Suppose we are given a particular graph G on n vertices, and want to know whether it contains a k-clique. More generally, we might want to count how many k-cliques G has.

Question 1. Given an arbitrary graph G on n vertices and a (fixed) positive integer k, compute (as efficiently as possible) the number of k-cliques in G, and in particular determine whether it is zero.

Here we care about k some small fixed integer and n large. In the first instance we consider $k = 3$, i.e. we want to count triangles.

One way is to simply enumerate all triples of vertices $\{x, y, z\}$ and check whether each one is a triangle. This uses $\binom{n}{3}$, or crudely about $O(n^3)$ operations. We can do slightly better by considering every edge xy and counting counting how many common neighbors they have, i.e. the number of vertices z with $xz, yz \in E$, then summing up. However, if G has at least (say) $n^2/10$ edges (which it might) this doesn’t change the asymptotic.

It turns out, surprisingly, that it is possible to do significantly better than this.

Theorem 2. We can count the triangles in a graph G on n vertices in time $O(n^{2.373})$.

Proof. Identify the vertices of G with $\{1, \ldots, n\}$. Given our graph G, we’ll write down its adjacency matrix A. This is the $n \times n$ matrix such that

$$A_{ij} = \begin{cases} 1 & : ij \in E \\ 0 & : ij \notin E. \end{cases}$$

Note A is symmetric (i.e., $A_{ij} = A_{ji}$) and has zeroes on the diagonal.

Now we’re going to consider the matrix $B = A^2 = AA$. Its entries are

$$B_{ik} = \sum_{j=1}^{n} A_{ij}A_{jk} = \#\{j \in \{1, \ldots, n\}: ij \in E \text{ and } jk \in E\},$$

i.e. B_{ik} counts the number of common neighbours of i and j.

So, to find a triangle $\{i, j, k\}$, it suffices to look for i and k such that (i) $ik \in E$ and (ii) $B_{ik} > 0$, i.e. i and k have a common neighbour. In fact, the number of triangles is given by

$$6 \#\text{triangles} = \sum_{i, j, k=1}^{n} A_{ij}A_{jk}A_{ik}
\quad = \sum_{i, k=1}^{n} A_{ik} \sum_{j=1}^{k} A_{ij}A_{jk}
\quad = \sum_{i, k=1}^{n} A_{ik}B_{ik}.$$

Note the 6 is because each triangle $\{i, j, k\}$ will appear 6 times in the sum, once for each ordering of i, j, k.

So, if we can calculate the $n \times n$ matrix B somehow in $O(n^{2.373})$ time, we can count triangles in an extra $O(n^2)$ operations, which is much smaller. Hence we’re done if we know the following.
Theorem 3. We can multiply two \(n \times n \) matrices in time \(O(n^{2.373}) \).

This is the state of the art as of 2018 (due to Le Gall, 2014). It’s a slight improvement on the Coppersmith–Winograd algorithm (1990), which achieved \(O(n^{2.376}) \). It’s common to write \(\omega \) for “whatever the exponent in matrix multiplication is”; then we can also count triangles in time \(O(n^\omega) \). It’s widely believed that any \(\omega > 2 \) is achievable, but this is a big open problem.

These modern results are beyond our scope. However, we can give a sketch of the first result along these lines, due to Strassen: he showed you can multiply matrices in \(O(n^{\log_2 7}) \) time (so, about \(O(n^{2.8074}) \)).

Sketch proof of 2.8074. Instead of counting “operations” we’ll count how many multiplications we need to do to multiply \(n \times n \) matrices. It turns out counting additions etc. as well does not change the overall answer.

The first step is to show that you can multiply two \(2 \times 2 \) matrices using only 7 multiplications. This is surprising because naive matrix multiplication uses 8. This step is totally unenlightening: to compute
\[
\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}
\]
we compute the 7 products
\[
\begin{align*}
m_1 & = (a_{11} + a_{22})(b_{11} + b_{22}) \\
m_2 & = (a_{21} + a_{22})b_{11} \\
m_3 & = a_{11}(b_{12} - b_{22}) \\
m_4 & = a_{22}(b_{21} - b_{11}) \\
m_5 & = (a_{11} + a_{12})b_{22} \\
m_6 & = (a_{21} - a_{11})(b_{11} + b_{12}) \\
m_7 & = (a_{12} - a_{22})(b_{21} + b_{22})
\end{align*}
\]
and observe that every entry of the product matrix can be formed by a sum of \(m_1, \ldots, m_7 \):
\[
\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} m_1 + m_4 - m_5 + m_7 & m_3 + m_5 \\ m_2 + m_4 & m_1 - m_2 + m_3 + m_6 \end{pmatrix}
\]
i.e. using no further multiplications. [If these equations differ from Wikipedia, believe Wikipedia.]

In the second step, suppose we have \(4 \times 4 \) matrices \(A \) and \(B \). We can think of them as \(2 \times 2 \) matrices whose entries are \(2 \times 2 \) matrices:
\[
\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} A_{11} & B_{12} \\ A_{21} & B_{22} \end{pmatrix}.
\]
We can evaluate this product using 7 \(2 \times 2 \) matrix multiplications in the same way as step 1 (note we didn’t use in an important way that \(a_{ij} \), \(b_{ij} \) or that multiplication commutes). Each of these matrix multiplications requires 7 multiplications; so we need \(7^2 = 49 \) multiplications overall.

In the third step, suppose more generally have \(2^k \times 2^k \) matrices. Again by writing this as a \(2 \times 2 \) matrix of \(2^{k-1} \times 2^{k-1} \) matrices, we can do this recursively using \(7^k \) multiplications. Since \(7^k = (2^k)^{\log_2 7} \), rounding \(n \) up to the nearest power of 2 (filling with zeros) we can multiply an \(n \times n \) matrix in \(O(n^{\log_2 7}) \) operations.

This finishes the triangle-counting proof.

That’s good for counting 3-cliques. What about \(k \)-cliques, for general (fixed) \(k \)? If \(k \) is a multiple of 3, we can also prove:
Theorem 4. We can count $3k$-cliques in G in time $O_ε(n^{ωk})$.

Proof. The trick is to use the triangle case. Given G, we'll build a new graph G' with $O(n^k)$ vertices, such that triangles in G' correspond exactly to $3k$-cliques in G. Running the triangle-counting algorithm on G' then proves the result.

We choose $G' = (V', E')$ as follows: the vertices V' are exactly the k-cliques in G, and two k-cliques S, T form an edge whenever (i) $S \cup T$ is a $2k$-clique in G (so in particular, S, T are disjoint), and (ii) to avoid over-counting, we insist that every vertex $i \in S$ has a smaller label than every vertex $j \in T$ (or the same exchanging S and T).

Then every triangle $\{S_1, S_2, S_3\}$ in G' corresponds to a $3k$-clique $S_1 \cup S_2 \cup S_3$ in G, and conversely for every $3k$-clique A in G there is a unique way to split it into a triangle $\{S_1, S_2, S_3\}$ in G' with $A = S_1 \cup S_2 \cup S_3$.

Note we can just list k-cliques and $2k$-cliques in G in time $O(n^{2k})$, which is smaller than $O(n^{ωk})$. □

Remark 5. We can do something similar for k-cliques where k is not a multiple of 3, by splitting $k = k_1 + k_2 + k_3$ as evenly as possible.

Remark 6. These algorithms are the best known way of counting k-cliques in a graph G for fixed k.