Instructions: Before starting this assignment, please read the section on “Homework” at http://web.stanford.edu/class/math61cm/61cm-info.pdf

1. Use mathematical induction to check that \(\sum_{j=1}^{n} j2^j = (n-1)2^{n+1} + 2 \) for \(n = 1, 2, \ldots \).

Note: The principle of mathematical induction is one of the basic properties of the natural numbers \(\mathbb{N} = \{1, 2, \ldots \} \), and we shall use it frequently; it says that if a subset \(P \subset \mathbb{N} \) has the properties (a) \(1 \in P \), and (b) \(n \in P \Rightarrow n+1 \in P \) for each \(n = 1, 2, \ldots \), then \(P = \mathbb{N} \). Slightly more concretely, that is the same as saying that if \(P_n \) is a (true or false) proposition for each \(n = 1, 2, \ldots \) and if (a) \(P_1 \) is true, and (b) for each \(n \) we are able to check that \(P_{n+1} \) is true whenever \(P_n \) is true, then \(P_n \) is true for all \(n = 1, 2, \ldots \).

2. Prove that \(1 + \sqrt{2} \) is irrational (i.e. not rational).

(Recall that \(x \) is rational means that \(\exists \) integers \(p, q \) with \(q \neq 0 \) such that \(x = p/q \).)

Hint: First show that \(1 + \sqrt{2} \) is rational if and only if \(\sqrt{2} \) is rational. If \(\sqrt{2} \) is rational, then we can write \(\sqrt{2} = p/q \), where \(p, q \) are positive integers without common factors.

3. Prove or give a counterexample to the following:

Claim: Let \(V \) be a vector space over a field \(F \), and suppose that \(W_1, W_2 \) and \(W_3 \) are subspaces of \(V \). Suppose also that \(W_1 + W_3 = W_2 + W_3 \). Then \(W_1 = W_2 \).

4. Give an example of a subset \(U \subset \mathbb{R}^2 \) such that \(U \) is closed under scalar multiplication but is not a subspace.

5. Let \(V \) be a vector space over a field \(F \) and \(U, W \) be subspaces of \(V \). Suppose \(U \cup W \) is also a subspace. Show that either \(U \subseteq W \) or \(W \subseteq U \).

6. Let \(a, b, c, d \) be elements of a field \(F \), and consider the system of equations

 \[
 ax + by = 0, \quad cx + dy = 0
 \]

Show that \(x = y = 0 \) is the only solution if and only if \(ad - bc \neq 0 \).

7. Using the dot product, prove, for any vectors \(\underline{x}, \underline{y} \in \mathbb{R}^n \):

 (a) The parallelogram law: \(\|\underline{x} - \underline{y}\|^2 + \|\underline{x} + \underline{y}\|^2 = 2(\|\underline{x}\|^2 + \|\underline{y}\|^2) \)

 (b) The law of cosines: \(\|\underline{x} - \underline{y}\|^2 = \|\underline{x}\|^2 + \|\underline{y}\|^2 - 2\|\underline{x}\|\|\underline{y}\|\cos \theta \), assuming \(\underline{x}, \underline{y} \) are non-zero and \(\theta \) is the angle between \(\underline{x} \) and \(\underline{y} \) as discussed in lecture.

 (c) Give a geometric interpretation of identities (a) and (b).

 That is, describe what (a) is saying about the parallelogram determined by \(\underline{x}, \underline{y} \)—i.e. \(OACB \) where \(\overrightarrow{OA} = \underline{x}, \overrightarrow{OB} = \underline{y}, \overrightarrow{OC} = \underline{x} + \underline{y}, \) and what (b) is saying about the triangle determined by \(\underline{x} \) and \(\underline{y} \)—i.e. \(OAB \), where \(\overrightarrow{OA} = \underline{x}, \overrightarrow{OB} = \underline{y}. \)
8. Give a bijective proof that \(\binom{k}{r} \binom{n}{k} = \binom{n}{r} \binom{n-r}{k-r} \).

9. Let \(a_n \) denote the number of ways of tiling a \(2 \times n \) board by \(1 \times 2 \) rectangles, \(2 \times 3 \) rectangles, and \(2 \times 2 \) squares. These tiles can be placed horizontally or vertically. So \(a_1 = 1 \), \(a_2 = 3 \), and \(a_3 = 6 \). Find with proof a recursive formula for \(a_n \) for \(n \geq 4 \).