n
2 − (k1 + k2)2/n} =

= 1− lim
n→∞ exp{−2k1k2/n},

provided that the last limit exists. Therefore, as long as the proportion of relevant actions for

each player does not converge to zero too quickly (e.g. not faster than n−1/2), the probability of

intersection may be bounded away from zero and may even converge to one. Note that a necessary

condition for this is that both kn1 and k
n
2 are unbounded.

Finding an intersection when it exists requires extensive communication. Indeed, when a player

describes an action which is good for him, the probability that the described action is also good for

the other player goes to zero as n→∞. The same would be true if a player described a fixed finite
number of actions. Therefore, in order to find an intersection with a positive probability, the players

need to describe an unbounded (asymptotically infinite) number of actions! Contrast this extensive

communication with a simple authority protocol, where just one action needs to be described. As

this informal argument shows, authority can only be improved upon by protocols which require

infinitely longer communication.

4.2 *The Formal Result

We begin with stating two assumptions on the players’ information structure:

Assumption 1. Each player’s private information is fully described by his dictionary. More

precisely, Θ1 = Θ2 = DA, and each player’s information about the benefit of an action is fully

determined by the place of this action in his dictionary.

For example, it may be common knowledge between a general and a foot soldier that defending

a “strategic” position slows down the enemy’s advancement, and that defending a “safe” position

increases his chances of survival. But it is only in combat that the general finds out which positions

are “strategic” and the soldier finds out which positions are “safe”. Formally speaking, Assumption

1 says that uncertainty about benefits of different actions is purely permutational. If the players

also acquired non-permutational private information, the players will communicate it and on its
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basis determine who should have authority. For example, if the general finds out that the all the

positions are equally strategic, he will delegate the authority to choose the position to the soldier.

Even though such message-contingent authority allocations are realistic, for simplicity we rule them

out with Assumption 1.

According to Assumption 1, player 1’s information about the benefit of an action is fully deter-

mined by the position this action has in his dictionary. Suppose that |A| = n, and define player i’s
component of the benefit of the action which has rank k in player i’s dictionary as vni (k) (we keep

the superscript n as we are going to vary the total number of actions). We assume that if the action

a is chosen, the total benefit will be Un(vn1 (d
−1
1 (a)), v

n
2 (d

−1
2 (a))), where Un(·, ·) is increasing in both

arguments.

In order to rule out improvement by an uninformed outsider or by a randomization, we as-

sume that for each player, most of the actions are “irrelevant”, i.e. do not generate a significant

improvement over the average. Formally, we make the following assumption:

Assumption 2.

1. |vni | are bounded;

2. vni (k) = 0 for k > k
n
i ;

3. kni /n→ 0 as n→∞ (for i = 1, 2).

This assumption says that only the first kni actions in player i’s dictionary yield a positive

benefit for player i. We will call such actions a ∈ di({1, . . . , kni }) the relevant actions for player i.
The proportion of relevant actions for each player goes to zero, and so does the probability that a

randomly chosen action generates a positive payoff for either player.

For the sake of generality, we allow for randomized choice rules, i.e. those with outcomes from

the space ∆(A) of probability distributions over A. The probability that action a is chosen when the

two players’ dictionaries are d1, d2 will be denoted by fa(d1, d2) ∈ [0, 1], with
P
a∈A fa(d1, d2) ≡ 1.

The notion of neutrality naturally extends to such randomized rules:
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Definition. A randomized choice rule f : DA × DA → ∆(A) is neutral if fπ(a)(πd1,πd2) =

fa(d1, d2) for every d1, d2 ∈ DA,π ∈ SA, a ∈ A.

We assume that all dictionaries are equally likely for each player, and that the two players’

dictionaries are independently realized. A neutral randomization (or an outsider) would result in

fa(d1, d2) ≡ 1/n. As n→∞, asymptotically this would result in an action which is irrelevant for ei-
ther player with probability one. An authority protocol where player i describes di(argmax[n] v

n
i (k))

(i.e. puts probability one on this action) yields an action which is optimal for player i, but asymptot-

ically irrelevant for the other player with probability one. While such protocols have the advantage

of being simple: their tree complexity is n, they clearly do not achieve the maximum expected

benefit. Which protocols yield a higher expected benefit than authority?

It is clear that in order to improve upon authority, it is necessary to find an “intersection” - an

action which is relevant for both players - with a positive probability. Finding such an intersection

may require extensive communication:

Example 5 Consider a “full revelation” protocol where player 1 describes all the actions which

are relevant for him. Whenever player 2 finds that some of the actions relevant for player 1 are

also relevant for him, he announces one of those actions. Under this protocol, player 1 can send¡
n
kn1

¢
possible messages. In the interesting case where the probability of intersection is asymptotically

positive, kn1 must be unbounded, therefore the tree complexity of this protocol cannot be bounded by

a polynomial in n.

It is natural to ask whether we can improve upon authority and find an intersection with a

positive probability while using polynomially bounded protocols. It turns out that this may be

possible if coordination is not a problem:

Example 6 Let kn1 = kn2 = n/
√
logn, and let A0 ⊂ A with |A0| = logn. Then the probability

that an intersection exists A0 converges to one. Consider the protocol where player 1 first describes

each of the actions from A0 as “relevant” or “irrelevant”. Whenever player 2 finds that some of
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the actions described as relevant by player 1 are also relevant for him, he announces one of those

actions. Under this protocol, player 1 can send 2|A
0| = n possible messages, and player 2 can send

|A0| possible messages in response to each message by player 1. The tree complexity of this protocol
is therefore n logn, and the protocol asymptotically finds an intersection with probability one.

Intuitively, the protocol in Example 6 requires a lot less communication than the “full revelation”

protocol in Example 5, because player 1 only describes the characteristics of actions from A0 which is

asymptotically “infinitely smaller” than A. Therefore, by arbitrarily restrict the set of actions they

are dealing with, the players they may be able to achieve the first best with only a slight increase

in the amount of communication relative to authority protocols.

The problem with the protocol in Example 6 is that it is not coordinating, since its outcome

depends on which actions fall into A0. Without knowing this, player 2 would be unable to figure out

which physical actions player 1 is describing by the |A0| bits transmitted. Given our assumptions
coordination on the subset A0 is impossible without prior communication. For example, before

following the protocol in Example 4, player 1 could describe all the actions from A0. In order to

do this, however, player 1 should be able to send
¡ |A|
|A0|
¢
=
¡
n

logn

¢
possible messages, which grows

exponentially in n.

Our next result shows that this exponential complexity is unavoidable: coordinating protocols

of polynomial complexity cannot improve upon authority. The reason is that asymptotically it

is impossible to find an intersection with a positive probability using coordinating protocols of

polynomial complexity:

Theorem 2 Take a sequence of action sets An such that |An| = n, and a sequence of coordinating
protocols Pn on h∆(An),DAn ,DAni. Let k be a positive integer, and γ > 0. If Γ(Pn) ≤ γnk, then
the probability of finding an intersection by the protocol Pn goes to zero as n→∞.10

10It is interesting to note that it is very easy to find intersection if non-deterministic communication is allowed (see
Marschak (1995) for a definition of non-deterministic communication and its history in economics). If someone guesses
an action from the intersection, it is easy to verify whether the guess is correct by announcing the action and asking
each player to say “yes” if it is relevant for them, and “no” if it is not. This takes essentially the same amount of
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Proof. See the Appendix.

The intuition behind the proof of Theorem 2 runs as follows. The parties start with a situation

where all the actions are symmetric, and coordinating communication serves to describe (pin down)

some of the actions. There are
¡
n
m

¢
possible ways to describe m actions, and a priori all these ways

are possible. Therefore, the tree complexity of describing m actions is
¡
n
m

¢
. Since the tree complexity

is bounded by a polynomial of degree k, we should have m ≤ k for large enough n. (The case where
m ≥ n− k can be ruled out.) In words, at most k actions can be described by the two players for a
large enough n. Observe that when a player describes one action, the asymptotic probability that

it is relevant for the other player is zero. Thus, if at most a finite number of actions is described,

the probability of finding an intersection converges to zero.

Theorem 2 straightforwardly implies that asymptotically it is impossible to improve upon au-

thority by protocols of polynomial complexity. Indeed, the maximum asymptotic payoff achieved by

authority protocols is max{V1, V2}, where

V1 = lim supn→∞,k∈[n] Un(vn1 (k), 0),
V2 = lim supn→∞,k∈[n] Un(0, vn2 (k)).

Theorem 2 implies the following corollary:

Corollary 1 Take a sequence of action sets An such that |An| = n, and a sequence of coordinating
protocols Pn on h∆(An),DAn ,DAni, which implement choice rules fn. Let let k be a positive integer,
and γ > 0. If Γ(Pn) ≤ γnk, then

lim sup
n→∞

Ed1,d2U
n(vn1 (d

−1
1 (f

n(d1, d2)), v
n
1 (d

−1
2 (f

n(d1, d2))) ≤ max{V1, V2}.

In words, coordinating protocols of polynomial complexity in the number of actions asymptoti-

cally cannot improve upon authority protocols.

Using the fact presented in Subsection 3.5, this result can be reinterpreted in terms of the number

of information bits the parties need to exchange in order to improve upon authority protocols.

communication as authority. In our view, this example suggests that the non-deterministic notion of communication
complexity is not appropriate for use in organization theory.
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Remember that the tree complexity of an authority protocol is n, therefore the number of bits

transmitted by such a protocol (the worst-case complexity) is logn. If the tree complexity of a

protocol is bounded by a polynomial of degree k in n, then the worst-case complexity is bounded

by log γnk = log γ + k logn ∼ k logn as n → ∞. In words, the number of bits transmitted by the
protocol is asymptotically at most k times that for an authority protocol. If the parties communicate

using a channel with a finite bandwidth, such a protocol asymptotically takes at most k times longer

than an authority protocol. Conversely, if the tree complexity of a protocol cannot be bounded

by a polynomial in n, asymptotically such a protocol takes infinitely many times longer than an

authority protocol. The result of this section means that asymptotically the parties cannot improve

upon authority without using such extremely long protocols.

5 Formal and Informal Communication

Our analysis oversimplifies communication in organizations in two ways. First, it does not distinguish

between formal and informal communication. In practice, extensive informal communication in

organizations coexists with very simple formal arrangements. Second, our analysis ignores strategic

barriers to communication, resulting from the parties’ incentives to misrepresent information. Both

criticisms can be dealt with by extending our approach to situations where the parties’ interests

diverge, informal communication is cheap, and formal communication is costly. When the parties’

interests diverge, the parties may find it beneficial to commit themselves to act in certain ways on

the basis of messages they receive. For this commitment to be feasible, communication has to be

verifiable by an honest outsider - in most practical cases, by a court. (Such verifiable communication

is usually called a “message game”.)

Despite the advantage of formal communication, in practice communication in organizations

is mostly informal. Informal communication in organizations has been modeled as “cheap talk”

(Aghion-Tirole, 1996) and renegotiation (Grossman-Hart, 1986). In absence of a cost differential

between formal and informal communication, however, informal communication would always be

dominated by formal and would never have to be used in equilibrium (this is the idea behind the
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“renegotiation-proofness” principle).11

We believe that it is the costs of formal communication relative to informal that explain why

most communication in organizations is informal. An extension of our model which introduces

divergence of interests and bounds the complexity of formal communication could explain why formal

communication usually takes the simple form of allocating authority, and coexists with extensive

informal communication, as in the models of Aghion-Tirole and Grossman-Hart.

6 Conclusion

If players are allowed to communicate without a bound before playing their game, they eventually

establish “common knowledge of everything”, and the coordination problem is resolved. We believe

that assuming boundless communication is not only unrealistic, but that it contradicts the notion

of organizations as systems designed for coordination of economic activity. In this paper we have

modeled a coordination problem with barriers to communication, and we have shown that decision

making in complicated situations requires the use of administrative authority. At the same time,

we have given an example demonstrating that if coordination is not a problem, the parties can do

at least as well as authority, and often much better, by using protocols which are only slightly more

complicated. Therefore, understanding the coordination problem is both logically necessary and

sufficient for explaining authority.

The model we have developed can be interpreted as a model where the set of possible actions

cannot described in advance. The importance of such undescribability for the study of organizations

has been clear since at least March and Simon (1958), who write:

Of course, writers on organization theory are aware that coordination is a highly

significant problem ... To fill this gap between formal theory and wisdom, we need

a framework that recognizes that the set of activities to be performed is not given in

advance, except in a most general way.

11The possibility of informal communication out of equilibrium may still provide constraints on achievable outcomes
(e.g. renegotiation-proofness, collusion-proofness).
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More recently, the incomplete contracts approach has been informally justified by the impos-

sibility to describe all possible activities in advance. One interpretation of this has been through

bounded rationality of the parties who cannot foresee all the possible contingencies and actions in

advance. However, the difficulty in modeling unforeseen contingencies is that they seem to be in

blatant contradiction with rational decision-making. Maskin and Tirole (1995) tried to reconcile

“unforeseen contingencies” with individual rationality (“foreseen payoffs”). However, they found

that in absence of barriers to communication, impossibility to describe all contingencies in advance

does not put any restrictions on contracting by rational individuals who foresee their payoffs.

Our paper suggests why the set of possible actions could be “hard to describe” in advance without

appealing to bounded rationality. While each individual in our model is unboundedly rational and

can describe all the possible actions to himself, barriers to communication do not allow the parties

to describe all the possible actions to each other (or to a court) in advance, thus establishing a

focal public ordering. Therefore, even though the (infinite) set of all possible actions in our model

is commonly known in advance, this is not of much help to the parties trying to design the optimal

decision mechanism. In contrast to the analysis of Maskin and Tirole, barriers to communication

not only make it hard to “describe” actions in advance, but also make it hard to “describe” actions

ex post. The cost of communication makes authority, which only describes one action, the simplest

coordination mechanism, and in certain cases rules out any improvement upon authority.

Our analysis suggests that decisions should be made by authority when the number of possible

actions is large, communication opportunities are bounded, and the parties have not discussed all

the possibilities in advance. On the other hand, if an organization repeatedly faces a fixed decision

set, its members eventually develop a common structure (“dictionary”) over the set of actions. This

allows the organization to economize on communication by “routinizing” decision-making (March

and Simon, 1958). In a simple situation where environment is constant over time, communication

may be completely eliminated by choosing the same action over and over again. Where environment

changes, the players could still substantially simplify communication by restricting attention to a set

of previously discussed actions (as in Example 6). Authority will only be used when all the previously

24



discussed actions are not admissible any more, and a non-routine decision has to be made.

It is instructive to compare our analysis to the traditional view of markets as coordinators of

economic activity. One commonly proclaimed virtue of markets is that they coordinate activities

and achieve efficient outcomes using relatively little communication (see, e.g., Hayek, 1945). For

example, in order to verify that an allocation is first-best efficient, it suffices to announce the vector

of prices of all commodities, so that everyone could check if this vector is proportional to his marginal

utilities. However, even the announcement of prices becomes problematic when the number of all

potential commodities becomes large. When prices are quoted and marginal utilities revealed only

for the commodities with a positive trading volume, and only a small subset of commodities is traded

in equilibrium, markets exhibit serious coordination failures (for a survey, see Matsuyama, 1995).

In our model, an action can be interpreted as a possible trade between the two players. A market

can be modeled in a stylized way, for example, as player 1’s fully revealing his valuations for all trades

by quoting prices to player 2.12 When the number of different trades is small or when all the possible

trades have a natural ordering, market coordination may indeed be achieved with a small amount of

communication. For example, when different trades are known to be different amounts of the same

commodity, it is sufficient for the players to report their marginal valuations for the commodity. On

the other hand, when the number of possible trades is very large and they are not ordered, market

coordination requires an enormous amount of communication. In such situations, coordination by

authority may be preferable.

12This abstracts from player 1’s incentives to misrepresent his valuations.
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Appendix: Proofs

Proof of Theorem 1.

Let f be the neutral choice rule implemented by P , and ℘ be the communication partition

corresponding to P . Pick any dictionary d ∈ DA, and consider the following claims:

Claim 1. If Γ(P ) = |A|, then we must necessarily have ℘ = {T1, ..., T|A|} with f(Ti) = i for every
i ∈ A.

This clearly follows from the proof of Lemma 1.

Claim 2. Let f(d, d) = i, and let Ci = {π ∈ SA| π(i) = i} be the subset of the symmetric group
keeping action i constant. Then Cid×Cid ⊂ Ti.

Indeed, take any (c1, c2) ∈ Ci ×Ci. Since f is neutral, we must have

f(c1d, c1d) = c1f(d, d) = c1i = i,

f(c2d, c2d) = c2f(d, d) = c2i = i.

Using Claim 1, this implies that (c1d, c1d) ∈ Ti and (c2d, c2d) ∈ Ti. But since Ti is a rectangle,
we must also have (c1d, c2d) ∈ Ti, which together with Claim 1 implies Claim 2.

Claim 3. Either Ti ⊂ Cid×DA or Ti ⊂ DA×Cid. In words, the rectangle Ti containing Cid×Cid
cannot extend both vertically and horizontally beyond Cid×Cid.

Indeed, suppose in negation that neither inclusion holds. Then we have {d0} × Cid ⊂ Ti and

Cid×{d00} ⊂ Ti for some d0, d00 ∈DA\Cid (see Figure 5). Since Ti is a rectangle, we must also have
(d0, d00) ∈ Ti .
Let d0i = j 6= i, d002 i = k 6= i. Then by neutrality of f we have

f((jk)d0, (jk)d00) = (jk)f(d0, d00) = (jk)i = i,
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and therefore by Claim 1 ((jk)d0, (jk)d00) ∈ Ti. But since Ti is a rectangle, we must also have

(d0, (jk)d00) ∈ Ti. On the other hand, d0 ∈ (ji)Cid and (jk)d00 ∈ (jk)(ik)Cid = (ji)Cid. Then by

neutrality of f we have

f(d0, (jk)d00) ∈ f((ji)Cid, (ji)Cid) = (ji)f(Cid,Cid) = (ji){i} = {j},

which contradicts (d0, (jk)d00) ∈ Ti. Thus, the rectangle Ti containing Cid×Cid cannot extend both
vertically and horizontally beyond Cid× Cid.
For definiteness, suppose the rectangle only extends horizontally: Ti = Cid×B with Ci ⊂ B ⊂ SA

(otherwise, we can switch players 1 and 2).

Claim 4. We must have B =DA.

Indeed, suppose in negation that B 6= DA. Then for some c ∈ Ci, d
0 ∈ DA\Cid we have

(cd, d0) ∈ Tj for some j 6= i, and therefore by Claim 1 f(cd, d0) = j. Since f is neutral, this implies

f((ij)cd, (ij)d0) = (ij)j = i, and therefore by Claim 1 ((ij)cd, (ij)d0) ∈ Ti. But clearly (ij)cd /∈ Cid,
therefore we have obtained a contradiction to the fact that Ti = Cid×B.

Claim 5. ℘ corresponds to the authority protocol where player 1 announces d1(i).

Indeed, from Claim 4 we have Ti = Cid ×DA, and f(Cid × SA) = {i}. Since f is neutral, we
must also have

f((ij)Cid×DA) = f((ij)Cid× (ij)DA) = (ij)f(Ci ×DA) = (ij){i} = {j}

for any j ∈ A. Observe also that the sets {(ij)Cid}j∈A constitute a partition of DA. Therefore, from

Claim 1 we have ℘ = {(ij)Cid× SA| j ∈ A}. This partition corresponds to the authority protocol
where player 1 announces d1(i).

Proof of Theorem 2.

In order to simplify notation, we will number the set of actions, so that we can write An =

{1, ..., n}. This allows us to define Sn = SAn =DAn.

We introduce some useful space-saving notation:
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• [m] = {1, ...,m}.

• S2n = Sn × Sn.

• d ∈ S2n is equivalent to (d1, d2) ∈ S2n.

• When π ∈ Sn and d ∈ S2n, πd = (πd1,πd2) ∈ S2n.

• When B ⊂ S2n, B1 and B2 will denote the two projections of B.

• When ℘ is a partition of Sn × Sn and π ∈ Sn, define the partition π℘ = {πT |T ∈ ℘}.

• Pr{B|C} = |BT C|
|C| .

While the proof heavily uses some concepts of group theory, knowledge of basic definitions is

sufficient to understand it. These definitions can be found in any textbook on group theory, see e.g.

Kargapolov and Merzljakov (1979).

The concept of group theory that is most important for our proof is that of an orbit:

Definition. If G is a subgroup of Sn, then the set Gi = {g(i)| g ∈ G} is called the orbit of G
containing i ∈ [n].

It is easy to see that the orbits of a subgroup G form a partition of [n], which we denote by

O(G) = {Gi|i ∈ [n]}. The following result will be useful:

Claim 0. When G is a subgroup of Sn and Y ⊂ [n], for every i ∈ [n] we have

Pr{g(i) ∈ Y |g ∈ G} = |Y TGi|
|Gi| .

Proof: For every j ∈ Gi there exists πij ∈ G such that πij(i) = j, therefore we have

Pr{g(j) ∈ Y |g ∈ G} = Pr{gπij(i) ∈ Y |gπij ∈ Gπij = G} = Pr{g(i) ∈ Y |g ∈ G},

which enables us to write

Pr{g(i) ∈ Y |g ∈ G} = Pr{g(j) ∈ Y |j ∈ Gi, g ∈ G}. (1)
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On the other hand, for any fixed g ∈ G we have

Pr{g(j) ∈ Y |j ∈ Gi} = Pr{j ∈ g−1(Y )|j ∈ Gi} = |g−1(Y )TGi|
|Gi| =

|g−1(Y TGi)|
|Gi| =

|Y TGi|
|Gi| ,

which enables us to write

Pr{g(j) ∈ Y |j ∈ Gi, g ∈ G} = |Y TGi|
|Gi| .

Combining with (1), we obtain the Claim.¤

Our first task is to restrict attention to protocols where all the players’ messages are neutral with

respect to the names of actions. We define such protocols as follows:

Definition. An event N ⊂ S2n is a node of a communication protocol P on h∆([n]),Sn,Sni if
there is a node of the extensive-form game of P which is achieved if and only if the state of the

world belongs to N .

As the argument in subsection 3.3 shows, every node N of a protocol is a rectangle, i.e. N =

N1 ×N2.

Definition. A node N ⊂ S2n of a communication protocol P on h∆([n]),Sn,Sni is neutral if for
every π ∈ Sn, πN is also a node of P . A communication protocol P on h∆([n]),Sn,Sni is neutral
if every its node is neutral.

Intuition suggests that if our objective is to implement a neutral choice rule, we need not transmit

messages which depend on actions’ names, and can therefore restrict attention to neutral protocols

without any sacrifice in communication complexity. This is formally stated in the following lemma:

Lemma A.1. If a neutral choice rule f is implemented by a protocol P on h∆([n]),Sn,Sni,
then it can also be implemented by a neutral protocol P , with Γ(P ) ≤ Γ(P ).

The lemma allows us to restrict attention to neutral protocols in the rest of the proof.

For every set B ⊂ S2n, define G(B) to be the set of permutations which keep B fixed, i.e.
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G(B) = {π ∈ Sn|πB = B}.

It is easy to see that G(B) is a subgroup:

• e ∈ G(B) trivially.

• g ∈ G(B)⇒ g−1B = g−1(gB) = B ⇒ g−1 ∈ G(B).

• g1, g2 ∈ G(B)⇒ (g1g2)B = g1(g2B) = g1B = B ⇒ g1g2 ∈ G(B).

Observe also that any rectangle can be written as B1 ×B2 = G(B1 ×B2)B1 ×G(B1 ×B2)B2.
Let L(G) denote the largest orbit from O(G) (if there are many such orbits, choose any one of

them). Define l(℘) = minT∈℘ |L(G(T ))|. Intuitively, for a terminal node T , L(G(T )) is the largest
set of actions which an outside observer of the communication cannot distinguish between on the

basis of the two players’ messages. We will say that these actions are left “undescribed” by the

players. Then l(℘) is the minimal number of actions which are left undescribed by the protocol

℘. Observe that there are
¡
n
m

¢
ways to describe m actions out of n, and a priori all these ways

are equally likely. Therefore, the number of possible outcomes of such communication (terminal

nodes) is at least
¡
n
m

¢ ∼ nm

m! as n →∞. Therefore, if the protocol’s tree complexity is bounded by
a polynomial of degree k, we must have m ≤ k, i.e. at most k actions can be described. This is

formally established in the next lemma:

Lemma A.2. If Γ(Pn) ≤ γnk, for n large enough we must have l(℘n) ≥ n− k.

Proof. Suppose in negation that there is a subsequence of protocols Pn and terminal nodes Tn ∈ ℘n

(the communication partition of Pn) such that |L(G(Tn))| < n− k.
Let Gn = G(Tn). Number the set O(Gn) in an arbitrary fashion: O(Gn) = {Mn

i }|O(G
n)|

i=1 . Define

the set

Bn =

½
L(Gn) if |L(Gn)| > k,S In
i=1M

n
i otherwise, where Jn = max{J :

P
J
i=1 |Mn

i | ≤ n
2 }.
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Observe that in the second case we must have |n/2− |Bn|| ≤ maxi |Mn
i | = |L(Gn)| ≤ k. There-

fore, in both cases we must have |Bn| ∈ [k+1, n− k− 1] for n large enough. Also, in both cases Bn

is a union of orbits of Gn, thus we must have Gn(Bn) = Bn.

Now, define Ωn = {C ⊂ [n] : |C| = |Bn|}. Observe that |Ωn| = ¡ n
|Bn|

¢
. For every C ∈ Ωn, we

can construct a permutation πC ∈ Sn such that πC(Bn) = C.
Whenever C and C 0 are two different elements of Ωn, we can write π−1C πC0(Bn) = π−1C (C0) 6=

π−1C (C) = Bn. Therefore, we must have π−1C πC0 /∈ Gn. By definition of Gn, this implies that

π−1C πC0Tn 6= Tn, which can be rewritten as πC0Tn 6= πCTn. Since the protocol is neutral, we must
have πTn ∈ ℘n for all π ∈ Sn. Therefore, πCTn constitute different elements of ℘n for different
C ∈ Ωn. This implies that

Γ(Pn) = |℘n| ≥ {πCTn|C ∈ Ωn} = |Ωn| =
µ
n

|Sn|
¶
≥
µ

n

k + 1

¶
∼ nk+1

(k + 1)!

which contradicts the assumption that Γ(Pn) ≤ γnk.

For every d ∈ S2n, define I(d) = d1([k1])
T
d2([k2]) ⊂ [n], i.e. the set of intersections at d, and

let T (d) be the element of ℘ containing d. Now we are going to bound the probability that the

described actions do not contain an intersection from below. Intuitively, consider a communication

stage where u actions have not yet been described. When player 1 describes an action at this stage,

the probability that it is also relevant for player 2 is at most k2/u. Using the fact that at most

n − l(℘) actions are described and that u ≥ l(℘) at each stage, we can obtain the following lower
bound on the probability that an intersection is not found among the described actions when both

players can together describe at most n− l(℘) actions:

Lemma A.3. When |l(℘)| > n/2, we must have

Pr{I(d) ⊂ L(G(T (d)))} ≥ 1− bkn− l(℘)
l(℘)

,

where bk = max{k1, k2}.
Proof. Consider the following claims:
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Claim 1. For any node N of P , G(N) = N1N
−1
1

T
N2N

−1
2 .

Proof:

• If g ∈ G(N), then we can write

g = ge ∈ g(N1N−1
1 ) = (gN1)N

−1
1 = N1N

−1
1 ,

g = ge ∈ π(N2N−1
2 ) = (gN2)N

−1
2 = N2N

−1
2 ,

which implies that g ∈ N1N−1
1 ∩N2N−1

2 . Therefore, G(N) ⊂ N1N−1
1

T
N2N

−1
2 .

• If g ∈ N1N−1
1

T
N2N

−1
2 , then we can write g = s1t

−1
1 = s2t

−1
2 , where s1, t1 ∈ N1, s2, t2 ∈ N2.

Then we can write

N 3 (s1, s2) = (gt1, gt2) ∈ gN.

Thus, gN and N intersect. Since P is a neutral protocol, gN must be also a node of P . Two

nodes of a protocol can only intersect if one lies inside another. But since the sizes ofN and gN

are the same, we must have gN = N , i.e. g ∈ G(N). Therefore, N1N−1
1

T
N2N

−1
2 ⊂ G(N).

Claim 2. When N is a node of P and π ∈ Sn, we have L(πG(N)) = πL(G(N)).

Proof: By Claim 1,

G(πN) = πN1N
−1
1 π−1

\
πN2N

−1
2 π−1 = π(N1N−1

1

\
N2N

−1
2 )π−1 = πG(N)π−1.

Furthermore, it is easy to see that O(πGπ−1) = πO(G) for every subgroup G of Sn. Substituting

G = G(N), we find that O(G(πN)) = O(πG(N)π−1) = πO(G(N)). This implies that L(G(πN)) =

πL(G(N)).

Claim 3. When N and N 0 are two nodes of P such that N 0 ⊂ N , we must have L(G(N 0)) ⊂
L(G(N)).

Proof: Claim 1 implies that G(T ) ⊂ G(N 0) ⊂ G(N), where T ∈ ℘ is chosen so that T ⊂
N 0. This implies that O(G(T )) is a refinement of O(G(N 0)), which is in turn is a refinement of

O(G(N)). This implies that n/2 < l(℘) ≤ |L(G(T ))| ≤ |L(G(N 0))| ≤ |L((G(N)))|. If we did
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not have L(G(N 0)) ⊂ L(G(N)), then the two orbits would not intersect, which would imply that

n ≥ |L(G(N 0))|+ |L(G(N))| ≥ 2|L(G(T ))| ≥ 2l(℘) > n - a contradiction.

Claim 4. For every node N of P ,

Pr{I(d) ⊂ L(G(T (d)))|I(d) ⊂ L(G(N)), d ∈ N} ≥ 1− bk |L(G(N))|− l(℘)
l(℘)

.

Proof: By backward induction on the nodes of P . For a terminal node T ∈ ℘, we have T (d) = T
for every d ∈ T , and

Pr{I(d) ⊂ L(G(T ))|I(d) ⊂ L(G(T )), d ∈ T} = 1 ≥ 1− bk |L(G(T ))|− l(℘)
l(℘)

,

since by definition l(℘) ≤ |L(G(T ))|. Thus, the statement is true for every terminal node.
Let N be a node of P , and let Π(N) denote the partition of N into nodes which are immediate

successors of N . Suppose the statement has been proven for every N 0 ∈ Π(N). Since P is neutral,
we must have gΠ(N) = Π(N) for all g ∈ G(N), which enables us to write

Pr{I(d) ⊂ L(G(T (d)))|I(d) ⊂ L(G(N)), d ∈ N} =

Pr{I(d) ⊂ L(G(T (d)))|I(d) ⊂ L(G(N)), d ∈ N 0 ∈ Π(N)} =

Pr{I(d) ⊂ L(G(T (d)))|I(d) ⊂ L(G(N)), d ∈ gN 0, N 0 ∈ Π(N), g ∈ G(N)} ≥

min
N 0∈Π(N)

Pr{I(d) ⊂ L(G(T (d)))|I(d) ⊂ L(G(N)), d ∈ gN 0, g ∈ G(N)} =

min
N 0∈Π(N)

Pr{I(d) ⊂ L(G(T (d)))|I(d) ⊂ L(G(gN 0)), d ∈ gN 0, g ∈ G(N)} ·

·Pr{I(d) ⊂ L(G(gN 0))|I(d) ⊂ L(G(N)), d ∈ gN 0, g ∈ G(N)} (2)

For any g ∈ G(N) and N 0 ∈ Π(N) we have gN 0 ∈ Π(N), and using Claim 2, |L(G(gN 0))| =
|gL(G(N 0))| = |L(G(N 0))|. Using the inductive hypothesis, we can bound the first factor:

Pr{I(d) ⊂ L(G(T (d)))|I(d) ⊂ L(G(gN 0)), d ∈ gN 0, g ∈ G(N)} ≥

≥ min
g∈G(N)

µ
1− bk |L(G(gN 0))|− l(℘)

l(℘)

¶
= 1− bk |L(G(N 0))|− l(℘)

l(℘)
. (3)
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As for the second factor, suppose for definiteness that player 1 moves at N under P . Define

R(d2) = d2[k2]
T
L(G(N)), and observe that whenever R(d2) ⊂ L(G(gN 0)) and I(d) ⊂ L(G(N)),

we must have

I(d) = I(d1, d2)
\
L(G(N)) = d1[k1]

\
(d2[k2]

\
L(G(N))) ⊂ R(d2) ⊂ L(G(gN 0)).

Therefore,

Pr{I(d) ⊂ L(G(gN 0))|I(d) ⊂ L(G(N)), d ∈ gN 0, g ∈ G(N)} ≥

≥ min
d2∈N

Pr{R(d2) ⊂ L(G(gN 0))|g ∈ G(N)}. (4)

By Claims 2 and 3, L(G(gN 0)) = gL(G(N 0)) ⊂ L(G(N)) for all g ∈ G(N). Now we can use
Claim 0 to write

Pr{R(d2) ⊂ L(G(gN 0))|g ∈ G(N)} = Pr{R(d2)
\
gL(G(N))\gL(G(N 0)) = ∅|g ∈ G(N)} ≥

≥ 1−
X

i∈L(G(N))\L(G(N0))

(1− Pr{g(i) ∈ R(d2)|g ∈ G(N)}) =

= 1− (|L(G(N))|− |L(G(N 0))|) |R(d2)
T
L(G(N))|

|L(G(N))| .

Since |R(d2)
T
L(G(N))| = |d2[k2]

T
L(G(N)| ≤ |d2[k2]| = k2 ≤ bk, and |L(G(N))| ≥ l(℘), we

can now rewrite (4) as follows:

Pr{I(d) ⊂ L(G(gN 0))|I(d) ⊂ L(G(N)), d ∈ gN 0, g ∈ G(N)} ≥ 1− bk |L(G(N))|− |L(G(N 0))|
l(℘)

.

Substituting this inequality and (3) into (2), we obtain the inductive statement for N .

Substituting the node N = S2n in the statement of Claim 4, we obtain the statement of the

Lemma.

To complete the proof of the Theorem, we combine the results of the Lemmas A.2 and A.3.

Lemma A.2 says that at least n−k actions must be left “undescribed” for n large enough. Therefore,
the proportion of actions relevant for either player among the undescribed actions goes to zero, and

choosing an undescribed action achieves intersection with a vanishing probability as n → ∞. To
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see this formally, for any terminal node T ∈ ℘n and any “undescribed” action i ∈ L(G(T )), we can
write using Claim 0:

Pr{i ∈ d1[k1]|d1 ∈ T1} = Pr{g(i) ∈ gd1[k1]|gd1 = d01 ∈ gT1 = T1, g ∈ G(T )} ≤

≤ max
d01∈T1

Pr{g(i) ∈ d01[k1]|g ∈ G(T )} = max
d01∈T1

|d01[k1]
T
L(G(T ))|

|L(G(T ))| ≤ k1
|L(G(T ))| .

Similarly, Pr{i ∈ d2[k2]|d2 ∈ T2} ≤ k2
|L(G(T ))| . Therefore, when |℘n| ≤ γnk, we can use Lemma A.2

to write

Pr{i ∈ I(d)|d ∈ T} = Pr{i ∈ d1[kn1 ]|d1 ∈ T1} · Pr{i ∈ d2[kn2 ]|d2 ∈ T2} ≤

≤ kn1 k
n
2

|L(G(T ))|2 ≤
kn1 k

n
2

l(℘n)2
≤ kn1 k

n
2

(n− k)2 → 0 as n→∞.

We could still hope to find an intersection by implementing an action which has been described

(i.e. i /∈ L(G(T (d)))). However, Lemma A.3 implies that when at most k actions are described, the
probability that they contain an intersection is also very small when n is large. Formally, using the

above bound and Lemma A.3, the probability of finding an intersection by a choice rule f which is

implemented by ℘n can be bounded from above as follows:

1
|S2n|

P
i∈I(d),d∈S2n fi(d) =

1
|S2n|

P
i∈I(d)⊂L(G(T (d))),d∈S2n fi(d) +

1
|S2n|

P
i∈I(d)*L(G(T (d))),d∈S2n fi(d) ≤

≤ 1
|S2n|

P
T∈℘n

P
i∈L(G(T ))

fi(T ) |{d ∈ T |i ∈ I(d)}|+ 1
|S2n|

P
d∈S2n|I(d)*L(G(T (d)))

P
i∈[n]

fi(d) =

= 1
|S2n|

P
T∈℘n

P
i∈L(G(T ))

fi(T ) Pr{i ∈ I(d)|d ∈ T}|T |+ 1− Pr{I(d) ⊂ L(G(T (d)))} ≤

≤ 1
|S2n|

P
T∈℘n

P
i∈[n]

fi(T )|T | · k
n
1 k

n
2

l(℘n)2 +
bkn−l(℘n)l(℘n) ≤ kn1 k

n
2

(n−k)2 + bk k
n−k → 0 as n→∞.
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