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Abstract

In the problem of �nding an e¢ cient allocation when agents�utilities are privately known,
we examine the e¤ect of restricting attention to mechanisms using �demand queries,� which
ask agents to report an optimal allocation given a price list. We construct a combinatorial
allocation problem with m items and two agents whose valuations lie in a certain class, such
that (i) e¢ ciency can be obtained with a mechanism using O (m) bits, but (ii) any demand-query
mechanism guaranteeing a higher e¢ ciency than giving all items to one agent uses a number
of queries that is exponential in m. The same is proven for any demand-query mechanism
achieving an improvement in expected e¢ ciency, for a constructed joint probability distribution
over agents�valuations from the class. These results cast doubt on the usefulness of such common
combinatorial allocation mechanisms as �iterative auctions�and other �preference elicitation�
mechanisms using demand queries, as well as �value queries� and �order queries� (which are
easily replicated with demand queries in our setting).

1 Introduction

We consider the problem of designing a mechanism to implement an e¢ cient or approximately
e¢ cient allocation when agents have private information about their preferences. The mechanism
design literature has usually restricted attention to mechanisms in which agents fully reveal their
preferences, and ensured agents�incentives for truthful revelation (e.g., using the Vickrey-Groves-
Clarke transfers to implement e¢ cient allocations). However, full revelation of one�s preferences
would often be prohibitive: for example, in a combinatorial auction of m items in which agents
may have general valuations for the bundles, full revelation requires naming a willingness to pay
for each of the 2m � 1 bundles. Already with m = 30, this would involve the communication of
more than one billion numbers.

Because of this communication problem, most real-life mechanisms do not require full revelation.
Instead, many mechanisms are �market-like:�they quote to the agents price lists for the allocations
(with prices sometimes allowed to be nonlinear and personalized) and request them to submit
demands given the prices, adjusting the prices according to some prespeci�ed rules. Indeed, nearly
all iterative combinatorial auctions suggested in the literature are based on such �demand queries�
(e.g., Parkes and Ungar 2000; Ausubel and Milgrom 2002, and the forthcoming survey of Parkes).
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The ubiquity of demand-query mechanisms raises the question: Can we restrict attention to
mechanisms of this form without blowing up the communication burden? Nisan and Segal (forth-
coming) answered this question in the a¢ rmative for the nondeterministic problem of verifying the
e¢ ciency of an allocation: for this problem, without increasing the communication burden, one
can restrict attention to announcing a price equilibrium.1 But does there exist a parallel theorem
for deterministic communication?2 The goal of this note is to show that the parallel deterministic
conjecture is in fact not true. We do this by demonstrating a class of valuations for which the
restriction to �demand-query mechanisms�brings about an exponential blowup in the communica-
tion burden of �nding an e¢ cient allocation. Namely, for this class, an e¢ cient mechanism exists
that uses a number of bits that is linear the number of items, but any demand query mechanism
that achieves e¢ ciency, or even any improvement upon the �dictatorial�allocation of all the items
to one agent, must use an exponential number of demand queries.3 We also show a parallel average-
case result: We construct a joint probability distribution over the agents�valuations from this class
for which any improvement in the expected surplus over the dictatorial allocation requires using
an exponential expected number of demand queries.

Our results suggest limitations to the usefulness of combinatorial allocation mechanisms such
as �iterative auctions,� and other �preference elicitation�mechanisms that use demand queries.
Allowing �value queries� or �order queries� does not help, since in our setting such queries are
easily replicated with demand queries (Conen and Sandholm 2001; Blumrosen and Nisan 2005).
Of course, for some classes of valuations, or some probability distributions of valuations, demand-
query mechanisms may work well. Indeed, we know of several special settings in which a polynomial
number of demand queries su¢ ces for obtaining exactly or approximately e¢ cient allocations (e.g.,
Dobzinski et al. 2005; Lahaie and Parkes 2004; Blum et al. 2004; Nisan and Segal, forthcoming;
and the forthcoming survey by Sandholm and Boutilier). However, these cases appear to be quite
restricted, and the scope of usefulness of demand-query mechanisms remains unknown.

2 The Valuation Class

Consider the problem of allocating items from a set M between two agents. Let jM j = m, which
for simplicity we take to be even. Let K denote the set of bundles consisting of m=2 items, so
k � jKj =

�
m
m=2

�
. Each agents�valuation function over bundles of items is known a priori to lie in

the class

V =

8<:
v : 2M ! f0; 1g such that

v (S) = 0 for jSj < m=2, v (S) = 1 for jSj > m=2;
jfS � K : v (S) = 1gj > k=2

9=; :
An allocation (S;MnS) will be described with the bundle S � M of items allocated to agent

1. Each agent i�s valuation vi 2 V can be described by the set of allocations from K for which he

1Segal (2004) extends the result to general social choice problems, which may restrict or ban monetary transfers,
and which may have goals other than e¢ ciency (e.g., approximate e¢ ciency, fairness, coalitional stability).

2This question was raised by Tuomas Sandholm in the 2004 Stanford Institute for Theoretical Economics workshop
(oral communication).

3We only count the number of demand queries and ignore the problem that each demand query in itself must list
prices for an exponential number of bundles. The reason we ignore this problem is that knowledge of the protocol and
of the past reports would allow agents to �gure out the current prices, and so they need not be described explicitly.
For example, in each round of an ascending-price clock auction, the prices for the bundles that have been bid upon
are raised by the minimal bid increment and the prices for the other bundles are preserved, and so there is no need
to quote all the prices anew in each period.
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has value 1, i.e.,

A1 = fS �M : jSj = m=2, v1 (S) = 1g ;
A2 = fS �M : jSj = m=2, v2 (MnS) = 1g :

We will refer to the set Ai � K as the �type�of agent i.
Since it is known that jA1j; jA2j > k=2, we must have A1\A2 6= ?, and so a surplus-2 allocation

exists. Achieving e¢ ciency is equivalent to �nding such an allocation. On the other hand, without
�nding such an allocation we achieve at most surplus 1, which could have been achieved by giving
all the items to agent 1.

Since each agent�s type is his private knowledge (subject to commonly-known constraints de-
scribed above), �nding an e¢ cient allocation requires some communication between them. We de-
scribe such communication using the model of communication protocols introduced by Yao (1977)
and surveyed by Kushilevitz and Nisan (1997).

3 A Fast E¢ cient Protocol

Proposition 1 There exists a protocol �nding an e¢ cient allocation using no more than 4 (log2 k + 1)
2

bits of communication.

Proof. Consider the following protocol: At each step r, we maintain a set Kr � K with the
property that

jA1 \Krj+ jA2 \Krj > jKrj ; (*)

and therefore A1 \A2 \Kr 6= ?. Initialize with K0 = K, which satis�es (*) due to the assumption
that jA1j ; jA2j > jKj. At each step r, partition Kr (in an arbitrary but prespeci�ed way) into
two subsets B1 and B2 such that jjB1j � jB2jj � 1, and ask each agent i = 1; 2 to report aij =
jAi \Bj j for each j = 1; 2. Then take Kr+1 = Bj for the j 2 f1; 2g that has the higher value of
a1j + a2j � jBj j, which guarantees that Kr+1 satis�es (*). Each step requires communicating no
more than 4 dlog2 jKje bits, and in no more than dlog2 jKje steps Kr becomes a singleton, which
by (*) must lie in A1 \A2.

In fact, there exists an e¢ cient protocol that uses no more than 5:3 log2 k bits of communication.
This follows from the fact that this communication problem turns out to be equivalent to the
monotone depth of the majority function (Karchmer and Wigderson, 1988), and Valiant�s (1984)
celebrated construction of such formulae.

4 Demand-Query Protocols

Now we restrict attention to demand-query protocols, which work as follows: at each step, one of the
agents is o¤ered a price vector p : 2M ! R and an ordering � over 2M , both of which can be functions
of the agents�previous messages, and asked to report the �rst element of argmaxS�M (vi (S)� p (S))
in ordering � . Note the importance of �xing a tie-breaking ordering � in advance: If agent i�s tie-
breaking were allowed to depend directly on his valuation vi, then his choice from a known tie
could communicate arbitrary information about vi, and so the restriction to demand-query proto-
cols would be vacuous.

Another often-used type of query is a �value query,�which asks an agent i to report his valuation
vi (S) for a given bundle S � M . Note that in our simple model such a query is equivalent to a
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demand query with prices p (S) = 0 and p (T ) = 1=2 for all T 6= S (S will be demanded if and only
if vi(S) = 1). Thus, lower communication bounds for demand-query protocols will also apply to
protocols that use value queries.

5 The Worst-Case Result

Proposition 2 Any demand-query protocol that achieves a higher surplus than that from giving
all items to one agent must ask at least k=2� 1 queries (in the worst case).

Proof. Take any protocol that uses less than k=2� 1 demand queries. We describe an �adversary
algorithm�for answering a sequence of queries made by the protocol and then constructing agents
valuations (described by their types A1; A2) consistent with all the answers, for which the total
surplus for the protocol�s outputed allocation is at most 1. (While constructing the valuations after
the queries have been made seems like �cheating,�the point is that they could have been the true
valuations from the outset.)

The adversary algorithm at each step maintains sets B1; B2 � K (with the interpretation that
Bi is the set of allocations from K for which agent i �could still have� value 1). The two sets
are initialized with B1 = B2 = K. At each step of the protocol, if agent i = 1; 2 is queried, the
adversary returns an allocation a 2 2M that would be demanded by the agent if his type were
Bi. (Demanding allocation a 2 2M by agent i means demanding bundle a if i = 1 and demanding
bundle M=a if i = 2.) Furthermore, if a 2 Bi, then a is removed from B�i. Proceed to the next
step. Suppose that the protocol ultimately outputs allocation t. Then, for each i = 1; 2, if t 2 Bi,
t is removed from B�i. Finally, the adversary sets the agents�types to be Ai = Bi for i = 1; 2.

Since the protocol has fewer than k=2 � 1 steps, at each of which each jBij is reduced by at
most 1, and the outputed allocation reduces jBij by at most 1, in the end we have jAij > k=2 for
i = 1; 2, so the constructed types are feasible. Furthermore, by construction we have t =2 A1 \ A2.
What remains to show is that the demands returned by the adversary at each stage are consistent
with the constructed types A1; A2. To see this, note �rst that for each agent i, the sets Bi are
nonincreasing in the course of the protocol and thus at each stage, Ai � Bi. This implies that if
at some stage an allocation a =2 Bi was demanded by type Bi, it will also be demanded by type Ai
at the same prices and the same tie-breaking rule. On the other hand, if an allocation a 2 Bi was
demanded by type Bi, then it was removed from B�i, and so by construction it always remains
in Bi. Then a 2 Ai and so a will also be demanded by type Ai at the same prices and the same
tie-breaking rule. Hence, the constructed type Ai will indeed induce the same demands as those
constructed by the adversary.

Since by Stirling�s formula, k =
�
m
m=2

�
�
p
2= (�m) � 2m as m!1, the Proposition means that

any demand-query protocol improving upon giving all items to one agent requires an exponential
number of queries in m. Contrast this to the �nding of Proposition 1, which exhibited a protocol
achieving e¢ ciency using O

�
m2
�
bits (and in fact, as argued in Section 3, an e¢ cient O (m) protocol

exist).

Remark 1 A matching upper bound follows from Nisan and Segal�s (forthcoming) Proposition 1,
which implies that the deterministic communication blowup due to a restriction to demand queries
is at most exponential in any allocation problem with n agents. Indeed, according to their result,
each leaf (terminal node) of an e¢ cient protocol must reveal a price equilibrium. If the protocol
communicates b bits, then it has at most 2b leaves. Consider the demand-query protocol that checks
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the candidate price equilibria corresponding to these leaves sequentially, until it �nds a true equi-
librium, which then yield an e¢ cient allocation. Since a price equilibrium can be checked with n
demand queries (one for each agent, with an ordering of allocations in which the candidate equilib-
rium allocation is the �rst one), the total number of demand queries used is at most n2b.

Remark 2 Conen and Sandholm (2001) introduce �rank queries,�which ask an agent to report the
bundle of rank r in the order of his valuations, with ties broken according to some a priori ordering
� . Such queries prove more powerful than demand queries for our valuation class. For example,
such a query reveals whether the �rst q bundles in ordering � contain at least r value-1 bundles.
Using bisection on r between 1 and q, we �nd the number of value-1 bundles with among the �rst q
bundles with at most dlog2 qe rank queries. Then we can use the protocol described in Proposition
1 doing this at each step, and so the total number of rank queries is at most 4 (log2 k + 1)

3. On
the other hand, for other valuation classes, rank queries may not achieve e¢ ciency at all, because
they do not elicit the strength of the agents�preferences: For example, with only one item, an agent
would always rank the item higher than not having it, and we would never learn which agent has
the highest valuation for the item.

6 An Average-Case Result

We start by de�ning a joint probability distribution D over valuation pairs from V �V, by drawing
the type pairs uniformly from the pairs (A1; A2) such that jA1j = jA2j = k=2+1 and jA1 \A2j = 2.4

Proposition 3 If the agents�valuation pairs are jointly distributed according to D, any demand-
query protocol obtaining an expected surplus of at least 1 + � with � 2 (0; 1) must use at least
T (�) = (�k=10� 1=4) = ln k queries in the worst case, and at least (�=2)T (�=2) queries in the
average case.

Proof. Consider �rst a demand-query protocol asking at most t queries in the worst case. We
allow agents to reveal more information than just the demanded bundle. For a given demand query
hp; �i, de�ne an ordering � of allocations that agrees with the ascending order of prices p, with ties
broken according to � . When agent i is asked such a query, let him reveal his valuations for the top
r allocations from K in ordering � out of those that have not been revealed yet, and let the other
agent reveal his valuations for the same allocations (where r � 1 is a �xed integer). Furthermore,
if agent i has value zero for all the allocations he reveals, let him say �bingo,�and then let both
agents reveal all their valuations. This response is more informative than answering the demand
query: if agent i did not say �bingo�and so his valuations are not fully revealed, his demand was
given by the highest value-1 allocation in ordering �, which is either among the revealed ones or is
a known allocation outside of K.

The probability that an agent said �bingo� in response to one of the t demand queries is

bounded above by t
�
k=2
k�rt

�r
, since the fraction bounds above the proportion of either agent�s zero-

value allocations among those in K that have not been revealed, and for �bingo�we need all the top
4 It is important for our result that the two agents�valuations are jointly distributed. If the agents�types were

drawn independently from a uniform distribution over Ai � K such that jAij = k=2 + 1, we could achieve e¢ ciency
with a small expected number of demand queries, by announcing allocations from K in any �xed order and stopping
as soon as we �nd an e¢ cient allocation (which is veri�ed with two value queries, which are equivalent to demand
queries). The probability that a given allocation has value 1 to a given agent is at least 1=2 (higher when more
allocations have been checked), and so it is e¢ cient with probability at least 1=4. Thus, the expected number of
allocations that need to be checked before �nding e¢ ciency is at most 4, and so the expected number of demand
queries is at most 8 (regardless of k).
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r allocations in K ordering � to be zero-value allocations. Also, if �bingo�has not been said, the
probability that the allocation outputed by the protocol is e¢ cient is bounded above by (rt+ 1) 2k ,
since this is the probability that at least one of the two e¢ cient allocations is either one of the rt
allocations revealed by the agents or is some other allocation from K outputed by the protocol.
Thus, the probability of �nding an e¢ cient allocation is bounded above by

t

�
k=2

k � rt

�r
+ (rt+ 1)

2

k

We can choose any integer r � 1, and we choose r = b3 ln kc (to roughly minimize the above
expression). Then, if t � T (�), the probability of e¢ ciency is bounded above by

�k=10� 1=4
ln k

�
1

2� 3�=5

�3 ln k�1
+ (3�k=10� 3=4 + 1) 2

k

� �k=10� 1=4
ln k

2

k3 ln(7=5)
+ (3�k=10 + 1=4)

2

k

� 2

k
(�k=10� 1=4) + 2

k
(3�k=10 + 1=4) � 8�=10 < �:

Now suppose that we have a demand-query protocol with an expected number t of queries that
�nds e¢ ciency with probability �. Then we can terminate the protocol after 2t=� queries (and in
this case output a random allocation from K). The probability that the protocol is terminated is
at most �=2, and so we still have a protocol that �nds e¢ ciency with probability �=2 using at most
2t=� queries in the worst case. By the previous result, 2t=� � T (�=2), and so t � (�=2)T (�=2).

Remark 3 If we restricted our valuation class to have jAij � 2k=3 for i = 1; 2, we could always
achieve e¢ ciency with a small expected number of demand queries. Indeed, consider the randomized
protocol that picks an allocation from K uniformly at random and stops as soon as it �nds an e¢ -
cient allocation (which is veri�ed with two value queries, which are equivalent to demand queries).
Since there are at least k=3 e¢ cient allocations, the probability of �nding one in each step is at least
1=3, hence the expected number of queries before stopping is at most 6 (regardless of k). By the
Minimax Theorem, this also implies that for every probability distribution on such valuation pairs,
there exists an e¢ cient deterministic demand-query protocol whose expected number of queries is
6.On the other hand, Proposition 2 is easily extended to this case to show that any demand-query
protocol that achieves a surplus greater than 1 must still ask at least k=3 queries in the worst case.
Thus, in this case we obtain an exponential divergence between the average-case and worst-case
communication complexity of achieving e¢ ciency with demand-query protocols.

7 Conclusion

We have given a simple example in which a restriction to demand queries brings about an ex-
ponential blowup in the communication required to achieve or approximate e¢ ciency. A natural
direction for further research is to characterize the valuation classes for which this does not hap-
pen. Another interesting question is whether there exists a su¢ ciently concise class of �universal
queries�to which we can restrict attention without causing an exponential communication blowup
on any valuation class. The Proposition 1 of Nisan and Segal (forthcoming) implies that demand
queries do form a universal class for nondeterministic communication, but a parallel question for
deterministic communication remains open. Finding a universal query class would be useful for
designing practical deterministic mechanisms, while proving that it does not exist would suggest
that practical mechanisms should be very dependent on the problem at hand.
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