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COUNTING CLIQUES IN GRAPHS [M10]

Suppose we are given a particular graph G on n vertices, and want to know whether it contains a
k-clique. More generally, we might want to count how many k-cliques G has.

Question 1. Given an arbitrary graph G on n vertices and a (fixed) positive integer k, compute (as
efficiently as possible) the number of k-cliques in G, and in particular determine whether it is zero.

Here we care about k some small fixed integer and n large. In the first instance we consider k = 3,
i.e. we want to count triangles.

One way is to simply enumerate all triples of vertices {x, y, z} and check whether each one is a
triangle. This uses

(
n
3

)
, or crudely about O(n3) operations. We can do slightly better by considering

every edge xy and counting counting how many common neighbors they have, i.e. the number of
vertices z with xz, yz ∈ E, then summing up. However, if G has at least (say) n2/10 edges (which it
might) this doesn’t change the asymptotic.

It turns out, surprisingly, that it is possible to do significantly better than this.

Theorem 2. We can count the triangles in a graph G on n vertices in time O(n2.373).

Proof. Identify the vertices of G with {1, . . . , n}. Given our graph G, we’ll write down its adjacency
matrix A. This is the n× n matrix such that

Aij =

{
1 : ij ∈ E

0 : ij /∈ E
.

Note A is symmetric (i.e., Aij = Aji) and has zeroes on the diagonal.
Now we’re going to consider the matrix B = A2 = AA. Its entries are

Bik =

n∑
j=1

AijAjk = #{j ∈ {1, . . . , n} : ij ∈ E and jk ∈ E},

i.e. Bik counts the number of common neighbours of i and j.
So, to find a triangle {i, j, k}, it suffices to look for i and k such that (i) ik ∈ E and (ii) Bik > 0,

i.e. i and k have a common neighbour. In fact, the number of triangles is given by

6#triangles =

n∑
i,j,k=1

AijAjkAik

=

n∑
i,k=1

Aik

k∑
j=1

AijAjk

=

n∑
i,k=1

AikBik .

Note the 6 is because each triangle {i, j, k} will appear 6 times in the sum, once for each ordering of
i, j, k.

So, if we can calculate the n× n matrix B somehow in O(n2.373) time, we can count triangles in an
extra O(n2) operations, which is much smaller. Hence we’re done if we know the following.
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Theorem 3. We can multiply two n× n matrices in time O(n2.373).

This is the state of the art as of 2018 (due to Le Gall, 2014). It’s a slight improvement on the
Coppersmith–Winograd algorithm (1990), which achieved O(n2.376). It’s common to write ω for “what-
ever the exponent in matrix multiplication is”; then we can also count triangles in time O(nω). It’s
widely believed that any ω > 2 is achievable, but this is a big open problem.

These modern results are beyond our scope. However, we can give a sketch of the first result
along these lines, due to Strassen: he showed you can multiply matrices in O(nlog2 7) time (so, about
O(n2.8074)).

Sketch proof of 2.8074. Instead of counting “operations” we’ll count how many multiplications we need
to do to multiply n × n matrices. It turns out counting additions etc. as well does not change the
overall answer.

The first step is to show that you can multiply two 2 × 2 matrices using only 7 multiplications.
This is suprising because naive matrix multiplication uses 8. This step is totally unenlightening: to
compute (

a11 a12
a21 a22

)(
b11 b12
b21 b22

)
we compute the 7 products

m1 = (a11 + a22)(b11 + b22)

m2 = (a21 + a22)b11

m3 = a11(b12 − b22)

m4 = a22(b21 − b11)

m5 = (a11 + a12)b22

m6 = (a21 − a11)(b11 + b12)

m7 = (a12 − a22)(b21 + b22)

and observe that every entry of the product matrix can be formed by a sum of m1, . . . ,m7:(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
m1 + m4 −m5 + m7 m3 + m5

m2 + m4 m1 −m2 + m3 + m6

)
i.e. using no further multiplications. [If these equations differ from Wikipedia, believe Wikipedia.]

In the second step, suppose we have 4×4 matrices A and B. We can think of them as 2×2 matrices
whose entries are 2× 2 matrices: (

A11 A12

A21 A22

)(
A11 B12

B21 B22

)
.

We can evaluate this product using 7 2× 2 matrix multiplications in the same way as step 1 (note we
didn’t use in an important way that aij , bij or that multiplication commutes). Each of these matrix
multiplications requires 7 multiplications; so we need 72 = 49 multiplications overall.

In the third step, suppose more generally have 2k × 2k matrices. Again by writing this as a 2 × 2
matrix of 2k−1×2k−1 matrices, we can do this recursively using 7k multiplications. Since 7k = (2k)log2 7,
rounding n up to the nearest power of 2 (filling with zeros) we can multiply an n×n matrix in O(nlog2 7)
operations. �

This finishes the triangle-counting proof. �

That’s good for counting 3-cliques. What about k-cliques, for general (fixed) k? If k is a multiple
of 3, we can also prove:
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Theorem 4. We can count 3k-cliques in G in time Oε(n
ωk).

Proof. The trick is to use the triangle case. Given G, we’ll build a new graph G′ with O(nk) vertices,
such that triangles in G′ correspond exactly to 3k-cliques in G. Running the triangle-counting algorithm
on G′ then proves the result.

We choose G′ = (V ′, E′) as follows: the vertices V ′ are exactly the k-cliques in G, and two k-cliques
S, T form an edge whenever (i) S ∪ T is a 2k-clique in G (so in particular, S, T are disjoint), and (ii)
to avoid over-counting, we insist that every vertex i ∈ S has a smaller label than every vertex j ∈ T
(or the same exchanging S and T ).

Then every triangle {S1, S2, S3} in G′ corresponds to a 3k-clique S1 ∪ S2 ∪ S3 in G, and conversely
for every 3k-clique A in G there is a unique way to split it into a triangle {S1, S2, S3} in G′ with
A = S1 ∪ S2 ∪ S3.

Note we can just list k-cliques and 2k-cliques in G in time O(n2k), which is smaller than O(nωk). �

Remark 5. We can do something similar for k-cliques where k is not a multiple of 3, by splitting
k = k1 + k2 + k3 as evenly as possible.

Remark 6. These algorithms are the best known way of counting k-cliques in a graph G for fixed k.


