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DYNAMIC MECHANISM DESIGN: A MYERSONIAN APPROACH

BY ALESSANDRO PAVAN, ILYA SEGAL, AND JUUSO TOIKKA1

We study mechanism design in dynamic quasilinear environments where private in-
formation arrives over time and decisions are made over multiple periods. We make
three contributions. First, we provide a necessary condition for incentive compatibility
that takes the form of an envelope formula for the derivative of an agent’s equilibrium
expected payoff with respect to his current type. It combines the familiar marginal ef-
fect of types on payoffs with novel marginal effects of the current type on future ones
that are captured by “impulse response functions.” The formula yields an expression for
dynamic virtual surplus that is instrumental to the design of optimal mechanisms and
to the study of distortions under such mechanisms. Second, we characterize the trans-
fers that satisfy the envelope formula and establish a sense in which they are pinned
down by the allocation rule (“revenue equivalence”). Third, we characterize perfect
Bayesian equilibrium-implementable allocation rules in Markov environments, which
yields tractable sufficient conditions that facilitate novel applications. We illustrate the
results by applying them to the design of optimal mechanisms for the sale of experience
goods (“bandit auctions”).

KEYWORDS: Asymmetric information, stochastic processes, incentives, mechanism
design, envelope theorems.

1. INTRODUCTION

WE CONSIDER THE DESIGN OF INCENTIVE-COMPATIBLE MECHANISMS in a dy-
namic environment in which agents receive private information over time and
decisions are made in multiple periods over an arbitrary time horizon. The
model allows for serial correlation of the agents’ information and for the de-
pendence of this information on past allocations. It covers as special cases
problems such as allocation of private or public goods to agents whose valu-
ations evolve stochastically over time, procedures for selling experience goods
to consumers who refine their valuations upon consumption, and multiperiod
procurement under learning-by-doing. Since the time horizon is arbitrary, the
model also accommodates problems where the timing of decisions is a choice
variable such as when auctioning off rights for the extraction of a natural re-
source.

Our main results, Theorems 1–3, provide characterizations of dynamic lo-
cal and global incentive-compatibility constraints that extend the Myersonian

1We thank participants at various conferences, seminars, and institutions where this paper
was presented. Special thanks go to Thomas Chaney, Daniel Garrett, Li Hao, Narayana Kocher-
lakota, Andy Skrzypacz, Xianwen Shi, a co-editor, and anonymous referees for useful suggestions
that helped us improve the paper. Pavan also thanks the hospitality of Collegio Carlo Alberto and
the University of California Berkeley where part of this work was completed. This paper super-
sedes previous working papers “Revenue Equivalence, Profit Maximization and Transparency in
Dynamic Mechanisms” by Segal and Toikka, “Long-Term Contracting in a Changing World” by
Pavan, and “Infinite-Horizon Mechanism Design” by Pavan, Segal, and Toikka.

© 2014 The Econometric Society DOI: 10.3982/ECTA10269

http://www.econometricsociety.org/
http://www.econometricsociety.org/
http://dx.doi.org/10.3982/ECTA10269


602 A. PAVAN, I. SEGAL, AND J. TOIKKA

approach to mechanism design with continuous types (Myerson (1981)) to dy-
namic environments. We then apply these results to the design of optimal dy-
namic mechanisms. We focus on quasilinear environments where the agents’
new private information is unidimensional in each period.2 To rule out full sur-
plus extraction à la Cremer and McLean (1988), we assume throughout that
this information is independent across agents conditional on their own alloca-
tions. In addition to the methodological contribution, our results provide some
novel concepts that facilitate a unified view of the existing literature and help
to explain what drives distortions in optimal dynamic contracts.

The cornerstone of our analysis is a dynamic envelope theorem, Theo-
rem 1, which, under appropriate regularity conditions, yields a formula for the
derivative of an agent’s expected equilibrium payoff with respect to his cur-
rent private information, or type, in any perfect Bayesian incentive-compatible
mechanism.3 This formula characterizes local incentive compatibility con-
straints, as in Mirrlees’ (1971) first-order approach for static environments.
It captures the usual direct effect of a change in the current type on the agent’s
utility as well as a novel indirect effect due to the induced change in the dis-
tribution of the agent’s future types. The stochastic component of the latter
is summarized by impulse response functions that describe how a change in the
agent’s current type propagates through his type process. Theorem 1 thus iden-
tifies the impulse response as the notion of stochastic dependence that is rel-
evant for mechanism design. Our definition of the impulse response functions
and the proof of Theorem 1 make use of the fact that any stochastic process
can be constructed from a sequence of independent random variables. This ob-
servation was first used in the context of mechanism design by Eső and Szentes
(2007).

The envelope formula of Theorem 1 is independent of the transfers. Thus,
applying the formula to the initial period, yields a dynamic payoff equivalence
result that generalizes Myerson’s (1981) revenue equivalence theorem. More
generally, Theorem 2 shows that, given any dynamic allocation rule, the en-
velope formula can be used to construct payments that satisfy local incentive-
compatibility constraints at all truthful histories. In the single-agent case, the
allocation rule determines, up to a scalar, the net present value of payments,
for any realized sequence of types. This ex post payoff equivalence extends to
multiple agents under an additional condition and pins down the expected net
present value of payments conditional on the agent’s own type sequence, where

2By reinterpreting monetary payments as “utility from monetary payments,” all of our results
on incentive compatibility extend to non-quasilinear environments where the agents’ utility from
monetary payments (or, more generally, from some other instrument available to the designer)
is independent of their private information and additively separable from their allocation utility.
For example, this covers models typically considered in new dynamic public finance or in the
managerial compensation literature.

3This envelope theorem may be useful also in other stochastic dynamic programming prob-
lems.
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the expectation is over the other agents’ type sequences.4 This condition is sat-
isfied if, for example, the evolution of types is independent of allocations.

We then focus on Markov environments so as to characterize global
incentive-compatibility constraints. Theorem 3 shows that an allocation rule
is implementable in a perfect Bayesian equilibrium if and only if it satisfies
integral monotonicity. The Markov restriction implies that any allocation rule
that satisfies integral monotonicity can be implemented, using payments from
Theorem 2, in a strongly truthful equilibrium where the agents report truthfully
on and off the equilibrium path. This allows us to restrict attention to one-shot
deviations from truthtelling, and is the reason for our focus on Markov envi-
ronments. However, it is instructive to note that, even if an agent’s current type
is unidimensional, his report can affect allocations in multiple periods. Thus,
the static analog of our problem is one with unidimensional types but multidi-
mensional allocations, which explains why the integral-monotonicity condition
cannot be simplified without losing necessity.5

Theorem 3 facilitates formulating sufficient conditions for implementability
that are stronger than necessary, but easier to verify. A special case is the no-
tion of strong monotonicity typically considered in the literature, which requires
that each agent’s allocation be increasing in his current and past reports in ev-
ery period; it is applicable to models where payoffs satisfy a single-crossing
property and where type transitions are independent of allocations and in-
creasing in past types in the sense of first-order stochastic dominance. Having
identified the underlying integral-monotonicity condition, we are able to relax
both the notion of monotonicity and the requirements on the environment.
Heuristically, this amounts to requiring monotonicity only “on average” across
time (ex post monotonicity) or, weaker still, across time and future types (aver-
age monotonicity). We use these new conditions to establish the implementabil-
ity of the optimal allocation rule in some settings where strong monotonicity
fails.

The leading application for our results is the design of optimal mechanisms
in Markov environments.6 We adopt the first-order approach that is familiar
from static settings where an allocation rule is found by solving a relaxed prob-
lem that only imposes local incentive-compatibility constraints and the lowest
initial types’ participation constraints, and where a monotonicity condition is

4The result is useful in the non-quasilinear models of footnote 2. There it determines the ex
post net present value of the agent’s utility from monetary payments and facilitates computing
the cost-minimizing timing of payments.

5Implementability has been characterized in static models in terms of analogous conditions by
Rochet (1987), and, more recently, by Carbajal and Ely (2013) and Berger, Müller, and Naeemi
(2010).

6In the Supplemental Material (Pavan, Segal, and Toikka (2014)), we discuss how our char-
acterization of incentive compatibility for Markov environments can be used to derive sufficient
conditions for implementability in some classes of non-Markov environments and to extend our
results on optimal mechanisms to such environments.
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used to verify the implementability of the rule. The envelope formula from
Theorem 1 can be used as in static settings to show that the principal’s prob-
lem is then to maximize expected virtual surplus, which is only a function of the
allocation rule. This is a Markov decision problem and, hence, it can be solved
using standard methods. We then use integral monotonicity from Theorem 3
to verify that the solution is implementable, possibly by checking one of the
sufficient conditions discussed above. When this is the case, the optimal pay-
ments can be found by using Theorem 2. If, for each agent, the lowest initial
type is the one worst off under the candidate allocation rule (which is the case,
for example, when utilities are increasing in own types and transitions satisfy
first-order stochastic dominance), then the participation constraints of all ini-
tial types are satisfied and the mechanism so constructed is an optimal dynamic
mechanism.

The impulse response functions play a central role in explaining the direc-
tion and dynamics of distortions in optimal dynamic mechanisms. As in static
settings, distortions are introduced to reduce the agents’ expected information
rents, as computed at the time of contracting. However, because of the serial
correlation of types, it is optimal to distort allocations not only in the initial
period, but at every history at which the agent’s type is responsive to his initial
type, as measured by the impulse response function. We illustrate by means of
a buyer–seller example that this can lead to the distortions being nonmonotone
in the agent’s reports and over time. The optimal allocation rule in the exam-
ple is not strongly monotone and, hence, the new sufficiency conditions de-
rived from integral monotonicity are instrumental for uncovering these novel
dynamics.

Similarly to static settings, the first-order approach outlined above yields
an implementable allocation rule only under fairly stringent conditions. These
conditions are by no means generic, though they include as special cases the
ones usually considered in the literature. We provide some sufficient condi-
tions on the primitives that guarantee that the relaxed problem has a solution
that satisfies strong monotonicity, but as is evident from above, such conditions
are far from being necessary. We illustrate the broader applicability of the tools
by solving for optimal “bandit auctions” of experience goods in a setting where
bidders update their values upon consumption. The optimal allocation there
violates strong monotonicity, but satisfies average monotonicity.

We conclude the Introduction by commenting on the related literature. The
rest of the paper is then organized as follows. We describe the dynamic envi-
ronment in Section 2, and present our results on incentive compatibility and
implementability in Section 3. We then apply these results to the design of op-
timal dynamic mechanisms in Section 4, illustrating the general approach by
deriving the optimal bandit auction in Section 5. We conclude in Section 6. All
proofs that are omitted in the main text are provided in the Appendix. Addi-
tional results can be found in the Supplemental Material (Pavan, Segal, and
Toikka (2014)).
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1.1. Related Literature

The literature on optimal dynamic mechanism design goes back to the pio-
neering work of Baron and Besanko (1984), who use the first-order approach
in a two-period single-agent setting to derive an optimal mechanism for reg-
ulating a natural monopoly. They characterize optimal distortions using an
“informativeness measure,” which is a two-period version of our impulse re-
sponse function. More recently, Courty and Li (2000) consider a similar model
to study optimal advanced ticket sales, and also provide sufficient conditions
for a dynamic allocation rule to be implementable. Eső and Szentes (2007)
then extend the analysis to multiple agents in their study of optimal informa-
tion revelation in auctions.7 They use a two-period state representation to or-
thogonalize an agent’s future information by generating the randomness in the
second-period type through an independent shock. We build on some of the
ideas and results in these papers, and special cases of some of our results can
be found in them. We comment on the connections at the relevant points in
the analysis. In particular, we discuss the role of the state representation in the
Concluding Remarks (Section 6), having first presented our results.

Whereas the aforementioned works consider two-period models, Besanko
(1985) and Battaglini (2005) characterize the optimal infinite-horizon mecha-
nism for an agent whose type follows a Markov process, with Besanko con-
sidering a linear AR(1) process over a continuum of states, and Battaglini
considering a two-state Markov chain. Their results are qualitatively differ-
ent: Besanko (1985) finds that the allocation in each period depends only on
the agent’s initial and current type, and is distorted downward at each finite
history with probability 1. In contrast, Battaglini (2005) finds that once the
agent’s type turns high, he consumes at the efficient level irrespective of his
subsequent types. Our analysis shows that the relevant property of the type
processes that explains these findings, and the dynamics of distortions more
generally, is the impulse response of future types to a change in the agent’s
initial private information.8

Board (2007) is the first to consider a multi-agent environment with infinite
time horizon. He extends the analysis of Eső and Szentes (2007) to a setting
where the timing of the allocation is endogenous, so that the principal is sell-
ing options. Subsequent to the first version of our manuscript, Kakade, Lobel,
and Nazerzadeh (2011) consider a class of allocation problems that generalize
Board’s model as well as our bandit auctions, and show that the optimal mech-
anism is a virtual version of the dynamic pivot mechanism of Bergemann and
Välimäki (2010). We comment on the connection to Kakade et al. in Section 5
after presenting our bandit auction.

7See Riordan and Sappington (1987) for an early contribution with many agents.
8Battaglini’s (2005) model with binary types is not formally covered by our analysis. However,

we discuss in the Supplemental Material how impulse responses can be adapted to discrete type
models.
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That the literature on optimal dynamic mechanisms has focused on relatively
specific settings reflects the need to arrive at a tractable optimization prob-
lem over implementable allocation rules. In contrast, when designing efficient
(or expected surplus-maximizing) mechanisms, the desired allocation rule is
known a priori. Accordingly, Bergemann and Välimäki (2010), and Athey
and Segal (2013) introduce dynamic generalizations of the static Vickrey–
Clarke–Groves and expected externality mechanisms for very general quasi-
linear private-value environments.9

A growing literature considers both efficient and profit-maximizing dynamic
mechanisms in settings where each agent receives only one piece of private in-
formation, but where the agents or objects arrive stochastically over time as in,
for example, Gershkov and Moldovanu (2009) and more recently Board and
Skrzypacz (2013). The characterization of incentive compatibility in such mod-
els is static, but interesting dynamics emerge from the optimal timing problem
faced by the designer. We refer the reader to the excellent recent survey by
Bergemann and Said (2011).10

Our work is also related to the literature on dynamic insurance and optimal
taxation. While the early literature following Green (1987) and Atkeson and
Lucas (1992) assumed independent and identically distributed (i.i.d.) types,
the more recent literature has considered persistent private information (e.g.,
Fernandes and Phelan (2000), Kocherlakota (2005), Albanesi and Sleet (2006),
or Kapicka (2013)). In terms of the methods, particularly related are those of
Farhi and Werning (2013) and Golosov, Troshkin, and Tsyvinski (2011), who
used a first-order approach to characterize optimal dynamic tax codes. There
is also a continuous-time literature on contracting with persistent private infor-
mation that uses Brownian motion, in which impulse responses are constant,
simplifying the analysis. See Williams (2011) and the references therein.

Our analysis of optimal mechanisms assumes that the principal can com-
mit to the mechanism he is offering and, hence, the dynamics are driven by
changes in the agents’ information. In contrast, the literature on dynamic con-
tracting with adverse selection and limited commitment typically assumes con-
stant types and generates dynamics through lack of commitment (see, for ex-
ample, Laffont and Tirole (1988) or, for more recent work, Skreta (2006) and
the references therein).11

Dynamic mechanism design is related to the literature on multidimensional
screening, as noted, for example, by Rochet and Stole (2003). Nevertheless,
there is a sense in which incentive compatibility is easier to ensure in a dynamic

9Rahman (2010) derived a general characterization of implementable dynamic allocation rules
similar to Rochet’s (1987) cyclical monotonicity. Its applicability to the design of optimal mecha-
nisms is, however, yet to be explored.

10Building on this literature and on the results of the current paper, Garrett (2011) combined
private information about arrival dates with time-varying types.

11See Battaglini (2007) and Strulovici (2011) for an analysis of limited commitment with chang-
ing types.
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setting than in a static multidimensional setting. This is because in a dynamic
setting, an agent is asked to report each dimension of his private information
before learning the subsequent dimensions, so he has fewer deviations avail-
able than in the corresponding static setting in which he observes all the di-
mensions at once. Because of this, the set of implementable allocation rules is
larger in a dynamic setting than in the corresponding static multidimensional
setting. Nonetheless, our necessary conditions for incentive compatibility are
valid also for multidimensional screening problems.

2. THE ENVIRONMENT

Conventions. For any set B, B−1 denotes a singleton. If B is measurable, Δ(B)
is the set of probability measures over B. Any function defined on a measur-
able set is assumed to be measurable. Tildes distinguish random variables from
realizations so that, for example, θ denotes a realization of θ̃. Any set of real
vectors or sequences is endowed with the product order unless noted other-
wise.

Decisions. Time is discrete and indexed by t = 0�1� � � � �∞. There are n ≥ 1
agents, indexed by i = 1� � � � � n. In every period t, each agent i observes a sig-
nal, or type, θit ∈ Θit = (¯θit� θ̄it) ⊆ R, with −∞ ≤ ¯θit ≤ θ̄it ≤ +∞, and then
sends a message to a mechanism that leads to an allocation xit ∈Xit and a pay-
ment pit ∈ R for each agent i. Each Xit is assumed to be a measurable space
(with the sigma-algebra left implicit). The set of feasible allocation sequences
is X ⊆ ∏∞

t=0

∏n

i=1Xit . This formulation allows for the possibility that feasible
allocations in a given period depend on the allocations in the previous periods
or that the feasible allocations for agent i depend on the other agents’ alloca-
tions.12 Let Xt ≡ ∏n

i=1Xit , Xt
i ≡ ∏t

s=0Xis, and Xt ≡ ∏t

s=0Xs. The sets Θt , Θt
i ,

and Θt are defined analogously. Let Θ∞
i ≡ ∏∞

t=0Θit and Θ≡ ∏n

i=1Θ
∞
i .

In every period t, each agent i observes his own allocation xit but not the
other agents’ allocations x−i�t .13 The observability of xit should be thought of
as a constraint: a mechanism can reveal more information to agent i than xit ,
but cannot conceal xit . Our necessary conditions for incentive compatibility
do not depend on what additional information is disclosed to the agent by the
mechanism. Hence it is convenient to assume that the agents do not observe
anything beyond θit and xit , not even their own transfers. (If the horizon is fi-
nite, this is without loss as transfers could be postponed until the end.) As for
sufficient conditions, we provide conditions under which more information can

12For example, the (intertemporal) allocation of a private good in fixed supply x̄ can be mod-
elled by letting Xit = R+ and putting X = {x ∈ R

∞N
+ :

∑
it xit ≤ x̄}, while the provision of a public

good whose period-t production is independent of the level of production in any other period can
be modelled by letting X = {x ∈ R

∞N
+ :x1t = x2t = · · · = xNt all t}.

13This formulation does not explicitly allow for decisions that are not observed by any agent at
the time they are made; however, such decisions can be accommodated by introducing a fictitious
agent who observes them.
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be disclosed to the agents without violating incentive compatibility. In partic-
ular, we construct payments that can be disclosed in each period, and identify
conditions under which the other agents’ reports and allocations can also be
disclosed.

Types. The evolution of agent i’s information is described by a collection of
kernels Fi ≡ 〈Fit :Θt−1

i ×Xt−1
i → Δ(Θit)〉∞

t=0, where Fit(θt−1
i � xt−1

i ) denotes the
distribution of the random variable θ̃it , given the history of signals θt−1

i ∈Θt−1
i

and allocations xt−1
i ∈Xt−1

i . The dependence on past allocations can capture,
for example, learning-by-doing or experimentation (see the bandit auction ap-
plication in Section 5). The time-t signals of different agents are drawn inde-
pendently of each other. That is, the vector (θ̃1t � � � � � θ̃nt) is distributed accord-
ing to the product measure

∏n

i=1 Fit(θ
t−1
i � xt−1

i ). We abuse notation by using
Fit(·|θt−1

i � xt−1
i ) to denote the cumulative distribution function (c.d.f.) that cor-

responds to the measure Fit(θt−1
i � xt−1

i ).
Note that we build in the assumption of independent types in the sense of

Athey and Segal (2013): in addition to independence of agents’ signals within
any period t, we require that the distribution of agent i’s private signal be deter-
mined by things he has observed, that is, by (θt−1

i � xt−1
i ). Without these restric-

tions, payoff equivalence, in general, fails by an argument analogous to that of
Cremer and McLean (1988). On the other hand, dependence on other agents’
past signals through the implemented observable decisions xt−1

i is allowed.
Preferences. Each agent i has von Neumann–Morgenstern (vNM) prefer-

ences over lotteries onΘ×X×R
∞, described by a Bernoulli utility function of

the quasilinear formUi(θ�x)+∑∞
t=0 δ

tpit , whereUi :Θ×X →R and δ ∈ (0�1]
is a discount factor common to all agents.14 The special case of a “finite hori-
zon” arises when each Ui(θ�x) depends only on (θT �xT ) for some finite T .

Choice rules. A choice rule consists of an allocation rule χ :Θ→ X and a
transfer rule ψ :Θ → R

∞ × · · · × R
∞ such that for all t ≥ 0, the allocation

χt(θ) ∈Xt and transfers ψt(θ) ∈ R
N implemented in period t depend only on

the history θt (and so will be written as χt(θt) and ψt(θt)). We denote the set
of feasible allocation rules by X . The restriction to deterministic rules is with-
out loss of generality since randomizations can be generated by introducing a
fictitious agent and conditioning on his reports. (Below we provide conditions
for an optimal allocation rule to be deterministic.)

Stochastic processes. Given the kernels F ≡ (Fi)ni=1, an allocation rule χ ∈ X
uniquely defines a stochastic process over Θ, which we denote by λ[χ].15 For

14As usual, we may alternatively interpret pit as agent i’s utility from his period-t payment
(See, e.g., Garrett and Pavan (2013) and the discussion below). Furthermore, Theorem 1 below
extends as stated to environments where i’s utility is of the form Ui(θ�x)+Pi(pi0�pi1� � � �) for an
arbitrary function Pi :R∞ →R. (A model without transfers corresponds to the special case where
Pi ≡ 0 all i.)

15Existence and uniqueness follows by the Tulcea extension theorem (see, e.g., Pollard (2002,
Chapter 4, Theorem 49)).
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any period t ≥ 0 and history θt ∈Θt , we let λ[χ]|θt denote the analogous pro-
cess where θ̃t is first drawn from a degenerate distribution at θt , and then the
continuation process is generated by applying the kernels and the allocation
rule starting from the history (θt�χt(θt)).

When convenient, we view each agent i’s private information as being
generated by his initial signal θi0 and a sequence of “independent shocks.”
That is, we assume that for each agent i, there exists a collection 〈Ei�Gi� zi〉,
where Ei ≡ 〈Eit〉∞

t=0 is a collection of measurable spaces, Gi ≡ 〈Git〉∞
t=0 is a

collection of probability distributions with Git ∈ Δ(Eit) for t ≥ 0, and zi ≡
〈zit :Θt−1

i × Xt−1
i × Eit → Θit〉∞

t=0 is a sequence of functions such that for all
t ≥ 0 and (θt−1

i � xt−1
i ) ∈Θt−1

i ×Xt−1
i , if ε̃it is distributed according to Git , then

zit(θ
t−1
i � xt−1

i � ε̃it) is distributed according to Fit(θt−1
i � xt−1

i ). Given any alloca-
tion rule χ, we can then think of the process λ[χ] as being generated as fol-
lows: Let ε̃ be distributed on

∏∞
t=1

∏n

i=1 Eit according to the product measure∏∞
t=1

∏n

i=1Git . Draw the period-0 signals θ0 according to the initial distribu-
tion

∏n

i=1Fi0 independently of ε̃, and construct types for periods t > 0 recur-
sively by θit = zit(θ

t−1
i �χt−1(θt−1)�εit). (Note that we can think of each agent

i observing the shock εit in each period t, yet (θti� x
t−1
i ) remains a sufficient

statistic for his payoff-relevant private information in period t.) It is a stan-
dard result on stochastic processes that such a state representation 〈Ei�Gi� zi〉ni=1
exists for any kernels F .16 For example, if agent i’s signals follow a linear au-
toregressive process of order 1, then the zi functions take the familiar form
zit(θ

t−1
i � xt−1� εit)=φiθi�t−1 +εit for some φi ∈ R. The general case can be han-

dled using the canonical representation introduced in the following example.

EXAMPLE 1—Canonical Representation: Fix the kernels F . For all i =
1� � � � � n, and t ≥ 1, let Eit = (0�1), let Git be the uniform distribution on
(0�1), and define the generalized inverse F−1

it by setting F−1
it (εit |θt−1

i � xt−1
i ) ≡

inf{θit :Fit(θit |θt−1
i � xt−1

i )≥ εit} for all εit ∈ (0�1) and (θt−1
i � xt−1

i ) ∈Θt−1
i ×Xt−1

i .
The random variable F−1

it (ε̃it |θt−1
i � xt−1

i ) is then distributed according to the
c.d.f. Fit(·|θt−1

i � xt−1
i ) so that we can put zit(θt−1

i � xt−1
i � εit)= F−1

it (εit |θt−1
i � xt−1

i ).17

We refer to the state representation so defined as the canonical representation
of F .

Nevertheless, the canonical representation is not always the most conve-
nient, as many processes such as the AR(1) above are naturally defined in
terms of other representations; hence, we work with the general definition.

In what follows, we use the fact that, given a state representation 〈Ei�Gi�
zi〉ni=1, for any period s ≥ 0, each agent i’s continuation process can be expressed

16This observation was first used in a mechanism-design context by Eső and Szentes (2007),
who studied a two-period model of information disclosure in auctions.

17This construction is standard; see the second proof of the Kolmogorov extension theorem in
Billingsley (1995, p. 490).
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directly in terms of the history θsi and shocks εit , t ≥ 0, by defining the functions
Zi�(s) ≡ 〈Zi�(s)�t :Θs

i × Xt−1
i × E ti → Θit〉∞

t=0 recursively by Zi�(s)�t(θsi � x
t−1
i � εti) =

zit(Z
t−1
i�(s)(θ

s
i � x

t−2
i � εt−1

i )� xt−1
i � εit), where Zt−1

i�(s)(θ
s
i � x

t−2
i � εt−1

i ) ≡ (Zi�(s)�τ(θ
s
i � x

τ−1
i �

ετi ))
t−1
τ=0 with Zi�(s)�t(θsi � x

t−1
i � εti) ≡ θit for all t ≤ s. For example, in the case of

a linear AR(1) process, Zi�(s)�t(θsi � x
t−1
i � εti)=φt−si θis +

∑t

τ=s+1φ
t−τεiτ is simply

the moving-average representation of the process started from θis.

2.1. Regularity Conditions

Similarly to static models with continuous types, our analysis requires that
each agent’s expected utility be a sufficiently well behaved function of his pri-
vate information. In a dynamic model, an agent’s expected continuation utility
depends on his current type, both directly through the utility function, and indi-
rectly through its impact on the distribution of future types. Hence, we impose
regularity conditions on both the utility functions and the kernels.

CONDITION U-D—Utility Differentiable: For all i = 1� � � � � n, t ≥ 0, x ∈X ,
and θ ∈Θ, Ui(θi� θ−i� x) is a differentiable function of θti ∈Θt

i .

With a finite horizon T <∞, this condition simply means thatUi(θ
T
i � θ

T
−i� x

T )
is differentiable in θTi .

Next, define the norm ‖ · ‖ on R
∞ by ‖y‖ ≡ ∑∞

t=0 δ
t |yt | and let Θiδ ≡ {θi ∈

Θ∞
i :‖θi‖<∞}.18

CONDITION U-ELC—Utility Equi-Lipschitz Continuous: For all i=1� � � � � n,
the family {Ui(·� θ−i� x)}θ−i∈Θ−i�x∈X is equi-Lipschitz continuous on Θiδ. That is,
there exists Ai ∈ R such that |Ui(θ

′
i� θ−i� x)−Ui(θi� θ−i� x)| ≤Ai‖θ′

i − θi‖ for all
θi� θ

′
i ∈Θiδ, θ−i ∈Θ−i, and x ∈X .

Conditions U-D and U-ELC are similar to the differentiability and bounded-
derivative conditions imposed in static models (cf. Milgrom and Segal (2002)).
For example, stationary payoffsUi(θ�x)= ∑∞

t=0 δ
tui(θt� xt) satisfy U-D and U-

ELC if ui is differentiable and equi-Lipschitz in θit (e.g., linear payoffs
ui(θt� xt)= θitxit are fine provided that xit is bounded).

CONDITION F-BE—Process Bounded in Expectation: For all i = 1� � � � � n,
t ≥ 0, θt ∈Θt , and χ ∈X , Eλ[χ]|θt [‖θ̃i‖]<∞.

18It is possible to rescale θit and work with the standard l1 norm. However, we use the weighted
norm to deal without rescaling with the standard economic applications with time discounting.
Note also that for a finite horizon, the norm ‖ · ‖ is equivalent to the Euclidean norm, and so
the choice is irrelevant. For infinite horizon, increasing δ weakens the conditions imposed on the
utility function while strengthening the conditions imposed on the kernels.
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Condition F-BE implies that for any allocation rule χ and any period-t type
history θt (t ≥ 0), the sequence of agent i’s future types has a finite norm
with λ[χ]|θt-probability 1. This allows us to effectively restrict attention to the
space Θiδ. With a finite horizon, F-BE simply requires that for all t ≥ 0, the
expectation of each θ̃iτ, with t < τ ≤ T , exists conditional on any θt .

CONDITION F-BIR—Process Bounded Impulse Responses: There exist a
state representation 〈Ei�Gi� zi〉ni=1 and functions Ci�(s) :Ei → R

∞, i = 1� � � � � n,
s ≥ 0, with E[‖Ci�(s)(ε̃i)‖] ≤ Bi for some constant Bi independent of s, such that
for all i = 1� � � � � n, t ≥ s, θsi ∈ Θs

i , xi ∈ Xi, and εti ∈ E ti , Zi�(s)�t(θsi � xt−1
i � εti) is a

differentiable function of θis with |∂Zi�(s)�t(θsi � xt−1
i � εti)/∂θis| ≤ Ci�(s)�t−s(εi).

Condition F-BIR is essentially the process analog of Conditions U-D and
U-ELC. It guarantees that small changes in the current type have a small ef-
fect on future types. We provide a way to check F-BIR as well as examples of
kernels that satisfy it in later sections (see, e.g., Example 3).

Finally, we impose the following bounds on the agents’ utility functions to
ensure that the expected net present value of the transfers we construct exists
when the horizon is infinite.

CONDITION U-SPR—Utility Spreadable: For all i = 1� � � � � n, there exists a
sequence of functions 〈uit :Θt × Xt → R〉∞

t=0 and constants Li and (Mit)
∞
t=0,

with Li�‖Mi‖ < ∞, such that for all (θ�x) ∈ Θ × X and t ≥ 0, Ui(θ�x) =∑∞
t=0 δ

tuit(θ
t� xt) and |uit(θt� xt)| ≤Li|θit | +Mit .

The condition is satisfied, for example, if the functions uit are uniformly
bounded or take the linear form uit(θ

t� xt) = θitxit with Xit bounded (but Θit

possibly unbounded).
For ease of reference, we combine the above conditions into a single defini-

tion.

DEFINITION 1—Regular Environment: The environment is regular if it sat-
isfies Conditions U-D, U-ELC, F-BE, F-BIR, and U-SPR.

3. PERFECT BAYESIAN EQUILIBRIUM IMPLEMENTABILITY

Following Myerson (1986), we restrict attention to direct mechanisms where,
in every period t, each agent i confidentially reports a type from his type space
Θit , no information is disclosed to him beyond his allocation xit , and the agents
report truthfully on the equilibrium path. Such a mechanism induces a dynamic
Bayesian game between the agents and, hence, we use perfect Bayesian equi-
librium (PBE) as our solution concept.

Formally, a reporting strategy for agent i is a collection σi ≡ 〈σit :Θt
i ×Θt−1

i ×
Xt−1
i → Θit〉∞

t=0, where σit(θti� θ̂
t−1
i � xt−1

i ) ∈ Θit is agent i’s report in period t
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when his true type history is θti , his reported type history is θ̂t−1
i , and his al-

location history is xt−1
i . The strategy σi is on-path truthful if σit((θt−1

i � θit)� θ
t−1
i �

xt−1
i )= θit for all t ≥ 1, θit ∈Θit , θt−1

i ∈Θt−1
i , and xt−1

i ∈Xt−1
i . Note that on-path

truthful strategies impose no restrictions on behavior after lies.
The specification of a PBE also includes a belief system Γ , which describes

each agent i’s beliefs at each of his information sets (θti� θ̂
t−1
i � xt−1

i ) about the
unobserved past moves by Nature (θt−1

−i ) and by the other agents (θ̂t−1
−i ). (The

agent’s beliefs about the contemporaneous types of agents j 
= i then follow by
applying the kernels.) We restrict these beliefs to satisfy two natural conditions:

CONDITION B(i): For all i= 1� � � � � n, t ≥ 0, and (θti� θ̂
t−1
i � xt−1

i ) ∈Θt
i ×Θt−1

i ×
Xt−1
i , agent i’s beliefs are independent of his true type history θti .

CONDITION B(ii): For all i= 1� � � � � n, t ≥ 0, and (θti� θ̂
t−1
i � xt−1

i ) ∈Θt
i×Θt−1

i ×
Xt−1
i , agent i’s beliefs assign probability 1 to the other agents having reported truth-

fully, that is, to the event that θ̂t−1
−i = θt−1

−i .

Condition B(i) is similar to Condition B(i) in Fudenberg and Tirole (1991,
p. 331). It is motivated by the fact that given agent i’s reports θ̂t−1

i and observed
allocations xt−1

i , the distribution of his true types θti is independent of the other
agents’ types or reports. Condition B(ii) in turn says that agent i always believes
that his opponents have been following their equilibrium strategies.19 Note that
under these two conditions, we can describe agent i’s beliefs as a collection of
probability distributions Γit :Θt−1

i ×Xt−1
i → Δ(Θt−1

−i ), t ≥ 0, where Γit(θ̂t−1
i � xt−1

i )
represents agent i’s beliefs over the other agents’ past types θt−1

−i (which he
believes to be equal to the reports) given that he reported θ̂t−1

i and observed
the allocations xt−1

i . We then have the following definitions.

DEFINITION 2—On-Path Truthful PBE; PBIC: An on-path truthful PBE of
a direct mechanism 〈χ�ψ〉 is a pair (σ�Γ ) that consists of an on-path truthful
strategy profile σ and a belief system Γ such that (i) Γ satisfies Conditions B(i)
and B(ii), and is consistent with Bayes’ rule on all positive-probability events
given σ , and (ii) for all i = 1� � � � � n, σi maximizes agent i’s expected payoff
at each information set given σ−i and Γ .20 The choice rule 〈χ�ψ〉 is perfect
Bayesian incentive compatible (PBIC) if the corresponding direct mechanism
has an on-path truthful PBE.

19With continuous types, any particular history for agent i has probability 0 and, hence, B(ii)
cannot be derived from Bayes’ rule, but has to be imposed. Note that even when the kernels do
not have full support, they are defined at all histories and, hence, the continuation process is
always well defined.

20In particular, the expected allocation utility and the expected net present value of transfers
from an on-path truthful strategy are well defined and finite conditional on any truthful history.
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When σ is on-path truthful, the requirement in part (i) in the above defi-
nition depends only on the allocation rule χ. As a result, hereafter we denote
by Γ (χ) the set of beliefs systems that satisfy part (i) in the above definition.
(Each element of Γ (χ) is a system of regular conditional probability distribu-
tions, the existence of which is well known; see, for example, Dudley (2002).)
Note that the concept of PBIC implies, in particular, that truthful reporting is
optimal at every truthful history.

3.1. First-Order Necessary Conditions

We start by deriving a necessary condition for PBIC by applying an envelope
theorem to an agent’s problem of choosing an optimal reporting strategy at an
arbitrary truthful history.

Fix a choice rule 〈χ�ψ〉 and a belief system Γ ∈ Γ (χ). Suppose agent i plays
according to an on-path truthful strategy, and consider a period-t history of the
form ((θt−1

i � θit)� θ
t−1
i �χt−1

i (θt−1)), that is, when agent i has reported truthfully
in the past, the complete reporting history is θt−1, and agent i’s current type
is θit . Agent i’s expected payoff is then given by

V 〈χ�ψ〉�Γ
it

(
θt−1� θit

) ≡ E
λi[χ�Γ ]|θt−1�θit

[
Ui

(
χ(θ̃)� θ̃

) +
∞∑
s=0

δtψis(θ̃)

]
�

where λi[χ�Γ ]|θt−1� θit is the stochastic process over Θ from the perspective
of agent i. Formally, λi[χ�Γ ]|θt−1� θit is the unique probability measure on Θ
obtained by first drawing θt−1

−i according to agent i’s belief Γit(θt−1
i �χt−1

i (θt−1)),
drawing θ−i�t according to

∏
j 
=i Fjt(θ

t−1
j �χt−1

j (θt−1
i � θt−1

−i )), and then using the
allocation rule χ and the kernels F to generate the process from period-t on-
ward. Note that in period 0, this measure is only a function of the kernels,
and, hence, we write it as λi[χ]|θi0, and similarly omit the belief system Γ in
V 〈χ�ψ〉
i0 (θi0).
The following definition (first-order condition for incentive compatibility

(ICFOC)) is a dynamic version of the envelope condition familiar from static
models.

DEFINITION 3—ICFOC: Fix i = 1� � � � � n and s ≥ 0. The choice rule 〈χ�ψ〉
with belief system Γ ∈ Γ (χ) satisfies ICFOCi�s if, for all θs−1 ∈ Θs−1,
V 〈χ�ψ〉�Γ
is (θs−1� θis) is a Lipschitz continuous function of θis with the derivative

given almost everywhere (a.e.) by

∂V 〈χ�ψ〉�Γ
is (θs−1� θis)

∂θis
(1)

= E
λi[χ�Γ ]|θs−1�θis

[ ∞∑
t=s
Ii�(s)�t

(
θ̃ti�χ

t−1
i (θ̃)

)∂Ui(θ̃�χ(θ̃))

∂θit

]
�
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where21

Ii�(s)�t
(
θti� x

t−1
i

) ≡ E

[
∂Zi�(s)�t(θ

s
i � x

t−1
i � ε̃ti)

∂θis

∣∣Zt
i�(s)

(
θsi � x

t−1
i � ε̃ti

) = θti
]
�(2)

The choice rule 〈χ�ψ〉 satisfies ICFOC if there exists a belief system Γ ∈
Γ (χ) such that 〈χ�ψ〉 with belief system Γ satisfies ICFOCi�s for all agents
i= 1� � � � � n and all periods s ≥ 0.

THEOREM 1: Suppose the environment is regular.22 Then every PBIC choice
rule satisfies ICFOC.

By Theorem 1, the formula in (1) is a dynamic generalization of the enve-
lope formula familiar from static mechanism design (Mirrlees (1971), Myerson
(1981)). By inspection, the period-0 formula implies a weak form of dynamic
payoff (and revenue) equivalence: each agent’s period-0 interim expected payoff
is pinned down by the allocation rule χ up to a constant. (We provide a stronger
payoff-equivalence result in the next section.) Special cases of the envelope for-
mula (1) have been identified by Baron and Besanko (1984), Besanko (1985),
Courty and Li (2000), and Eső and Szentes (2007), among others. However, it
should be noted that the contribution of Theorem 1 is not so much so in gen-
eralizing the formula, but in providing conditions on the utility functions and
type processes that imply that ICFOC is indeed a necessary condition for all
PBIC choice rules.

Heuristically, the proof of Theorem 1 in the Appendix proceeds by applying
an envelope-theorem argument to the agent’s problem of choosing an opti-
mal continuation strategy at a given truthful history. The argument is identi-
cal across agents and periods, and hence without loss of generality we focus
on establishing ICFOCi�0 for some agent i by considering his period-0 ex in-
terim problem of choosing a reporting strategy conditional on his initial sig-
nal θi0. Nevertheless, Theorem 1 is not an immediate corollary of Milgrom
and Segal’s (2002) envelope theorem for arbitrary choice sets. Namely, their
result requires that the objective function be differentiable in the parameter
(with an appropriately bounded derivative) for any feasible element of the
choice set. Here it would require that, for any initial report θ̂i0 and any plan
ρ≡ 〈ρt :∏t

τ=1Θτ →Θt〉∞
t=1 for reporting future signals, agent i’s payoff be dif-

ferentiable in θi0. But this property need not hold in a regular environment.
This is because a change in the initial signal θi0 changes the distribution of the
agent’s future signals, which in turn changes the distribution of his future re-
ports and allocations through the plan ρ and the choice rule 〈χ�ψ〉. For some

21The Ii�(s)�t functions are conditional expectations and thus defined only up to sets of mea-
sure 0.

22Condition U-SPR, which requires utility to be spreadable, is not used in the proof of this
theorem.
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combinations of θ̂0, ρ, and 〈χ�ψ〉, this may lead to an expected payoff that is
nondifferentiable or even discontinuous in θi0.23

To deal with this complication, we transform the problem into one where the
distribution of agent i’s future information is independent of his initial signal
θi0 so that changing θi0 leaves future reports unaltered.24 This is done by using
a state representation to generate the signal process and by asking the agent
to report his initial signal θi0 and his future shocks εit , t ≥ 1. This equivalent
formulation provides an additional simplification in that we may assume that
agent i reports the shocks truthfully.25 The rest of the proof then amounts to
showing that if the environment is regular, then the transformed problem is
sufficiently well behaved to apply arguments similar to those in Milgrom and
Segal (2002).

REMARK 1: If the notion of incentive compatibility is weakened from PBIC
to the requirement that on-path truthful strategies are a Bayesian–Nash equi-
librium of the direct mechanism, then the above argument can still be ap-
plied in period 0 to establish ICFOCi�0 for all i = 1� � � � � n. Thus the weak
payoff equivalence discussed above holds across all Bayesian–Nash incentive-
compatible mechanisms.

We finish this subsection with two examples that suggest an interpretation
of the functions defined by (2) and establish a connection to the literature. To
simplify notation, we restrict attention to the case of a single agent and omit
the subscript i.

23For a simple example, consider a two-period environment with one agent and a single in-
divisible good to be allocated in the second period as in Courty and Li (2000) (i.e., X0 = {0},
X1 = {0�1}). Suppose the agent’s payoff is of the form U(θ�x)= θ1x1, and that θ̃0 is distributed
uniformly on (0�1) with θ̃1 = θ̃0 almost surely. (It is straigthforward to verify that this environ-
ment is regular; e.g., put Z1(θ0� ε1) = θ0 for all (θ0� ε1) to verify F-BIR.) Consider the PBIC
choice rule 〈χ�ψ〉 where χ is defined by χ0 = 0, χ1(θ0� θ1)= 1 if θ0 = θ1 ≥ 1

2 , and χ1(θ0� θ1)= 0
otherwise, and where ψ is defined by setting ψ0 = 0 and ψ1(θ0� θ1) = 1

2χ1(θ0� θ1). Now, fix an
initial report θ̂0 >

1
2 and fix the plan ρ that reports θ1 truthfully in period 1 (i.e., ρ(θ1)= θ1 for all

θ1). The resulting expected payoff is θ̂0 − 1
2 > 0 for θ0 = θ̂0, whereas it is equal to 0 for all θ0 
= θ̂0.

That is, the expected payoff is discontinuous in the true initial type at θ0 = θ̂0.
24In an earlier draft, we showed that when the horizon is finite, the complication can alterna-

tively be dealt with by using backward induction. Roughly, this solves the problem, as it forces the
agent to use a sequentially rational continuation strategy given any initial report and, thus, rules
out problematic elements of his feasible set.

25By PBIC, truthful reporting remains optimal in the restricted problem where the agent can
only choose θ̂0 and, hence, the value function that we are trying to characterize is unaffected. (In
terms of the kernel representation, this amounts to restricting each type θi0 to using strategies
where given any initial report θ̂i0 ∈Θi0, the agent is constrained to report θ̂it = Zit(θ̂i0�x

t−1
i � εti)

in period t.) Note that restricting the agent to report truthfully his future θit would not work, as
the resulting restricted problem is not sufficiently well behaved in general; see footnote 23.
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EXAMPLE 2—AR(k) Process: Consider the case of a single agent, and sup-
pose that the signal θt evolves according to an autoregressive (AR) process
that is independent of the allocations,

θ̃t =
∞∑
j=1

φjθ̃t−j + ε̃t�

where θ̃t = 0 for all t < 0, φj ∈ R for all j ∈ N, and ε̃t is a random vari-
able distributed according to some c.d.f. Gt with support Et ⊆ R, with all the
ε̃t , t ≥ 0, distributed independently of each other and of θ̃0. Note that we
have defined the process in terms of the state representation 〈E�G�z〉, where
zt(θ

t−1�xt−1� εt) = ∑∞
j=1φjθt−j + εt . The functions (2) are then time-varying

scalars

I(s)�s = 1 and(3)

I(s)�t = ∂Z(s)�t

∂θs
=

∑
K∈N�l∈NK+1:
s=l0<···<lK=t

{
K∏
k=1

φlk−lk−1

}
for t > s�

In the special case of an AR(1) process, as in Besanko (1985), we have φj = 0
for all j > 1 and, hence, the formula simplifies to I(s)�t = (φ1)

t−s. Condi-
tion F-BIR requires that there exist B ∈ R such that ‖I(s)‖ ≡ ∑∞

t=0 δ
t |I(s)�t|< B

for all s ≥ 0, which in the AR(1) case is satisfied if and only if δ|φ1| < 1. For
Condition F-BE, write

θ̃t =Z(0)�t
(
θ0� ε̃

t
) = I(0)�tθ0 +

t∑
τ=1

I(0)�t−τε̃τ for all t ≥ 0�

so that

E
λ|θ0

[‖θ̃‖] ≤ ‖I(0)‖|θ0| +
∞∑
t=1

δt
t∑
τ=1

|I(0)�t−τ|E
[|ε̃τ|]

= ‖I(0)‖
(|θ0| +E

[‖ε̃‖])�
Similarly, we have E

λ|θs [‖θ̃‖] ≤ ∑s−1
m=0 ‖I(m)‖|θm| + ‖I(s)‖(|θs| + δ−s

E[‖ε̃‖]).
Hence, F-BE is ensured by assuming, in addition to the bound B needed for
F-BIR, that E[‖ε̃‖] <∞, which simply requires that the mean of the shocks
grows slower than the discount rate (e.g., it is trivially satisfied if εt are i.i.d.
with a finite mean).

The constants defined by (3) coincide with the impulse responses of a linear
AR process. More generally, the I(s)�t functions in (2) can be interpreted as
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nonlinear impulse responses. To see this, apply Theorem 1 to a regular single-
agent environment with fixed decisions and no payments (i.e., with Xt = {x̂t}
and ψt(θ)= 0 for all t ≥ 0 and θ ∈Θ), in which case optimization is irrelevant,
and we simply have V 〈χ�Ψ 〉

s (θs)≡ E
λ|θs [U(θ̃� x̂)]. Then (1) takes the form:

dEλ|θ
s [U(θ̃� x̂)]
dθs

= E
λ|θs

[ ∞∑
t=s
I(s)�t

(
θ̃t� x̂

)∂U(θ̃� x̂)
∂θt

]
�

Note that the impulse response functions I(s)�t are determined entirely by the
stochastic process and satisfy the above equation for any utility function U that
satisfies Conditions U-D and U-ELC. 

26

If for all t ≥ 1, the function zt in the state representation of the type process
is differentiable in θt−1, we can use the chain rule to inductively calculate the
impulse responses as

∂Z(s)�t(θ
s� xt−1� εt)

∂θs
(4)

=
∑

K∈N�l∈NK+1:
s=l0<···<lK=t

{
K∏
k=1

∂zlk(Z
lk−1(θs�xlk−2� εlk−1)�xlk−1� εlk)

∂θlk−1

}
�

The derivative ∂zm/∂θl can be interpreted as the “direct impulse response”
of the signal in period m to the signal in period l < m. The “total” impulse
response ∂Z(s)�t/∂θs is then obtained by adding up the products of the direct
impulse responses over all possible causation chains from period s to period t.
Applying this observation to the canonical representation yields a simple for-
mula for the impulse responses and a possible way to verify that the kernels
satisfy Condition F-BIR.

EXAMPLE 3—Canonical Impulse Responses: Suppose that, for all t ≥ 1
and xt−1 ∈ Xt−1, the c.d.f. Ft(θt |θt−1�xt−1) is continuously differentiable in
(θt� θ

t−1), and let ft(·|θt−1�xt−1) denote the density of Ft(·|θt−1�xt−1). Then the
direct impulse responses in the canonical representation of Example 1 take the
form,

∂zm(θ
m−1�xm−1� εm)

∂θl
= −∂Fm(θm|θm−1�xm−1)/∂θl

fm(θm|θm−1�xm−1)

∣∣∣∣
θm=F−1

m (εm|θm−1�xm−1)

�

for (θm−1�xm−1� εm) ∈Θm−1 ×Xm−1 × (0�1) andm≥ l ≥ 0, where we have used
the implicit function theorem. Plugging this into equation (4) yields a formula

26We conjecture that this property uniquely defines the impulse response functions with λ|θs-
probability 1.
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for the impulse responses directly in terms of the kernels. For example, if the
agent’s type evolves according to a Markov process whose kernels are indepen-
dent of decisions, the formula simplifies to

I(s)�t
(
θt

) =
t∏
τ=s

(
−∂Fτ(θτ|θτ−1)/∂θτ−1

fτ(θτ|θτ−1)

)
�(5)

because then the only causation chain passes through all periods. Two-period
versions of this formula appear in Baron and Besanko (1984), Courty and Li
(2000), and Eső and Szentes (2007).

As for Condition F-BIR, because the canonical impulse responses are di-
rectly in terms of the kernels F , it is straightforward to back out conditions
that guarantee the existence of the bounding functions C(s) :E → R

∞, s ≥ 0.
For example, in the case of a Markov process, it is sufficient that there exists a
sequence y ∈Θδ such that for all t ≥ 0, (θt−1� θt) ∈Θt−1 ×Θt , and xt−1 ∈Xt−1,
we have | ∂Ft (θt |θt−1�x

t−1)/∂θt−1
ft (θt |θt−1�x

t−1)
| ≤ yt . The general case can be handled similarly.

REMARK 2: Baron and Besanko (1984) suggested interpreting I(0)�1(θ0� θ1)=
− ∂F1(θ1|θ0)/∂θ0

f1(θ1|θ0)
as a measure of “informativeness” of θ0 about θ1. We find the term

“impulse response” preferable. First, for linear processes, it matches the usage
in the time-series literature. Second, it is more precise. For example, in the
two-period case, if θ̃1 = θ̃0 + ε̃1 with ε̃1 normally distributed with mean zero,
then the impulse response is identical to 1 regardless of the variance of ε̃1. On
the other hand, θ0 is more informative about θ1 (in the sense of Blackwell) the
smaller the variance of ε̃1.

3.2. Payment Construction and Equivalence

Similarly to static settings, for any allocation rule (and belief system), it is
possible to use the envelope formula to construct transfers that satisfy first-
order conditions at all truthful histories: Fix an allocation rule χ and a belief
system Γ ∈ Γ (χ). For all i= 1� � � � � n, s ≥ 0, and θ ∈Θ, let

Dχ�Γ
is

(
θs−1� θis

)
(6)

≡ E
λi[χ�Γ ]|θs−1�θis

[ ∞∑
t=s
Ii�(s)�t

(
θ̃ti �χ

t−1
i (θ̃)

)∂Ui(θ̃�χ(θ̃))

∂θit

]
� and

Qχ�Γ
is

(
θs−1� θis

) ≡
∫ θis

θ′
is

Dχ�Γ
is

(
θs−1� q

)
dq�
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where θ′
i ∈Θiδ is some arbitrary fixed type sequence. Define the transfer rule

ψ by setting, for all i= 1� � � � � n, t ≥ 0, and θt ∈Θt ,

ψit
(
θt

) = δ−tQχ�Γ
it

(
θt−1� θit

) − δ−t
E
λi[χ�Γ ]|θt−1�θit

[
Qχ�Γ
i�t+1

(
θ̃t� θ̃i�t+1

)]
(7)

−E
λi[χ�Γ ]|θt−1�θit

[
uit

(
θ̃t�χt

(
θ̃t

))]
�

Recall that by Theorem 1, if 〈χ�ψ〉 is PBIC, then agent i’s expected equilibrium
payoff in period s satisfies ∂V 〈χ�ψ〉�Γ

is (θs−1� θis)/∂θis =Dχ�Γ
is (θ

s−1� θis). Hence, the
transfer in (7) can be interpreted as agent i’s information rent (over type θ′

i) as
perceived in period t, net of the rent he expects from the next period onward
and net of the expected flow utility. We show below that these transfers satisfy
ICFOC. To address their uniqueness, we introduce the following condition.

DEFINITION 4—No Leakage: The allocation rule χ leaks no information to
agent i if for all t ≥ 0 and θt−1

i � θ̂t−1
i ∈Θt−1

i , the distribution Fit(θt−1
i �χt−1

i (θ̂t−1
i �

θt−1
−i )) does not depend on θt−1

−i (and, hence, can be written as F̂it(θt−1
i � θ̂t−1

i )).

This condition means that observing θit never gives agent i any information
about the other agents’ types. Clearly, all allocation rules satisfy it when agent
i’s type evolves independently from allocations or, trivially, in a single-agent
setting. We then have our second main result.27

THEOREM 2: Suppose the environment is regular. Then the following state-
ments are true.

(i) Given an allocation rule χ and a belief system Γ ∈ Γ (χ), let ψ be the
transfer rule defined by (7). Then the choice rule 〈χ�ψ〉 satisfies ICFOC, and, for
all i= 1� � � � � n, s ≥ 0, θs−1 ∈Θs−1, and θis ∈Θis, Eλi[χ�Γ ]|θs−1�θis [‖ψi(θ̃)‖]<∞.

(ii) Let χ be an allocation rule that leaks no information to agent i, and let ψ
and ψ̄ be transfer rules such that the choice rules 〈χ�ψ〉 and 〈χ� ψ̄〉 are PBIC.
Then there exists a constant Ki such that for λ[χ]-almost every θ∞

i ∈Θ∞
i ,

E
λi[χ]|θ∞

i

[ ∞∑
t=0

δtψit(θ
t
i� θ̃

t
−i)

]
= E

λi[χ]|θ∞
i

[ ∞∑
t=0

δtψ̄it(θ
t
i� θ̃

t
−i)

]
+Ki�

REMARK 3: The flow payments ψit(θt) defined by (7) are measurable with
respect to (θti�χ

t
i(θ

t)). Thus, they do not reveal to agent i any information
beyond that contained in the allocations xi. Hence, they can be disclosed to
the agent without affecting his beliefs or incentives.

27The notation λi[χ]|θ∞
i in the proposition denotes the unique measure over the other agents’

types Θ−i that is obtained from the kernels F and the allocation χ by fixing agent i’s reports at
θ̂∞
i = θ∞

i .
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As noted after Theorem 1, ICFOCi�0 immediately pins down, up to a con-
stant, the expected net present value of payments E

λi[χ]|θi0[∑∞
t=0 δ

tψit(θ̃
t)] for

each initial type θi0 of each agent i in any PBIC mechanism that implements
the allocation rule χ. This extends the celebrated revenue equivalence the-
orem of Myerson (1981) to dynamic environments. Part (ii) of Theorem 2
strengthens the result further to a form of ex post equivalence. The result is
particularly sharp when there is just one agent. Then the no-leakage condition
is vacuously satisfied and the net present value of transfers that implement a
given allocation rule χ is pinned down up to a single constant with probabil-
ity 1; that is, if 〈χ�ψ〉 and 〈χ� ψ̄〉 are PBIC, then there exists K ∈ R such that∑∞

t=0 δ
tψt(θ

t)= ∑∞
t=0 δ

tψ̄t(θ
t)+K for λ[χ]-almost every θ.

The ex post equivalence of payments is useful for solving mechanism design
problems in which the principal cares not just about the expected net present
value of payments, but also about how the payments vary with the state θ or
over time. For example, this includes settings where ψt(θt) is interpreted as
the “utility payment” to the agent in period t, whose monetary cost to the prin-
cipal is γ(ψt(θt)) for some function γ, as in models with a risk-averse agent.
In such models, knowing the net present value of the “utility payments” re-
quired to implement a given allocation rule allows computation of the cost-
minimizing distribution of monetary payments over time (see, for example,
Farhi and Werning (2013) or Garrett and Pavan (2013)).

3.3. A Characterization for Markov Environments

To provide necessary and sufficient conditions for PBE implementability, we
focus on Markov environments, defined formally as follows.

DEFINITION 5—Markov Environment: The environment is Markov if, for
all i= 1� � � � � n, the following conditions hold.

(i) Agent i’s utility function Ui takes the form Ui(θ�x)= ∑∞
t=0 δ

tuit(θt� x
t).

(ii) For all t ≥ 1 and xt−1
i ∈Xt−1

i , the distribution Fit(θt−1
i � xt−1

i ) depends on
θt−1
i only through θi�t−1 (and is then denoted by Fit(θit−1�x

t−1
i )), and there ex-

ist constants φi and (Eit)∞t=0, with δφi < 1 and ‖Ei‖ < ∞, such that for all
(θit� x

t
i) ∈Θit ×Xt

i , E
Fi�t+1(θit �x

t
i )[|θ̃t+1|] ≤φi|θit | +Ei�t+1.

This definition implies that each agent i’s type process is a Markov deci-
sion process, and that his vNM preferences over future lotteries depend on his
type history θti only through θit (but can depend on past decisions xt−1). The
strengthening of Condition F-BE embedded in part (ii) of the definition allows
us to establish an appropriate version of the one-stage-deviation principle for
the model. Note that every Markov process satisfies the bounds if the sets Θit

are bounded.
The key simplification afforded by the Markov assumption is that, in a

Markov environment, an agent’s reporting incentives in any period t depend
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only on his current true type and his past reports, but not on his past true types.
In particular, if it is optimal for the agent to report truthfully when past reports
have been truthful (as in an on-path truthful PBE), then it is also optimal for
him to report truthfully even if he has lied in the past. This implies that we can
restrict attention to PBE in strongly truthful strategies, that is, in strategies that
report truthfully at all histories.

We say that the allocation rule χ ∈ X is PBE-implementable if there exists a
transfer rule ψ such that the direct mechanism 〈χ�ψ〉 has an on-path truthful
PBE (i.e., it is PBIC). We say that χ is strongly PBE-implementable if there
exists a transfer rule ψ such that the direct mechanism 〈χ�ψ〉 has a strongly
truthful PBE. Given an allocation rule χ, for all i = 1� � � � � n, t ≥ 0, and θ̂it ∈
Θit , we let χ ◦ θ̂it denote the allocation rule obtained from χ by replacing θit
with θ̂it (that is, (χ◦ θ̂it)(θ)= χ(θ̂it� θi�−t � θ−i) for all θ ∈Θ). Finally, recall that,
by Theorem 1, the functionsDχ�Γ

it (θ
t−1� θit) in (6) are the derivative of agent i’s

expected equilibrium payoff with respect to his current type at any truthful
period-t history (θti� θ

t−1
i �χt−1

i (θt−1)) in a PBIC choice rule with allocation rule
χ and belief system Γ . We then have our third main result.

THEOREM 3: Suppose the environment is regular and Markov. An alloca-
tion rule χ ∈ X is PBE-implementable if and only if there exists a belief system
Γ ∈ Γ (χ) such that for all i = 1� � � � � n, t ≥ 0, θit� θ̂it ∈Θit , and θt−1 ∈Θt−1, the
following integral monotonicity condition holds:

∫ θit

θ̂it

[
Dχ�Γ
it

(
θt−1� r

) −Dχ◦θ̂it �Γ
it

(
θt−1� r

)]
dr ≥ 0�(8)

Furthermore, when condition (8) holds, χ is strongly PBE-implementable with
payments given by (7).

The static version of Theorem 3 has appeared in the literature on imple-
mentability (see Rochet (1987) or Carbajal and Ely (2013) and the references
therein). The key step to prove that the result also holds in the dynamic version
is to show that the agent’s problem of choosing optimally his current report is
well behaved. Then we can apply Lemma 1 below to obtain Theorem 3.

LEMMA 1: Consider a function Φ : (¯θ� θ̄)
2 → R. Suppose that (a) for all θ̂ ∈

(¯θ� θ̄),Φ(θ� θ̂) is a Lipschitz continuous function of θ, and (b) Φ̄(θ)≡Φ(θ�θ) is
a Lipschitz continuous function of θ. Then Φ̄(θ)≥Φ(θ� θ̂) for all (θ� θ̂) ∈ (¯θ� θ̄)

2

if and only if, for all (θ� θ̂) ∈ (¯θ� θ̄)
2,

∫ θ

θ̂

[
Φ̄′(q)− ∂Φ(q� θ̂)

∂θ

]
dq≥ 0�(9)
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PROOF: For all θ� θ̂ ∈ (¯θ� θ̄), let g(θ� θ̂)≡ Φ̄(θ)−Φ(θ� θ̂). For any fixed θ̂ ∈
(¯θ� θ̄), g(θ� θ̂) is Lipschitz continuous in θ by (a) and (b). Hence, it is absolutely
continuous and

g(θ� θ̂)=
∫ θ

θ̂

∂g(q� θ̂)

∂θ
dq=

∫ θ

θ̂

[
Φ̄′(q)− ∂Φ(q� θ̂)

∂θ

]
dq�

Therefore, for all θ ∈ (¯θ� θ̄), Φ(θ� θ̂) is maximized by setting θ̂= θ if and only
if (9) holds. Q.E.D.

In a static model, the necessity of the integral monotonicity condition (8)
readily follows from Theorem 1 and Lemma 1: There, for any fixed message
θ̂i, agent i’s expected payoff can simply be assumed to be (equi-)Lipschitz con-
tinuous and differentiable in the true type θi. By Theorem 1, this implies Lip-
schitz continuity of his equilibrium payoff in θi, and the necessity of integral
monotonicity follows by Lemma 1.

In contrast, in the dynamic model, fixing agent i’s period-t message θ̂it , the
Lipschitz continuity of his expected payoff in the current type θit (or the for-
mula for its derivative) cannot be assumed but must be derived from the agent’s
future optimizing behavior (see the counterexample in footnote 23). In partic-
ular, we show that in a Markov environment, the fact that the choice rule 〈χ�ψ〉
implementing χ satisfies ICFOC (by Theorem 1) implies that the agent’s ex-
pected payoff under a one-step deviation from truthtelling satisfies a condition
analogous to ICFOC with respect to the modified choice rule 〈χ ◦ θ̂it�ψ ◦ θ̂it〉
induced by the lie. This step is nontrivial and uses the fact that, in a Markov
environment, truthtelling is an optimal continuation strategy following the lie.
Since the agent’s expected equilibrium payoff at any truthful history is Lips-
chitz continuous in the current type by Theorem 1, the necessity of integral
monotonicity then follows by Lemma 1.

The other key difference pertains to the sufficiency part of the result: In
a static environment, the payments constructed using the envelope formula
ICFOC guarantee that the agent’s payoff under truthtelling is Lipschitz contin-
uous and satisfies ICFOC by construction. Incentive compatibility then follows
from integral monotonicity by Lemma 1. In contrast, in the dynamic model,
the payments defined by (7) guarantee only that ICFOC is satisfied at truthful
histories (by Theorem 2(i)). However, in a Markov environment, it is irrele-
vant for the agent’s continuation payoff whether he has been truthful in the
past or not and, hence, ICFOC extends to all histories. Thus, by Lemma 1,
integral monotonicity implies that one-stage deviations from truthtelling are
unprofitable. Establishing a one-stage-deviation principle for the environment
then concludes the proof.28

28The usual version of the one-stage-deviation principle (for example, Fudenberg and Tirole
(1991, p. 110)) is not applicable, since payoffs are a priori not continuous at infinity because flow
payments need not be bounded.
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REMARK 4: Theorem 3 can be extended to characterize strong PBE imple-
mentability in non-Markov environments. However, for such environments,
the restriction to strongly truthful PBE is, in general, with loss. In the Sup-
plemental Material, we show that this approach nevertheless allows us to ver-
ify the implementability of the optimal allocation rule in some specific non-
Markov environments.

3.3.1. Verifying Integral Monotonicity

The integral monotonicity condition (8) is, in general, not an easy object
to work with. This is true even in static models, except for the special class
of environments where both the type and the allocation are unidimensional
and the agent’s payoff is supermodular, in which case integral monotonicity is
equivalent to the monotonicity of the allocation rule. Our dynamic problem
essentially never falls in this class: Even if the agent’s current type is unidimen-
sional, his report, in general, affects the allocation both in the current period
and in all future periods, which renders the allocation space multidimensional.
For this reason, we provide monotonicity conditions that are stronger than in-
tegral monotonicity but easier to verify.29 Some of these sufficient conditions
apply only to environments that satisfy additional restrictions.

CONDITION F-AUT—Process Autonomous: For all i = 1� � � � � n, t ≥ 1, and
θt−1
i ∈Θt−1

i , the distribution Fit(θt−1
i � xt−1

i ) does not depend on xt−1
i .

CONDITION F-FOSD—Process First-Order Stochastic Dominance: For all
i = 1� � � � � n, t ≥ 1, θit ∈Θit , and xt−1

i ∈Xt−1
i , Fit(θit |θt−1

i � xt−1
i ) is nonincreasing

in θt−1
i .

COROLLARY 1—Monotonicity: Suppose the environment is regular and
Markov. Then any of the following conditions (listed in decreasing order of gener-
ality) imply integral monotonicity (8).

(i) Single crossing: For all i= 1� � � � � n, t ≥ 0, θt−1 ∈Θt−1, θ̂it ∈Θit , and a.e.
θit ∈Θit , [

Dχ�Γ
it

(
θt−1� θit

) −Dχ◦θ̂it �Γ
it

(
θt−1� θit

)] · (θit − θ̂it)≥ 0�

(ii) Average monotonicity: For all i= 1� � � � � n, t ≥ 0, and (θt−1� θit) ∈Θt−1 ×
Θit , D

χ◦θ̂it �Γ
it (θt−1� θit) is nondecreasing in θ̂it .

29For similar sufficient conditions for static models with a unidimensional type and multidi-
mensional allocation space, see, for example, Matthews and Moore (1987), whose condition is
analogous to our strong monotonicity, and Garcia (2005), whose condition is analogous to our ex
post monotonicity.
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(iii) Ex post monotonicity: Condition F-AUT holds, and for all i = 1� � � � � n,
t ≥ 0, and θ ∈Θ,

∞∑
τ=t
Ii�(t)�τ

(
θτi

)∂Ui(θ�χ(θ̂it� θi�−t � θ−i))
∂θiτ

(10)

is nondecreasing in θ̂it .
(iv) Strong monotonicity: Conditions F-AUT and F-FOSD hold, and for all

i = 1� � � � � n, t ≥ 0, and θ−i ∈Θ−i, Xit ⊆ R
m, Ui(θ�x) has increasing differences

in (θi� xi) and is independent of x−i, and χi(θ) is nondecreasing in θi.

To see the relationship between the conditions, observe that the most strin-
gent of the four—strong monotonicity—amounts to the requirement that each
individual term in the sum in (10) be nondecreasing in θ̂it (note that under
F-FOSD, Ii�(t)�τ ≥ 0). Ex post monotonicity weakens this by requiring only that
the sum be nondecreasing, which permits us to dispense with F-FOSD as well
as with the assumption that Ui has increasing differences. By recalling the def-
inition of the D functions in (6), we see that average monotonicity in turn
weakens ex post monotonicity by averaging over states, which also permits us
to dispense with F-AUT. Finally, single crossing relaxes average monotonicity
by requiring that the expectation of the sum in (10) changes sign only once at
θ̂it = θit , as opposed to being monotone in θ̂it . But single crossing clearly im-
plies integral monotonicity, proving the corollary. The following example is an
illustration.

EXAMPLE 4: Consider a regular Markov environment with one agent whose
allocation utility takes the form U(θ�x)= ∑∞

t=0 δ
tθtxt , where for all t ≥ 0, the

period-t consumption xt is an element of some unidimensional set Xt ⊆ R.
Suppose that conditions F-AUT and F-FOSD hold. By (6),

Dχ◦θ̂t
t

(
θt−1� θt

) = E
λ|θt−1�θt

[ ∞∑
τ=t
δτI(t)�τ

(
θ̃τ

)
χτ(θ̂t� θ̃−t)

]
�

Thus, average monotonicity requires that increasing the current message θ̂t in-
creases the agent’s average discounted consumption, where period-τ consump-
tion is discounted using the discount factor δ as well as the impulse response
I(t)�τ(θ̃

τ) of period-τ signal to period-t signal. Ex post monotonicity requires
that the discounted consumption

∑∞
t=τ δ

τI(t)�τ(θ
τ)χt(θ̂t� θ−t) be increasing in

θ̂t along every path θ and strong monotonicity requires that increasing θ̂t in-
creases consumption χτ(θ̂t� θ−t) in every period τ ≥ t irrespective of the agent’s
signals in the other periods.
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Courty and Li (2000) study a two-period version of Example 4 with alloca-
tion x1 ∈X1 = [0�1] only in the second period (i.e., Xt = {0} for all t 
= 1) and
provide sufficient conditions for implementability in two cases. The first (their
Lemma 3.3) assumes F-FOSD and corresponds to our strong monotonicity.
This case is extended to many agents by Eső and Szentes (2007).30 The sec-
ond case assumes that varying the initial signal θ0 induces a mean-preserving
spread by rotating F1(·|θ0) about a single point z. Courty and Li show (as their
Lemma 3.4) that it is then possible to implement any χ1 that is nonincreasing in
θ0, nondecreasing in θ1, and satisfies “no underproduction”: χ1(θ0� θ1)= 1 for
all θ1 ≥ z.31 This case is covered by our ex post monotonicity, which in period
0 requires that I(0)�1(θ0� θ1)χ1(θ̂0� θ1) be nondecreasing in θ̂0. To see this, note
that by the canonical impulse response formula (5), we have I(0)�1(θ0� θ1) ≤ 0
(resp., ≥ 0) if θ1 ≤ z (resp., ≥ z). Thus I(0)�1(θ0� θ1)χ1(θ̂0� θ1) is weakly increas-
ing in θ̂0 if θ1 ≤ z, because χ1 is nonincreasing in θ0, whereas it is constant in
θ̂0 if θ1 ≥ z, because χ1 satisfies no underproduction.

The main application of Corollary 1 is the design of optimal dynamic mech-
anisms, which we turn to in the next section. There, a candidate allocation rule
is obtained by solving a suitable relaxed problem and then Corollary 1 is used
to verify that the allocation rule is indeed implementable. The results in the
literature are typically based on strong monotonicity (for example, Battaglini
(2005) or Eső and Szentes (2007)) with the exception of the mean-preserving-
spread case of Courty and Li (2000) discussed above. However, there are inter-
esting applications where the optimal allocation rule fails to be strongly mono-
tone, or where the kernels naturally depend on past decisions or fail first-order
stochastic dominance. For instance, the optimal allocation rule in Example 5
below fails strong monotonicity but satisfies ex post monotonicity, whereas the
optimal allocation rule in the bandit auctions in Section 5 fails ex post mono-
tonicity but satisfies average monotonicity.

REMARK 5: Suppose the environment is regular and Markov. Then for any
allocation rule χ that satisfies ex post monotonicity, there exists a transfer rule
ψ such that the complete information version of the model (where agents ob-
serve each others’ types) has a subgame perfect Nash equilibrium in strongly
truthful strategies. In other words, ex post monotone allocation rules can be
implemented in a periodic ex post equilibrium in the sense of Athey and Segal
(2013) and Bergemann and Välimäki (2010). This implies that any such rule

30Eső and Szentes derived the result in terms of a state representation. Translated to the prim-
itive types θi0 and θi1 (or vi and Vi in their notation), their Corollary 1 shows that the allocation
rule they are interested in implementing is strongly monotone. Note that Eső and Szentes’s dis-
play (22) is a special case of our integral monotonicity condition, but is stated in terms of a state
representation. However, they used it only in conjunction with strong monotonicity.

31Courty and Li also considered the analogous case of “no overproduction,” to which similar
comments apply.
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can be implemented in a strongly truthful PBE of a direct mechanism where
all reports, allocations, and payments are public. The transfers that guarantee
this can be constructed as in (7) with the measures λi[Γ ]|θt−1� θit replaced by
the measure λ|θt .

4. OPTIMAL MECHANISMS

We now show how Theorems 1–3 can be used in the design of optimal
dynamic mechanisms in Markov environments.32 To this end, we introduce
a principal (labeled as “agent 0”) whose payoff takes the quasilinear form
U0(θ�x) − ∑n

i=1

∑∞
t=0 δ

tpit for some function U0 :Θ ×X → R. The principal
seeks to design a PBIC mechanism to maximize his expected payoff. As is stan-
dard in the literature, we assume that the principal makes a take-it-or-leave-it
offer to the agents in period zero, after each agent i has observed his initial
type θi0. Each agent can either accept the mechanism, or reject it to obtain
his reservation payoff, which we normalize to 0 for all agents and types.33 The
principal’s mechanism design problem is thus to maximize his ex ante expected
payoff

E
λ[χ]

[
U0

(
θ̃�χ(θ̃)

) −
n∑
i=1

∞∑
t=0

δtψit(θ̃
t)

]

= E
λ[χ]

[
n∑
i=0

Ui

(
θ̃�χ(θ̃)

) −
n∑
i=1

V 〈χ�ψ〉
i0 (θ̃i0)

]

by choosing a feasible choice rule 〈χ�ψ〉 that is PBIC and satisfies

V 〈χ�ψ〉
i0 (θi0)≥ 0 for all i= 1� � � � � n and θi0 ∈Θi0�(11)

Any solution to this problem is referred to as an optimal mechanism.
We restrict attention to regular environments throughout this section, and

assume that the initial distribution Fi0 of each agent i is absolutely continuous
with density fi0(θi0) > 0 for almost every θi0 ∈Θi0, and, for simplicity, that the

32For other possible applications, see, for example, Skrzypacz and Toikka (2013), who con-
sidered the feasibility of efficient dynamic contracting in repeated trade and in other dynamic
collective choice problems.

33If an agent can accept the mechanism, but can then quit at a later stage, participation con-
straints have to be introduced in all periods t ≥ 0. However, in our quasilinear environment with
unlimited transfers, the principal can ask the agent to post a sufficiently large bond upon accep-
tance, to be repaid later, so as to make it unprofitable to quit and forfeit the bond at any time
during the mechanism. (With an infinite horizon, annuities can be used in place of bonds.) For this
reason, we ignore participation constraints in periods t > 0. Note that in non-quasilinear settings
where agents have a consumption-smoothing motive, bonding is costly, and, hence, participation
constraints may bind in many periods (see, for example, Hendel and Lizzeri (2003)).
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set of initial types Θi0 is bounded from below (i.e., ¯θi0 >−∞). By Theorem 1,
we can use ICFOCi�0, as in static settings, to rewrite the principal’s payoff as

E
λ[χ]

[
n∑
i=0

Ui

(
θ̃�χ(θ̃)

)

−
n∑
i=1

1

ηi0(θ̃i0)

∞∑
t=0

Ii�(0)�t
(
θ̃ti�χ

t−1
i (θ̃)

)∂Ui(θ̃�χ(θ̃))

∂θit

]

−
n∑
i=1

V 〈χ�ψ〉
i0 (¯θi0)�

where ηi0(θi0)≡ fi0(θi1)/(1 − Fi0(θi1)) is the hazard rate of agent i’s period-0
type.34 The first term above is the expected (dynamic) virtual surplus, which is
only a function of the allocation rule χ.

The principal’s problem is, in general, analytically intractable. Hence, we
adopt the “first-order approach” which is typical in the literature. In particular,
we consider a relaxed problem where PBIC is relaxed to the requirement that
〈χ�ψ〉 satisfy ICFOCi�0 for all i and where a participation constraint is imposed
only on each agent’s lowest initial type, that is, (11) is replaced with

V 〈χ�ψ〉
i0 (¯θi0)≥ 0 for all i= 1� � � � � n�(12)

Since subtracting a constant from agent i’s period-0 transfer leaves ICFOCi�0

unaffected but increases the principal’s payoff, the constraints (12) must bind
at a solution. It follows that an allocation rule χ∗ is part of a solution to our
relaxed problem if and only if χ∗ maximizes

E
λ[χ]

[
n∑
i=0

Ui

(
θ̃�χ(θ̃)

)
(13)

−
n∑
i=1

1

ηi0(θ̃i0)

∞∑
t=0

Ii�(0)�t
(
θ̃ti�χ

t−1
i (θ̃)

)∂Ui(θ̃�χ(θ̃))

∂θit

]
�

This problem is, in general, a dynamic programming problem and, in contrast
to static settings, it cannot be solved pointwise in general. Note that as the

34Recall that the proof of Theorem 1 uses only deviations in which, in terms of a state rep-
resentation, each agent i reports truthfully future shocks εit , t > 0. Hence, as noted by Eső and
Szentes (2007, 2013), this expression gives the principal’s payoff also in a hypothetical environ-
ment where the shocks are observable to the principal. In other words, the cost to the principal
of implementing a given rule χ is the same irrespective of the observability of the shocks. This
observation underlies the “irrelevance result” of Eső and Szentes (2013). However, the set of
PBIC choice rules is strictly larger when the shocks are observable, so the principal’s problems in
the two settings are not equivalent in general.
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definition of the relaxed problem uses ICFOCi�0, Theorem 1 plays a key role in
identifying the candidate allocation rule χ∗.

If the environment is Markov, then Theorem 3 can be used to verify whether
the candidate allocation rule χ∗ is PBE-implementable (possibly by checking
one of the conditions in Corollary 1). In case the answer is affirmative, Theo-
rem 2 provides a formula for constructing a transfer rule ψ such that 〈χ∗�ψ〉
is PBIC. We can then subtract the constant V 〈χ∗�ψ〉

i0 (¯θi0) from each agent i’s ini-
tial transfer to get a PBIC choice rule 〈χ∗�ψ∗〉 such that V 〈χ∗�ψ∗〉

i0 (¯θi0) = 0 for
all i = 1� � � � � n. Thus it remains to verify that all the other participation con-
straints in (11) are satisfied. As part of the next result, we show that F-FOSD
is a sufficient condition for this provided that each agent’s utility is increasing
in his own type sequence (endowed with the pointwise order).

COROLLARY 2—Optimal Mechanisms: Suppose the environment is regular
and Markov. Suppose in addition that Condition F-FOSD holds and, for all
i = 1� � � � � n and (θ�x) ∈ Θ×X , Ui(θ�x) is nondecreasing in θi. Let χ∗ be an
allocation rule that maximizes the expected virtual surplus (13) and suppose that,
with some belief system Γ ∈ Γ (χ∗), it satisfies the integral monotonicity condition
(8) in all periods. Then the following statements hold.

(i) There exists a transfer rule ψ∗ such that (a) the direct mechanism 〈χ�ψ∗〉
has a strongly truthful PBE with belief system Γ and where, for all i= 1� � � � � n, the
flow payments ψ∗

it , t ≥ 0, can be disclosed to agent i; (b) the period-0 participation
constraints (11) are satisfied; and (c) the period-0 participation constraints of the
lowest initial types (12) hold with equality.

(ii) The above choice rule 〈χ∗�ψ∗〉 maximizes the principal’s expected payoff
across all PBIC choice rules that satisfy participation constraints (11).

(iii) If 〈χ�ψ〉 is optimal for the principal among all PBIC choice rules that
satisfy participation constraints (11), then χ maximizes the expected virtual sur-
plus (13).

(iv) The principal’s expected payoff cannot be increased by using randomized
mechanisms.

REMARK 6: Statements (ii)–(iv) remain true if PBIC is weakened to the re-
quirement that there exists a Bayesian–Nash equilibrium in on-path truthful
strategies. This is because the derivation of the expected virtual surplus (13)
uses only ICFOCi�0, which by Remark 1 holds under this weaker notion of in-
centive compatibility.

PROOF OF COROLLARY 2: Parts (i)(a) and (i)(c) follow by the arguments
preceding the corollary. For (i)(b), note that, under F-FOSD, impulse re-
sponses are nonnegative almost everywhere and, hence, each V 〈χ∗�ψ∗〉

i0 (θi0) is
nondecreasing in θi0 by the envelope formula (1) given that Ui is nondecreas-
ing in θi.

Parts (ii) and (iii) follow by the arguments preceding the corollary.
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Finally, for part (iv) note that a randomized mechanism is equivalent to a
mechanism that conditions on the random types of a fictitious agent. Since the
expected virtual surplus in this augmented setting is independent of the signals
of the fictitious agent and still takes the form (13), it is still maximized by the
nonrandomized allocation rule χ∗. Thus, applying parts (i) and (ii) to the aug-
mented setting implies that the deterministic choice rule 〈χ∗�ψ∗〉 maximizes
the principal’s expected payoff. (A similar point was made by Strausz (2006)
for static mechanisms.) Q.E.D.

Note that F-FOSD and the assumption that the agents’ utilities be nonde-
creasing in own type are only used to establish that each agent i’s equilibrium
payoff V 〈χ∗�ψ∗〉

i0 (θi0) is minimized at ¯θi0. If this conclusion can be arrived at by
some other means (for example, by using (1) to solve for the function V 〈χ∗�ψ∗〉

i0 ),
these assumptions can be dispensed with.

Corollary 2 provides a guess-and-verify approach analogous to that typically
followed in static settings. We illustrate its usefulness below by using it to dis-
cuss optimal distortions in dynamic contracts and to find optimal “bandit auc-
tions.” However, as in static settings, the conditions under which the relaxed
problem has an implementable solution are not generic. As pointed out by
Battaglini and Lamba (2012), a particularly problematic case obtains when the
type of an agent remains constant with high probability, but nevertheless has
a small probability of being renewed. In terms of our analysis, the problem is
that then the impulse response becomes highly nonmonotone in the current
type, which in turn may result in the allocation being so nonmonotone in the
current type that integral monotonicity is violated.35

It is, of course, possible to reverse-engineer conditions that guarantee that
the relaxed problem has an implementable solution, but given the complexity
of the problem, such conditions tend to be grossly sufficient. Nevertheless, for
completeness, we provide sufficient conditions for an allocation rule that max-
imizes expected virtual surplus to satisfy strong monotonicity of Corollary 1.

CONDITION U-COMP—Utility Complementarity: The set X is a lattice,
and, for all i = 0� � � � � n, t ≥ 0, and θ ∈ Θ, Ui(θ�x) is supermodular in x and
−∂Ui(θ�x)/∂θit is supermodular in x.36

35For a concrete example, consider a two-period single-agent environment with θ̃0 distributed
uniformly on [0�1]. Suppose that θ̃1 = θ̃0 with probability q and that with the complementary
probability, θ̃1 is drawn uniformly from [0�1] independently of θ̃0. The period-0 impulse response
is then I(0)�1(θ0� θ1) = 1{θ0=θ1}. By inspection of the expected virtual surplus (13), the period-1
allocation is thus distorted only if θ1 = θ0.

36The assumption that X is a lattice is not innocuous when n > 1: For example, it holds when
each xt describes the provision of a one-dimensional public good, but it need not hold if xt de-
scribes the allocation of a private good.
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This condition holds weakly in the special case where Xt is a subset of R in
every period t and the payoffs Ui(θ�x) are additively separable in xt . More
generally, U-COMP allows for strict complementarity across time, for exam-
ple, as in habit-formation models where higher consumption today increases
the marginal utility of consumption tomorrow. On the other hand, U-COMP
is not satisfied when allocating private goods in limited supply as in auctions.

CONDITION U-DSEP—Utility Decision-Separable: We have X = ∏∞
t=0Xt

and, for all i= 0� � � � � n, and (θ�x) ∈Θ×X , Ui(θ�x)= ∑∞
t=0 δ

tuit(θ
t� xt).

PROPOSITION 1—Primitive Conditions for Strong Monotonicity: Suppose
the environment is regular and Markov, Conditions F-AUT and F-FOSD hold,
and for all i= 0� � � � � n, and t ≥ 0, Xit is a subset of a Euclidean space. Suppose
that either of the following conditions is satisfied.

(i) Condition U-COMP holds and for all i= 1� � � � � n, agent i’s virtual utility

Ui(θ�x)− 1
ηi0(θi0)

∞∑
t=0

δtIi�(0)�t
(
θti

)∂Ui(θ�x)

∂θit

has increasing differences in (θ�x), and the same is true of the principal’s utility
U0(θ�x).

(ii) Condition U-DSEP holds, and for all i= 1� � � � � n and t ≥ 0, Xit ⊆ R and
there exists a nondecreasing function ϕit :Θt

i → R
m, with m ≤ t, such that agent

i’s virtual flow utility

uit(θt� xt)− 1
ηi0(θi0)

Ii�(0)�t
(
θti

)∂uit(θt� xt)
∂θit

depends only on ϕit(θ
t
i) and xit , and has strictly increasing differences in

(ϕit(θ
t
i)� xit), while the principal’s flow utility depends only on xt .

Then, if the problem of maximizing expected virtual surplus (13) has a solution,
it has a solution χ such that, for all i = 1� � � � � n and θ−i ∈ Θ−i, χi(θi� θ−i) is
nondecreasing in θi.

When F-AUT and U-DSEP hold (i.e., types evolve independently of deci-
sions and payoffs are separable in decisions), expected virtual surplus (13) can
be maximized pointwise, which explains why condition (ii) of Proposition 1
only involves flow payoffs. Special cases of this result appear in Courty and
Li (2000), who provide sufficient conditions for strong monotonicity by means
of parametric examples, and in Eső and Szentes (2007), whose Assumptions 1
and 2 imply that Ii�(0)�1(θi0� θi1) is nonincreasing in both θi0 and θi1, which to-
gether with their payoff functions imply condition (ii) (with ϕit = id). For a
novel setting that satisfies condition (ii), see Example 6 below.

By inspection of Proposition 1, guaranteeing strong monotonicity requires
single-crossing and third-derivative assumptions that are familiar from static
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models. The new assumptions that go beyond them concern the impulse re-
sponse functions. This is best illustrated by considering even stronger suffi-
cient conditions, which can be stated separately on utilities and processes. For
concreteness, suppose that U-DSEP holds and that Xt is one-dimensional (so
that either case in the proposition can be applied). Then, in the initial period
t = 0, it suffices to impose the static conditions: for each agent i, the alloca-
tion utility ui0(θ0�x0) and the partial −∂ui0(θ0�x0)/∂θi0 have increasing differ-
ences (ID) in allocation and types (the latter being a third-derivative condi-
tion on the utility function), and the hazard rate ηi0(θi0) is nondecreasing. In
periods t ≥ 1, in addition to imposing the static conditions to current utility
flows, it suffices to assume that the impulse response Iiτ(θτi ) be nondecreas-
ing in types. This implies that the term that captures the agent’s information
rent, − 1

ηi0(θi0)
Iit(θ

t
i) ∂uit(θ

t� xt)/∂θit , has ID in allocation and types. Heuristi-
cally, nondecreasing impulse responses lead to distortions being decreasing in
types, which helps to ensure monotonicity of the allocation.

REMARK 7: We discuss in the Supplemental Material how Corollary 2 and
Proposition 1 can be adapted to find optimal mechanisms in some non-Markov
environments. Note that the derivation of the expected virtual surplus (13)
above makes no reference to Markov environments and, hence, the differ-
ence is in verifying that the allocation rule that maximizes it is indeed imple-
mentable.

4.1. Distortions

A first-best allocation rule maximizes the expected surplus Eλ[χ][∑n

i=0Ui(θ̃�

χ(θ̃))] in our quasilinear environment. Similarly to the static setting, a profit-
maximizing principal introduces distortions to the allocations to reduce the
agents’ expected information rents. When the participation constraints of the
lowest initial types in (12) bind, the expected rent of agent i is given by

E
λ[χ]

[ ∞∑
t=0

1

ηi0(θ̃i0)
Ii�(0)�t

(
θ̃ti�χ

t−1
i (θ̃)

)∂Ui(θ̃�χ(θ̃))

∂θit

]
�

Thus the period-0 impulse response functions are an important determinant of
the rent and, by implication, of the distortions in optimal dynamic mechanisms.
Given the various forms these functions may take, little can be said about the
nature of these distortions in general. Indeed, we illustrate by means of a sim-
ple class of single-agent environments that the distortion in period t may be
a nonmonotone function of the agent’s types or, for a fixed type sequence, a
nonmonotone function of the time period t. Example 5 also illustrates the use
of ex post monotonicity to verify implementability.
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EXAMPLE 5—Nonlinear AR Process: Consider a buyer–seller relationship,
which lasts for T + 1 periods, with T ≤ ∞. The buyer’s payoff takes the form
U1(θ�x) = ∑T

t=0 δ
t(a + θt)xt , with a ∈ R++ and Xt = [0� x̄] for some x̄ � 0.

The seller’s payoff is given by U0(θ�x)= −∑T

t=0 δ
t x

2
t

2 . The buyer’s type evolves
according to the nonlinear AR process θt = φ(θt−1) + εt , where φ is an in-
creasing differentiable function, with φ(0)= 0, φ(1) < 1, and φ′ ≤ b for some
1 ≤ b < 1

δ
, and where the shocks εt are independent over time, with support

[0�1 −φ(1)]. By putting zt(θt−1� εt)= φ(θt−1)+ εt and using formula (4), we
find the period-0 impulse responses I(0)�t(θt)= ∏t−1

τ=0φ
′(θτ).

Since the type process is autonomous, and decisions are separable across
time (i.e., F-AUT and U-DSEP hold), the first-best allocation rule simply sets
xt = a+ θt for all t ≥ 0 and θt ∈Θt . Furthermore, we can maximize expected
virtual surplus (13) pointwise to find the allocation rule

χt
(
θt

) = max

{
0� a+ θt − 1

η0(θ0)

t−1∏
τ=0

φ′(θτ)

}

for all t ≥ 0 and θt ∈Θt�

We show in the Supplemental Material that if the hazard rate η0 is nondecreas-
ing, then χ is ex post monotone, and, thus, it is an optimal allocation rule by
Corollaries 1 and 2. Note that χ exhibits downward distortions since φ′ > 0.
Increasing the period-τ type θτ for 1 ≤ τ < t reduces distortions in period t if
φ is concave, but increases distortions if φ is convex. (Note that in the latter
case, χ is not strongly monotone, yet it is PBE-implementable.) When φ is nei-
ther concave nor convex, the effect is nonmonotone. Similarly, if φ′(θt−1) < 1,
then the distortion in period t is smaller than that in period t − 1, whereas if
φ′(θt−1) > 1, then the period-t distortion exceeds that in period t − 1.

Finally, note that the period-t allocation χt(θt) is, in general, a nontrivial
function of the buyer’s types in all periods 0� � � � � t. This is in contrast to the
special case of a linear function φ(θt) = γθt , γ > 0, considered by Besanko
(1985), where the impulse response is the time-varying scalar It = γt as in Ex-
ample 2, and where χt(θt) depends only on the initial type θ0 and the current
type θt .

The distortions in Example 5 are independent of the agent’s current report.
However, it is easy to construct examples where distortions are nonmonotone
also with respect to the current report.

EXAMPLE 6: Consider the environment of Example 5, but assume now that
T = 1 and that the buyer’s type evolves as follows. The initial type θ̃0 is dis-
tributed uniformly on Θ0 = [0�1], whereas θ̃1 is distributed on Θ1 = [0�1] ac-
cording to the c.d.f. F1(θ1|θ0) = θ1 − 2(θ0 − 1

2)θ1(1 − θ1) with linear density
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f1(θ1|θ0)= 1−2(θ0 − 1
2)(1−2θ1) strictly positive onΘ1 for all θ0. For θ0 = 1/2,

θ̃1 is distributed uniformly on [0�1]. For θ0 < (>) 1/2, the density slopes down-
ward (upward). Note that F satisfies F-FOSD. The canonical impulse response
formula (5) from Example 3 gives

I(0)�1(θ0� θ1)= 2θ1(1 − θ1)

1 − 2
(
θ0 − 1

2

)
(1 − 2θ1)

�

The allocation rule that solves the relaxed program is then given by

χ0(θ0)= max
{
0� a+ θ0 − (1 − θ0)

}
�

χ1

(
θ1

) = max

{
0� a+ θ1 − (1 − θ0)

2θ1(1 − θ1)

1 − 2
(
θ0 − 1

2

)
(1 − 2θ1)

}
�

Because χ is strongly monotone, it is clearly implementable. By inspec-
tion, the second-period allocation is efficient at the extremes (i.e., for θ1 ∈
{0�1}), whereas all interior types are distorted downward. Note that the no-
distortions-at-the-bottom result is nontrivial, since even the lowest type here
consumes a positive amount, so there would be room to distort downward.

In the Supplemental Material, we use monotone comparative statics to give
sufficient conditions for the allocation rule that maximizes expected virtual sur-
plus (13) to exhibit downward distortions as in the above examples. However,
upward distortions can naturally arise in applications. This was first shown by
Courty and Li (2000), who provided a two-period example where the distri-
bution of the agent’s second-period type is ordered by his initial signal in the
sense of a mean-preserving spread.

In consumption problems such as Example 5 and the one studied by Courty
and Li (2000), distortions can be understood purely in terms of the canonical
impulse response (see Example 3)

It
(
θt

) =
t∏
τ=1

(
−∂Fτ(θτ|θτ−1)/∂θτ−1

fτ(θτ|θτ−1)

)
�

If the kernels satisfy F-FOSD, then It(θt) is positive, leading to downward dis-
tortions as in Example 5. If F-FOSD fails, then It(θt) is negative at some θt ,
yielding upward distortions at that history as in Courty and Li (2000). Dynam-
ics can be seen similarly: As in Example 5, an increase in the impulse response
increases distortions compared to the previous period, whereas a decrease
leads to consumption being more efficient. In particular, if It(θt) → 0, then
consumption converges to the first best over time.
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5. BANDIT AUCTIONS

To illustrate our results, we consider the problem of a profit-maximizing
seller who must design a sequence of auctions to sell, in each period t ≥ 0,
an indivisible, nonstorable good to a set of n ≥ 1 bidders who update their
valuations upon consumption, that is, upon winning the auction. This setting
captures novel applications such as repeated sponsored search auctions, where
the advertisers privately learn about the profitability of clicks on their ads, or
repeated procurement with learning-by-doing. It provides a natural environ-
ment where the kernels depend on past allocations.

Let Xit = {0�1} for all i = 0� � � � � n and t ≥ 0, and define the set of feasible
allocation sequences by X = {x ∈ ∏∞

t=0

∏n

i=0Xit :
∑n

i=0 xit = 1 for all t ≥ 0}. The
seller’s payoff function is then given by U0(θ�x)= −∑∞

t=0 δ
t
∑N

i=1 xitcit , where
cit ∈R is the cost of allocating the object to bidder i (with c0t normalized to 0).
Each bidder i’s payoff function takes the form Ui(θ�x)= ∑∞

t=0 δ
tθitxit .

The type process of bidder i = 1� � � � � n is constructed as follows. Let Ri =
(Ri(·|k))k∈N be a sequence of absolutely continuous, strictly increasing c.d.f.’s
with mean bounded in absolute value uniformly in k. The first-period valuation
θi0 is drawn from Θi0, with ¯θi0 > −∞, according to an absolutely continuous,
strictly increasing c.d.f. Fi0. For all t > 0, θti ∈Θt

i , and xt−1
i ∈Xt−1

i , if xi�t−1 = 1,
then

Fit
(
θit |θi�t−1�x

t−1
i

) =Ri
(
θit − θi�t−1

∣∣∣ t−1∑
τ=0

xiτ

)
;

if, instead, xi�t−1 = 0, then

Fit
(
θit |θi�t−1�x

t−1
i

) =
{

0� if θit < θi�t−1,
1� if θit ≥ θi�t−1.

This formulation embodies the following key assumptions: (i) Bidders’ valua-
tions change only upon winning the auction (i.e., if xit = 0, then θi�t+1 = θit al-
most surely); (ii) the valuation processes are time homogenous (i.e., if bidder
i wins the object in period t, then the distribution of his period-t + 1 valuation
depends only on his period-t valuation and the total number of times he won
in the past).37

37This kind of structure arises, for example, in a Bayesian learning model with Gaussian sig-
nals. That is, suppose each bidder i has a constant but unknown true valuation vi for the object
and starts with a prior belief vi ∼N(θi0� τi) where precision τi is common knowledge. Bidder i’s
initial type θi0 is the mean of the prior distribution, which the seller and the other bidders believe
to be distributed according to some distribution Fi0 bounded from below. In each period in which
the bidder wins the auction, he receives a conditionally i.i.d. private signal si ∼N(vi�σi), and up-
dates his expectation of vi using standard projection formulae. Take θit to be bidder i’s posterior
expectation in period t. Then, Ri(·|k) is the c.d.f. for the change in the posterior expectation due
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We start by verifying that the bandit auction environment defined above is
regular and Markov. Each bidder i’s payoff function Ui clearly satisfies Con-
ditions U-D, U-ELC, and U-SPR since each Xit is bounded. As for bidder
i’s type process, it satisfies the bounds in part (ii) of the Markov definition
(and thus F-BE) by the uniform bound on the means of (Ri(·|k))k∈N. To ver-
ify F-BIR, we use the canonical representation of the process. That is, for all
t > 0, εit ∈ (0�1), and (θi�t−1�x

t−1
i ) ∈Θi�t−1 ×Xt−1

i , let

zit
(
θt−1
i � xt−1

i � εit
) = F−1

it

(
εit |θi�t−1�x

t−1
i

)
= θi�t−1 + 1{xi�t−1=1}R−1

i

(
εit

∣∣∣ t−1∑
τ=0

xiτ

)
�

The Z functions then take the form

Zi�(s)�t
(
θsi � x

t−1
i � εti

) = θis +
t∑

m=s+1

1{xi�m−1=1}R−1
i

(
εim

∣∣∣ m−1∑
τ=0

xiτ

)
(14)

and, hence, ∂Zi�(s)�t
∂θis

= 1. Therefore, F-BIR holds, and the impulse responses sat-
isfy Ii�(s)�t(θti� x

t−1
i )= 1 for all i= 1� � � � � n, t ≥ s ≥ 0, θti ∈Θt

i , and xt−1
i ∈Xt−1

i .
Since the impulse responses Ii�(0)�t are identical to 1 for all agents i and

all periods t, the envelope formula (1) takes the form dV 〈χ�ψ〉
i0 (θi0)/dθi0 =

E
λi[χ]|θi0[∑∞

t=0 δ
tχit(θ̃)] and the problem of maximizing expected virtual surplus

(13) becomes

sup
χ∈X

E
λ[χ]

[ ∞∑
t=0

δt
n∑
i=1

(
θ̃it − cit − 1

ηi0(θ̃i0)

)
χit

(
θ̃t

)]
�

This is a standard multiarmed bandit problem: The safe arm corresponds to the
seller and yields a sure payoff equal to 0; the risky arm i= 1� � � � � n corresponds
to bidder i and yields a flow payoff θit −cit −[ηi0(θi0)]−1. The solution takes the
form of an index policy. That is, define the virtual index of bidder i= 1� � � � � n
in period t ≥ 0 given history (θti� x

t−1
i ) ∈Θt

i ×Xt−1
i as

γit
(
θti� x

t−1
i

) ≡ max
T

E
λ[χ̄i]|θit �xt−1

i

⎡
⎢⎢⎢⎢⎣

T∑
τ=t
δτ

(
θ̃iτ − cit − 1

ηi0(θi0)

)
T∑
τ=t
δτ

⎤
⎥⎥⎥⎥⎦ �(15)

to the kth signal, which is indeed independent of the current value of θit . (Standard calculations
show that Ri(·|k) is in fact a Normal distribution with mean zero and variance decreasing in k.)
Alternative specifications for Ri can be used to model learning-by-doing, habit formation, and so
on.
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where T is a stopping time and χ̄i is the allocation rule that assigns the object
to bidder i in all periods. (Note that the virtual index depends on xt−1

i only
through

∑t−1
τ=0 xiτ .) The index of the seller is identically equal to zero and for

convenience we write it as γ0t(θ
t
0�x

t−1
0 ) ≡ 0. The following virtual index policy

then maximizes the expected virtual surplus:38 For all i = 1� � � � � n, t ≥ 0, θt ∈
Θt , and xt−1 ∈Xt−1, let J(θt� xt−1)≡ arg maxj∈{0�����n} γjt(θtj� x

t−1
j ) and let

χit
(
θt

) =
{

1� if i= minJ
(
θt�xt−1

)
,

0� otherwise.
(16)

PROPOSITION 2—Optimal Bandit Auctions: Suppose that for all i= 1� � � � � n,
the hazard rate ηi0(θi0) is nondecreasing in θi0. Let 〈χ�ψ〉 be the choice rule where
χ is the virtual index policy defined by (16) and where ψ is the transfer rule defined
by (7). Then 〈χ�ψ〉 is an optimal mechanism in the bandit auction environment.

The environment is regular and Markov, F-FOSD holds, and each Ui is non-
decreasing in θi. Hence, the result follows from Corollary 2 once we show that
the virtual index policy χ satisfies integral monotonicity. We do this in the
Appendix by showing that χ satisfies average monotonicity defined in Corol-
lary 1, which here requires that, for all i = 1� � � � � n, s ≥ 0, and (θs−1� θis) ∈
Θs−1 ×Θis, bidder i’s expected discounted consumption

E
λi[χ◦θ̂is�Γ ]|θs−1�θis

[ ∞∑
t=s
δt(χ ◦ θ̂is)it(θ̃)

]

is nondecreasing in his current bid θ̂is. Heuristically, this follows because a
higher bid in period s increases the virtual index of arm i, which results in bid-
der i consuming sooner in the sense that, for any k ∈ N, the expected waiting
time until he wins the auction for the kth time after period s is then weakly
shorter. Note that because of learning, averaging is important: Even if increas-
ing the current bid always makes bidder i more likely to win the auction today,
for bad realizations of the resulting new valuation, it leads to a lower chance of
winning the auction in the future. However, by F-FOSD, higher current types
are also more likely to win in the future on average.

It is instructive to compare the virtual index policy from the optimal bandit
auction to the first-best index policy that maximizes social surplus. The first-
best policy is implementable by using the team mechanism of Athey and Segal
(2013) or the dynamic pivot mechanism of Bergemann and Välimäki (2010),

38The optimality of index policies is well known (e.g., Whittle (1982) or Bergemann and
Välimäki (2008)).
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who considered a similar bandit setting as an application. In the first-best pol-
icy, bidder i’s index at period-t history (θti� x

t−1
i ) is given by

git
(
θti� x

t−1
i

) ≡ max
T

E
λ[χ̄i]|θit �xt−1

i

⎡
⎢⎢⎢⎢⎣

T∑
τ=t
δτ(θ̃iτ − cit)

T∑
τ=t
δτ

⎤
⎥⎥⎥⎥⎦ �

By inspection of (15), we see that the virtual index γit(θti� x
t−1
i ) differs from the

first-best index git(θti� x
t−1
i ) only for the presence of the term 1

ηi0(θi0)
, which can

be interpreted as bidder i’s “handicap.” In particular, note that the handicaps
are determined by the bidders’ first-period (reported) types. Thus, the optimal
mechanism can be implemented by using the bidders’ initial reports to deter-
mine their handicaps along with the period-0 allocation and transfers, and by
then running a handicapped efficient mechanism in periods t > 0, where the
indices are computed as if the seller’s cost of assigning the good to bidder i
was cit − 1

ηi0(θ̂i0)
.39 This implies that even ex-ante symmetric bidders are, in gen-

eral, treated asymmetrically in the future and, hence, the distortions in future
periods reflect findings in optimal static auctions with asymmetric bidders. (For
example, the first-best and virtual indices will sometimes disagree on the rank-
ing of any given bidders i and j, and, hence, imay win the object in some period
t, even if the first-best policy would award it to j.)

We conclude that the optimal mechanism for selling experience goods is es-
sentially a dynamic auction with memory that grants preferential treatment
based on the bidders’ initial types. These features are markedly different from
running a sequence of second-price auctions with a reserve price, and sug-
gest potential advantages of building long-term contractual relationships in re-
peated procurement and sponsored search.

REMARK 8: Subsequent to the first version of our manuscript, Kakade, Lo-
bel, and Nazerzadeh (2011) considered a class of allocation problems that gen-
eralize our bandit auction environment and showed that the optimal mecha-
nism is a virtual version of the dynamic pivot mechanism of Bergemann and
Välimäki (2010), the handicap mechanism being a special case. Postulating the
model in terms of a state representation, they derived the allocation rule using
our first-order approach and established incentive compatibility in period 0 by
verifying a condition analogous to our average monotonicity.

Kakade et al.’s proof of incentive compatibility for periods t > 0 differs from
ours, and relies on the above observation about the optimal mechanism from

39Board (2007) and Eső and Szentes (2007) found similar optimal mechanisms in settings
where the type processes are autonomous and there is only one good to be allocated.
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period 1 onward being an efficient mechanism for a fictitious environment
where the seller’s cost of assigning the object to bidder i is cit − 1

ηi0(θ̂i0)
, where

θ̂i0 is i’s initial report. In particular, using an efficient mechanism for this ficti-
tious environment that asks the bidders to re-report their initial types in period
1 gives the existence of a truthful continuation equilibrium from period 1 on-
ward. This approach requires, however, that every agent i’s payoff and state
representation be separable in the sense that there exist functions αi, γit , and
βit , t ≥ 0, such that (i) uit(Zt

i�(0)(θi0� εi)�x
t)= αi(θi0)γit(xt)+βit(εti� xt) for all

t or that (ii) uit(Zt
i�(0)(θi0� εi)�x

t)= αi(θi0)βit(εti� xt) for all t. While our bandit
auction environment satisfies condition (i) by inspection of (14), neither con-
dition is satisfied in nonlinear environments such as our Example 5, for which
our approach of verifying integral monotonicity in every period is applicable.
Nonetheless, Kakade et al. can accommodate non-Markov environments that
are separable in the above sense. Thus, the approaches are best viewed as com-
plementary.

6. CONCLUDING REMARKS

We extend the standard Myersonian approach to mechanism design to dy-
namic quasilinear environments. Our main results characterize local incentive-
compatibility constraints, provide a method of constructing transfers to satisfy
them, address the uniqueness of these transfers, and give necessary and suf-
ficient conditions for the implementability of allocation rules in Markov en-
vironments. These results lend themselves to the design of optimal dynamic
mechanisms along the familiar lines of finding an allocation rule by maximiz-
ing expected (dynamic) virtual surplus and then verifying that the allocation
rule is implementable by checking appropriate monotonicity conditions.

The analysis permits a unified view of the existing literature by identifying
general principles and highlighting what drives similarities and differences in
the special cases considered. The generality of our model offers flexibility that
facilitates novel applications, such as the design of sales mechanisms for the
provision of new experience goods, or bandit auctions.

Our limited use of a state representation, also known as the independent-
shocks (IS) approach, deserves some comments given its prominent role, for
example, in the works of Eső and Szentes (2007, 2013) or Kakade, Lobel, and
Nazerzadeh (2011). Representing the type processes by means of independent
shocks is always without loss of generality and, as explained after Theorem 1,
it provides a convenient way to identify primitive conditions under which the
envelope formula is a necessary condition for incentive compatibility. How-
ever, the IS approach is not particularly useful for establishing (necessary and)
sufficient conditions for implementability in Markov environments, because
the transformation to independent shocks does not, in general, preserve the
“Markovness” of the environment. Hence, after the transformation, it is not
sufficient to consider one-stage deviations from strongly truthful strategies (see
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the Supplemental Material for a counterexample). Accordingly, our analysis of
implementability in Markov environments in Section 3.3 makes no reference
to the IS approach.

Eső and Szentes (2007, 2013) emphasize that the cost to the principal of
implementing a given allocation rule is the same as in an hypothetical environ-
ment where she can observe the agents’ future independent shocks. This result
can be seen from the proof of our Theorem 1, where the agents have been con-
strained to report the future orthogonalized shocks truthfully. An implication
of the theorem is that the expected present value of the payments implement-
ing a given allocation rule is unique, up to a scalar, even when the shocks are
observable. A corollary of this revenue-equivalence result is that, if the same
allocation rule remains implementable when the shocks are the agents’ private
information, the expected present value of the payments implementing the said
rule must be the same irrespective of the observability of the shocks. However,
the principal may be able to implement a strictly larger set of allocation rules
if she can observe the shocks and, hence, the optimal mechanisms for the two
settings are different in general. The optimal mechanisms coincide if the re-
laxed program discussed in Section 4 yields an implementable allocation rule.
Whenever this is not the case, the observability of the shocks is relevant for the
principal’s payoff and for the agents’ information rents.

The most important direction for future work pertains to the generality of
our results on optimal dynamic mechanisms. In particular, our results are re-
stricted to settings where the first-order approach yields an implementable al-
location rule. The extent to which this affects qualitative findings about the
properties of optimal mechanisms is an open question. For some progress in
this direction, see Garrett and Pavan (2013), who work directly with the inte-
gral monotonicity condition to show that, in the context of managerial compen-
sation, the key properties of optimal contracts extend to environments where
the first-order approach is invalid.

APPENDIX: PROOFS

PROOF OF THEOREM 1: We start by establishing ICFOCi�0 for all i =
1� � � � � n. Let the type processes be generated by the state representation
〈Ei�Gi� zi〉ni=1, and consider a fictitious environment in which, in each pe-
riod t ≥ 1, each agent i = 1� � � � � n observes the shock εit and computes
θit = Zi�(0)�t(θi0�x

t−1
i � εti). Consider a direct revelation mechanism in the fic-

titious environment in which each agent i reports θi0 in period 0 and εit
in each period t ≥ 1, and that implements the decision rule χ̂t(θ0� ε

t) =
χt(Z

t
(0)(θ0� χ̂

t−1(θ0� ε
t−1)�εt)) and payment rule ψ̂t(θ0� ε

t) = ψt(Z
t
(0)(θ0�

χ̂t−1(θ0� ε
t−1)�εt)) in each period t (defined recursively on t with Z(0)�t ≡

(Zi�(0)�t)
n
i=1, Zt

(0) = (Z(0)�s)ts=0, and Z(0) = (Z(0)�s)∞s=0).
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Suppose that all agents other than i report truthfully in all periods. Agent
i’s payoff when the other agents’ initial signals are θ−i�0, agent i’s true period-0
signal is θi0, his period-0 report is θ̂i0, and all future shocks ε are reported
truthfully is given by

Ûi(θ̂i0� θi0� θ−i�0� ε)

≡Ui

(
Z

(
θi0� θ−i�0� χ̂(θ̂i0� θ−i�0� ε)�ε

)
� χ̂(θ̂i0� θ−i�0� ε)

)
+

∞∑
t=0

δtψ̂it
(
θ̂i0� θ−i�0� εt

)
�

Since 〈χ�ψ〉 is PBIC in the original environment, truthful reporting by each
agent at all truthful histories is a PBE of the mechanism 〈χ̂� ψ̂〉 in the fictitious
environment. This implies that agent i cannot improve his expected payoff by
misreporting his period-0 type and then reporting the subsequent shocks truth-
fully. That is, for any θi0 ∈Θi0,

V 〈χ�Ψ 〉
i (θi0)= sup

θ̂i0∈Θi0
W (θ̂i0� θi0)=W (θi0� θi0)�

where W (θ̂i0� θi0)≡ E
[
Ûi(θ̂i0� θi0� θ̃−i�0� ε̃)

]
�

The following lemma shows that the objective function W in the above max-
imization problem is well behaved in the parameter θi0:

LEMMA A.1: Suppose that the environment is regular. Then, for all i= 1� � � � � n
and θ̂i0 ∈ Θi0, Wi(θ̂i0� ·) is equi-Lipschitz continuous and differentiable, with the
derivative at θi0 = θ̂i0 given by

∂Wi(θ̂i0� θ̂i0)

∂θi0

= E

[ ∞∑
t=0

∂Ui(Z(0)(θ̂i0� θ̃−i�0� χ̂(θ̂i0� θ̃−i�0� ε̃)� ε̃)� χ̂(θ̂i0� θ̃−i�0� ε̃))
∂θit

· ∂Zi�(0)�t(θ̂i0� χ̂
t−1
i (θ̂i0� θ̃−i�0� ε̃t−1)� ε̃ti)

∂θi0

]
�

PROOF: Let us focus on those ε for which ∂Zi�(0)�t(θi0� χ̂t−1
i (θ̂i0� θ−i�0� εt−1

i )�
εti)/∂θi0 < Cit(εi) for all i� t� θ0, with ‖Ci�(0)(εi)‖ < ∞, and ‖Zi�(0)(θi0� χ̂i(θi0�
θ−i�0� ε)�εi)‖<∞, which under Conditions F-BE and F-BIR occurs with prob-
ability 1, and temporarily drop arguments ε, θ−i�0, θ̂i0, x= χ̂(θ̂i0� θ−i�0� ε), and
subscripts i, (0) to simplify notation.
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The classical chain rule (using Conditions U-D and F-BIR) yields that, for
any given T ,

ΔT(θ0�h) ≡ 1
h
U

(
ZT(θ0 + h)�Z>T (θ0)

) − 1
h
U

(
Z(θ0)

)
(17)

−
T∑
t=0

∂U(Z(θ0))

∂θt
Z′
t(θ0)

→ 0 as h→ 0�

Note that

1
h
U

(
ZT(θ0 + h)�Z>T (θ0)

) → 1
h
U

(
Z(θ0 + h)) as T → ∞

uniformly in h since, using U-ELC, the difference is uniformly bounded by

A
1
h

∞∑
t=T+1

δt
∣∣Zt(θ0 + h)−Zt(θ0)

∣∣ ≤A
∞∑

t=T+1

δtCt

and the right-hand side converges to zero as T → ∞ since ‖C‖<∞.
Also, the series in (17) converges uniformly in h by the Weierstrass M-test,

since, using Conditions U-ELC and F-BIR,

T∑
t=0

∣∣∣∣∂U(Z(θ0))

∂θt

∣∣∣∣∣∣Z′
t(θ0)

∣∣ ≤
T∑
t=0

AδtCt →A‖C‖ as T → ∞�

Hence, we have

ΔT(θ0�h)→ 1
h

[
Û(θ0 + h)− Û(θ0)

]

−
∞∑
t=0

∂U(Z(θ0))

∂θt
Z′
t(θ0) as T → ∞

uniformly in h. By uniform convergence, we interchange the order of limits
and use (17) to get

lim
h→0

[
1
h

[
Û(θ0 + h)− Û(θ0)

] −
∞∑
t=0

∂U(Z(θ0))

∂θt
Z′
t(θ0)

]

= lim
h→0

lim
T→∞

ΔT(θ0�h)

= lim
T→∞

lim
h→0

ΔT(θ0�h)= 0�
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This yields (putting back all the missing arguments)

∂Ûi(θ̂i0� θ0� ε)

∂θi0
=

∞∑
t=0

∂Ui(Z(0)(θ0� ε� χ̂(θ̂i0� θ−i�0� ε))� χ̂(θ̂i0� θ−i�0� ε))
∂θit

× ∂Zi�(0)�t(θi0� ε
t
i� χ̂

t−1
i (θ̂i0� θ−i�0� εt−1))

∂θi0
�

Next, note that, being a composition of Lipschitz continuous functions,
Ûi(θ̂i0� ·� θ−i�0� ε) is equi-Lipschitz continuous in θi0 with constantA‖C(0)�i(ε)‖.
Since, by F-BIR, E[‖Ci�(0)(ε̃)‖]<∞, by the dominated convergence theorem,
we can write

∂Wi(θ̂i0� θi0)

∂θi0
= lim

h→0
E

[
Ûi(θ̂i0� θi0 + h� θ̃−i�0� ε̃)− Ûi(θ̂i0� θi0� θ̃−i�0� ε̃)

h

]

= E lim
h→0

[
Ûi(θ̂i0� θi0 + h� θ̃−i�0� ε̃)− Ûi(θ̂i0� θi0� θ̃−i�0� ε̃)

h

]

= E

[
∂Ûi(θ̂i0� θi0� θ̃−i�0� ε̃)

∂θi0

]
�

Hence, for any θ̂i0, Wi(θ̂i0� ·) is differentiable and equi-Lipschitz in θi0 with
Lipschitz constant AE[‖Ci�(0)(ε̃)‖] and with the derivative at θi0 = θ̂i0 given by
the formula in the lemma. Q.E.D.

The equi-Lipschitz continuity ofWi(θ̂i0� ·) established in Lemma A.1 implies
that the value function supθ̂i0∈Θi0 W (θ̂i0� θi0), which coincides with the equilib-
rium payoff V 〈χ�Ψ 〉

i (θi0), is Lipschitz continuous.40 Furthermore, by Theorem 1
of Milgrom and Segal (2002), at any differentiability point of V 〈χ�Ψ 〉

i (θi0), we

have dV
〈χ�Ψ 〉
i (θi0)

dθi0
= ∂Wi(θi0�θi0)

∂θi0
. Using Lemma A.1, the law of iterated expectations,

and the definition of Ii�(0)�t in (2) then yields ICFOCi�0. The ICFOCi�s for s > 0
then follows by the same argument, since agent i’s problem at a truthful period-
s history is identical to the period-0 problem except for the indexing by the
history. Q.E.D.

PROOF OF THEOREM 2: For part (i), we show first that the flow transfers
in (7) are well defined by showing that the discounted sum (over t) of each of

40Since for each θi0, θ′
i0, |V 〈χ�Ψ 〉

i (θ′
i0) − V

〈χ�Ψ 〉
i (θi0)| ≤ supθ̂i0∈Θi0 |Wi(θ̂i0� θ

′
i0) − Wi(θ̂i0� θi0)| ≤

M|θ′
i0 − θi0|, where M > 0 is the constant of equi-Lipschitz continuity of W . This argument is

similar to the first part of Milgrom and Segal’s (2002) Theorem 2.
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the three terms in ψit has a finite expected net present value (NPV) under the
measure λi[χ�Γ ]|θs−1, θis for all i= 1� � � � � n, s ≥ 0, and (θs−1� θis) ∈Θs−1 ×Θis

(which implies that the series
∑∞

t=0 δ
tψit(θ

t) converges with probability 1 under
λi[χ�Γ ]|θs−1, θis). For the first term, using U-ELC and F-BIR, we have

∣∣Dχ�Γ
it

(
θt−1� θit

)∣∣(18)

≤ E
λi[χ�Γ ]|θt−1�θit

[ ∞∑
τ=t

∣∣Ii�(t)�τ(θ̃i�χi(θ̃))∣∣Aiδ
τ

]
≤ δtAiBi�

where Ai > 0 is the constant of equi-Lipschitz continuity of Ui, and where
Bi > 0 is the bound on the impulse responses in Condition F-BIR. This means
that ∣∣δ−tQχ�Γ

it

(
θt−1� θit

)∣∣ ≤AiBi
∣∣θit − θ′

it

∣∣ ≤AiBi
(|θit | + ∣∣θ′

it

∣∣)�(19)

Hence, the expected NPV of the first term is finite by Condition F-BE and
‖θ′

i‖ <∞. For the second term, using (19) for t + 1 and the law of iterated
expectations, the expected NPV of its absolute value is bounded by

AiBi

(
t−1∑
τ=0

δτ+1
E
λi[χ�Γ ]|θτ−1�θiτ [θ̃iτ+1] +E

λi[χ�Γ ]|θs−1�θis
[‖θ̃i‖] + ∥∥θ′

i

∥∥)
�

which is finite by Condition F-BE and ‖θ′
i‖<∞. Finally, the expected NPV of

the third term is finite by Conditions U-SPR and F-BE.
We then show that ICFOCi�s holds for all i and s. Rewrite the time-s equilib-

rium expected payoff given history (θs−1� θis) using Fubini’s theorem and the
law of iterated expectations as

V 〈χ�Ψ 〉�Γ
is

(
θs−1� θis

)
= lim

T→∞

T∑
t=0

δtEλi[χ�Γ ]|θs−1�θis
[
uit

(
θ̃t�χt

(
θ̃t

)) +ψit
(
θ̃t

)]

=
s−1∑
t=0

δt
(
E
Γi(θ

s−1
i �χs−1

i (θs−1))
[
uit

(
θti� θ̃

t
−i�χ

t
(
θti� θ̃

t
−i

))] +ψit
(
θt

))

+Qχ�Γ
is

(
θs−1� θis

) − lim
T→∞

E
λi[χ�Γ ]|θs−1�θis

[
Qχ�Γ
i�T+1

(
θ̃T � θ̃i�T+1

)]
�

(The expectations of the other terms for t ≥ s cancel out by the law of iterated
expectations.) The second line is independent of θis , and the limit on the last
line equals zero by (19), Condition F-BE, and ‖θ′

i‖<∞. By (6) and (18), the



644 A. PAVAN, I. SEGAL, AND J. TOIKKA

remaining term Qχ�Γ
is (θ

s−1� θis) is Lipschitz continuous in θis and its derivative
equals Dχ�Γ

is (θ
s−1� θis) a.e., which is the right-hand side of (1).

For part (ii), we start by considering a single-agent environment and then
extend the result to multiple agents under the no-leakage condition.

Consider the single-agent case, where beliefs are vacuous, and omit the
agent index to simplify notation. For any PBIC choice rules 〈χ�ψ〉 and 〈χ� ψ̄〉
with the same allocation rule χ, for all s ≥ 0 and θs ∈Θs, ICFOCs and the law
of iterated expectations imply

V 〈χ�ψ〉
s

(
θs

) − V 〈χ�ψ〉
s−1

(
θs−1

)
= V 〈χ�ψ〉

s

(
θs

) −E
Fs(θ

s−1�χs−1(θs−1))
[
V 〈χ�ψ〉
s

(
θs−1� θ̃s

)]
= E

Fs(θ
s−1�χs−1(θs−1))

[∫ θs

θ̃s

Dχ
s

(
θs−1� q

)
dq

]

= V 〈χ�ψ̄〉
s

(
θs

) − V 〈χ�ψ̄〉
s−1

(
θs−1

)
�

Substituting the definitions of expected payoffs and rearranging terms yields

E
λ[χ]|θs

[ ∞∑
t=0

δtψt(θ̃)

]
−E

λ[χ]|θs
[ ∞∑
t=0

δtψ̄t(θ̃)

]

= E
λ[χ]|θs−1

[ ∞∑
t=0

δtψt(θ̃)

]
−E

λ[χ]|θs−1

[ ∞∑
t=0

δtψ̄t(θ̃)

]
�

By induction, we then have, for all T ≥ 1 and θT ∈ΘT ,

E
λ[χ]|θT

[ ∞∑
t=0

δtψt(θ̃)

]
−E

λ[χ]|θT
[ ∞∑
t=0

δtψ̄t(θ̃)

]
(20)

= E
λ[χ]

[ ∞∑
t=0

δtψt(θ̃)

]
−E

λ[χ]
[ ∞∑
t=0

δtψ̄t(θ̃)

]

≡K�

Since the payoff from truthtelling in a PBIC mechanism is well defined, we
have the following lemma.

LEMMA A.2: Suppose ψ is the transfer rule in a PBIC mechanism. Then for
λ[χ]-almost all θ, Eλ[χ]|θT [∑∞

t=0 δ
tψt(θ̃)] → ∑∞

t=0 δ
tψt(θ) as T → ∞.
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PROOF: By the law of iterated expectations,

E
λ[χ]

[∣∣∣∣∣Eλ[χ]|θ̃T
[ ∞∑
t=0

δtψt(θ̃)

]
−

∞∑
t=0

δtψt(θ̃)

∣∣∣∣∣
]

= E
λ[χ]

[∣∣∣∣∣Eλ[χ]|θ̃T
[ ∞∑
t=T+1

δtψt
(
θ̃t

)] −
∞∑

t=T+1

δtψt
(
θ̃t

)∣∣∣∣∣
]

≤ 2Eλ[χ]
[ ∞∑
t=T+1

δt
∣∣ψt(θ̃t)∣∣

]
�

By PBIC, Eλ[χ][‖ψ(θ̃)‖] <∞ and, hence, the term on the second line goes to
zero as T → ∞. Q.E.D.

By Lemma A.2, we can take the limit T → ∞ in (20) to get

∞∑
t=0

δtψt(θ)−
∞∑
t=0

δtψ̄t(θ)=K for λ[χ]-almost all θ�

To extend the result to multiple agents under the no-leakage condition, ob-
serve that if 〈χ�ψ〉 and 〈χ� ψ̄〉 are PBIC, then they remain PBIC also in the
“blind” setting where agent i does not observe his allocation xi. (Hiding the
allocation xi from agent i simply amounts to pooling some of his incentive
constraints.) Furthermore, if the allocation rule χ leaks no information to
agent i so that observing the true type θi does not reveal any information
about θ−i, then we can interpret the blind setting as a single-agent setting in
which agent i’s allocation in period t is simply his report θ̂it and his utility is
Ûi(θi� θ̂i) = E

λi[χ]|θ̂i [Ui(θi� θ̃−i�χ(θ̂i� θ̃−i))], where λi[χ]|θ̂i denotes the proba-
bility measure over the other agents’ types when agent i’s reports are fixed at θ̂i.
(Intuitively, the other agents’ types can be viewed as being realized only after
agent i has finished reporting, and Ûi is the expectation taken over such real-
izations.) Applying to this setting the result established above for the single-
agent case, we see that agent i’s expected payment Eλi[χ]|θi [∑∞

t=0 δ
tψit(θi� θ̃−i)]

is pinned down, up to a constant, by the allocation rule χ with probabil-
ity 1. Q.E.D.

PROOF OF THEOREM 3: Given a choice rule 〈χ�ψ〉 and belief system Γ ∈
Γ (χ), for all i= 1� � � � � n, t ≥ 0, and (θti� (θ

t−1
i � θ̂it)� θ

t−1
−i ) ∈Θt

i ×Θt
i ×Θt−1

−i , let

Φi(θit� θ̂it)≡ V 〈χ◦θ̂it �ψ◦θ̂it 〉�Γ
it

(
θt−1� θit

)
�

That is, Φi(θit� θ̂it) denotes agent i’s expected payoff from reporting θ̂it at
the period-t history (θti� θ

t−1
i �χt−1

i (θt−1
i � θt−1

−i )) and then reverting to truth-
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ful reporting period t + 1 onward. Because the environment is Markov,
Φi(θit� θ̂it) depends on agent i’s past reports, but not on his past true
types, and, hence, it gives agent i’s payoff from reporting θ̂it at the history
((θ̄t−1

i � θit)� θ
t−1
i �χt−1

i (θt−1
i � θt−1

−i )) for any past true types θ̄t−1
i ∈ Θt−1

i . We then
let Φ̄i(θit)≡Φi(θit� θit) for all θit ∈Θit denote the payoff from reporting truth-
fully in all periods s ≥ t.

Necessity: Fix i = 1� � � � � n and t ≥ 0. Suppose that the allocation rule χ ∈
X with belief system Γ ∈ Γ (χ) can be implemented in an on-path truthful
PBE. Then there exists a transfer rule ψ such that the choice rule 〈χ�ψ〉 with
belief system Γ is PBIC, and thus satisfies ICFOCi�t by Theorem 1. This implies
that Φ̄i(·) satisfies condition (b) in Lemma 1 with Φ̄′

i(θit)=Dχ�Γ
it (θ

t−1� θit) for
a.e. θit . Thus, it remains to establish condition (a).

LEMMA A.3: Suppose the environment is regular and Markov. Fix i= 1� � � � � n
and t ≥ 0. If the choice rule 〈χ�ψ〉 with belief system Γ ∈ Γ (χ) satisfies
ICFOCi�t+1, then for all θ̂it ∈Θit , the choice rule 〈χ◦ θ̂it�ψ◦ θ̂it〉 with belief system
Γ satisfies ICFOCi�t .

PROOF: Note first that, because the environment is Markov and 〈χ�ψ〉
with belief system Γ ∈ Γ (χ) satisfies ICFOCi�t+1, the choice rule 〈χ̂� ψ̂〉 ≡
〈χ ◦ θ̂it�ψ ◦ θ̂it〉 with belief system Γ clearly satisfies ICFOCi�t+1; this is because
agent i’s payoff does not depend on whether the previous period report θ̂it has
been truthful or not. To show that it also satisfies ICFOCi�t , we can use a state
representation and the law of iterated expectations to write agent i’s expected
payoff from truthtelling under choice rule 〈χ̂� ψ̂〉, for all (θt−1� θit), as

V 〈χ̂�ψ̂〉�Γ
it

(
θt−1� θit

)
= Eθ̃t−iEε̃t+1

i

[
V 〈χ̂�ψ̂〉�Γ
i�t+1

((
θti� θ̃

t
−i

)
�Zi�(t)�t+1

(
θit� χ̂

t
i

(
θti� θ̃

t
−i

)
� ε̃t+1

i

))]
�

where θ̃t−i is generated by drawing θt−1
−i according to agent i’s belief Γi(θt−1

i �

χt−1
i (θt−1)) and then drawing θ̃−i�t from

∏
j 
=i Fjt(θ

t−1
j �χt−1

j (θt−1)). To differenti-
ate this identity with respect to the true period-t type θit , note first that by the
chain rule, we have

d

dθit

[
V 〈χ̂�ψ̂〉�Γ
i�t+1

(
θt�Zi�(t)�t+1

(
θit� χ̂

t
i

(
θti� θ

t
−i

)
� εi�t+1

))]

= E
λi[χ̂�Γ ]|θt �θi�t+1

[
∂Ui(θ̃� χ̂(θ̃))

∂θit

]

+Dχ̂�Γ
i�t+1

(
θt� θi�t+1

)∂Zi�(t)�t+1(θit�χ
t
i(θ

t
i� θ

t
−i)� εi�t+1)

∂θit
�
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To see this, note that the first term follows because the environment is Markov
and 〈χ̂� ψ̂〉 does not depend on θit so that

∂V 〈χ̂�ψ̂〉�Γ
i�t+1 (θt� θi�t+1)

∂θit
= E

λi[χ̂�Γ ]|θt �θi�t+1

[
∂Ui(θ̃� χ̂(θ̃))

∂θit

]
�

The second term follows because, by ICFOCi�t+1, ∂V 〈χ̂�ψ̂〉�Γ
i�t+1 (θt� θi�t+1)/∂θi�t+1 =

Dχ̂�Γ
i�t+1(θ

t� θi�t+1). Furthermore, by U-ELC, ICFOCi�t+1, and F-BIR, all the
derivatives above are bounded. Thus, by the dominated convergence theorem,
we can pass the derivative through the expectation to get

dV 〈χ̂�ψ̂〉�Γ
it (θt−1� θit)

dθit

= E
λi[χ̂�Γ ]|θt−1�θit

[
∂Ui(θ̃� χ̂(θ̃))

∂θit
+ Ii�(t)�t+1

(
θ̃t+1
i � χ̂ti

(
θti� θ

t
−i

))

×
∞∑

τ=t+1

Ii�(t+1)�τ

(
θ̃τi � χ̂

τ−1
i (θ̃)

)∂Ui(θ̃� χ̂(θ̃))

∂θiτ

]

= E
λi[χ̂�Γ ]|θt−1�θit

[ ∞∑
τ=t
Ii�(t)�τ

(
θ̃τi � χ̂

τ−1
i (θ̃)

)∂Ui(θ̃� χ̂(θ̃))

∂θiτ

]
�

where we have first used (2) to express the expectation in terms of impulse re-
sponses, and then the fact that Markovness implies Ii�(t)�t+1(θ

t+1
i � xti)Ii�(t+1)�τ(θ

τ
i �

xτ−1
i )= Ii�(t)�τ(θ

τ
i � x

τ−1
i ). Therefore, the choice rule 〈χ̂� ψ̂〉 with belief system Γ

satisfies ICFOCi�t . Q.E.D.

Since 〈χ�ψ〉 with belief system Γ satisfies ICFOC by Theorem 1, Lemma A.3
implies that for all θ̂it ∈ Θit , 〈χ ◦ θ̂it�ψ ◦ θ̂it〉 with belief system Γ satisfies
ICFOCi�t . Therefore, for any fixed θ̂it , Φi(θit� θ̂it) is Lipschitz continuous in θit
with derivative given by Dχ◦θ̂it �Γ

it (θt−1� θit) for a.e. θit . Hence, also condition (a)
of Lemma 1 is satisfied. Since i and t were arbitrary, we conclude that the in-
tegral monotonicity condition (8) is a necessary condition for on-path truthful
PBE implementability.

Sufficiency: Suppose the allocation rule χ ∈ X with belief system Γ ∈ Γ (χ)
satisfies integral monotonicity. Define the transfer ruleψ by (7). By Theorem 2,
the choice rule 〈χ�ψ〉 with belief system Γ satisfies ICFOC. Thus, the above
arguments show that, for all i = 1� � � � � n, t ≥ 0, and any period-t history of
agent i, the functions {Φi(·� θ̂it)}θ̂it∈Θit and Φ̄i(·) satisfy conditions (a) and (b) of
Lemma A.3. This implies that a one-step deviation from the strong truthtelling
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strategy is not profitable for agent i at any history in any period. The following
version of the one-stage deviation principle then rules out multistep deviations.

LEMMA A.4: Suppose the environment is regular and Markov. Fix an alloca-
tion rule χ ∈X with belief system Γ ∈ Γ (χ) and define the transfer rule ψ by (7).
If a one-stage deviation from strong truthtelling is not profitable at any informa-
tion set, then arbitrary deviations from strong truthtelling are not profitable at any
information set.

The proof of this lemma consists of showing that despite payoffs being not a
priori continuous at infinity, the bounds implied by U-SPR and part (ii) of the
definition of Markov environments guarantee that under the transfers defined
by (7), continuation utility is well behaved. We relegate the argument to the
Supplemental Material.

We conclude that integral monotonicity is a sufficient condition for the al-
location rule χ ∈ X with belief system Γ ∈ Γ (χ) to be implementable in a
strongly truthful PBE. Q.E.D.

PROOF OF PROPOSITION 1: Case (i). We construct a nondecreasing solu-
tion χs(θ) sequentially for s = 0�1� � � � . Suppose we have a solution χ in which
χs−1(θ) is nondecreasing. Consider the problem of choosing the optimal con-
tinuation allocation rule in period s given type history θs and allocation history
χs−1(θs−1). Using the state representation 〈Ei�Gi� zi〉ni=1 from period s onward,
we can write the continuation rule for t ≥ s as a collection of functions χ̂t(ε)
of the shocks ε.

First, note that, by assumption,X is a lattice. Hence there is a way of extend-
ing the join and meet operations so that

∏
t≥s Xt is a lattice. This means that the

set of feasible shock-contingent plans χ̂ is also a lattice under pointwise meet
and join operations (i.e., for each ε). Next, note that, under the assumptions in
the proposition, each agent i’s virtual utility

Ui

(
Zs

(
θs� ε

)
�χs−1

(
θs−1

)
�x≥s)

− 1
ηi0(θi0)

∞∑
t=0

∂Ui(Zs(θ
s� ε)�χs−1(θs−1)�x≥s)

∂θit
Ii�(0)�t

(
Zt
i�(s)

(
θs� ε

))

is supermodular in x≥s and has increasing differences in (θs�x≥s) (note that
Zs(θ

s� ε) is nondecreasing in θs by F-FOSD and that χs−1(θs−1) is nondecreas-
ing in θs−1 by construction). Therefore, summing over i and taking expecta-
tion over ε, we obtain that the expected virtual surplus starting with history
θs is supermodular in the continuation plan χ̂ and has increasing differences
in (θs� χ̂). Topkis’s theorem then implies that the set of optimal continuation
plans is nondecreasing in θs in the strong set order. In particular, focus on the
first component χs ∈ Xs of such plans. By Theorem 2 of Kukushkin (2009),
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there exists a nondecreasing selection of optimal values, χ̂s(θs). Therefore, the
relaxed program has a solution in which χs(θs) = (χs−1(θs−1)� χ̂s(θ

s)) is non-
decreasing in θs .

Case (ii). In this case, the solution to the relaxed problem is a collection of
independent rules χt , t ≥ 0, with each χt satisfying, for λ-almost every θt ,

χt
(
θt

) ∈ arg max
xt∈Xt

[
n∑
i=0

uit(θt� xt)−
n∑
i=1

1
ηi0(θi0)

Ii�(0)�t
(
θti

)∂uit(θt� xt)
∂θit

]
�(21)

For any t, we can put χt(θt)= χ̄t(ϕ1t(θ
t
1)� � � � �ϕnt(θ

t
n)) for some χ̄t :Rn×m→Xt .

Now fix i ≥ 1 and, for xit ∈Xit , let Xt(xit)≡ {x′
t ∈Xt :x′

it = xit}. Then (21) im-
plies

χ̄it(ϕt) ∈ arg max
xit∈Xit

[
ūit(ϕit� xit)+ git(ϕ−i�t� xit)

]
�

where ūit(ϕit� xit) is the virtual utility of agent i and

git(ϕ−i�t� xit)≡ max
x′
t∈Xt(xit )

[
u0t

(
x′
t

) +
∑
j 
=i
ūjt

(
ϕjt� x

′
jt

)]
�

Since ūit(ϕit� xit)+ git(ϕ−i�t� xit) has strictly increasing differences in (ϕit� xit),
by the monotone selection theorem of Milgrom and Shannon (1994), χ̄it(ϕit�
ϕ−i�t) must be nondecreasing in ϕit and so χit(θ

t
i� θ

t
−i) is nondecreasing

in θti . Q.E.D.

PROOF OF PROPOSITION 2: Fix a belief system Γ ∈ Γ (χ). We show that the
virtual index policy given by (16) satisfies average monotonicity: For all i =
1� � � � � n, s ≥ 0, and (θs−1� θis) ∈Θs−1 ×Θis,

E
λi[χ◦θ̂s�Γ ]|θs−1�θis

[ ∞∑
t=s
δt(χ ◦ θ̂is)it(θ̃)

]

is nondecreasing in θ̂is. We show this for s = 0. The argument for s > 0 is anal-
ogous but simpler since θis does not affect the term η−1

i0 (θi0) in the definition
of the virtual index (15) when s > 0.

We can think of the processes being generated as follows: First, draw a se-
quence of innovations ωi = (ωik)

∞
k=1 according to

∏∞
k=1Ri(·|k) for each i, inde-

pendently across i = 1� � � � � n, and draw initial types θi0 according to Fi0 inde-
pendently of the innovations ωi and across i. Letting Kt ≡ ∑t

τ=1 xτ , bidder i’s
type in period t can then be described as

θit = θi0 +
Kt∑
k=1

ωik�
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Clearly this representation generates the same conditional distributions (and
hence the same process) as the kernels defined in the main text.41

Next, fix an arbitrary bidder i = 1� � � � � n and a state (θ0�ω) ∈ Θ0 × (Rn)∞,
and take a pair θ′

i0� θ
′′
i0 ∈ Θ0 with θ′′

i0 > θ
′
i0. We show by induction on k that

for any k ∈ N, the kth time that i wins the object if he initially reports θ′′
i0

(and reports truthfully in each period t > 0) comes weakly earlier than if he
reports θ′

i0. As the realization (θ0�ω) ∈ Θ0 × (Rn)∞ is arbitrary, this implies
that the expected time to the kth win is decreasing in the initial report, which
in turn implies that the virtual policy χ satisfies average monotonicity.

As a preliminary observation, note that the period-t virtual index of bidder i
is increasing in the (reported) period-0 type θi0 since the handicap η−1

i0 (θi0) is
decreasing in θi0 and (in the case t = 0) Eλ[χ̄i]|θi0[θiτ] is increasing in θi0 for all
τ ≥ 0.

Base Case. Suppose, toward a contradiction, that the first win given initial
report θ′

i0 comes in period t ′, whereas it comes in period t ′′ > t ′ given re-
port θ′′

i0 > θ
′
i0. As the realization (θ0�ω) is fixed, the virtual indices of bid-

ders −i in period t ′ are the same in both cases. But γit′((θ′′
i0� θi0� � � � � θi0)�0) >

γit′((θ
′
i0� θi0� � � � � θi0)�0), implying that i must win in period t ′ also with initial

report θ′′
i0, which contradicts t ′′ > t ′.

Induction Step. Suppose the claim is true for some k ≥ 1. Suppose, toward
a contradiction, that the (k + 1)th win given report θ′

i0 comes in period t ′,
whereas it comes in period t ′′ > t ′ given θ′′

i0 > θ
′
i0. Then observe that (i) in both

cases, i wins the auction k times prior to period t ′. Furthermore, since the
realization (θ0�ω) is fixed, this implies that (ii) bidder i’s current type θit is
the same in both cases and (iii) the number of times each bidder j 
= i wins
the object prior to period t ′ is the same in both cases, and, hence, the virtual
indices of bidders −i in period t ′ are the same in both cases. By (i) and (ii), i’s
virtual index in period t ′ is identical in both cases except for the initial report.
That bidder i’s period-t ′ index is increasing in the initial report, along with (iii),
implies that imust then win in period t ′ also with initial report θ′′

i0, contradicting
t ′′ > t ′. Hence, the claim is true for k+ 1. Q.E.D.
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