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61DM Handout: Counting

Enumerative combinatorics refers to counting problems. We use [n] to denote the set of
positive integers from 1 to n.

A permutation of a set S is an ordering of the elements of S. Equivalently, if S has n
elements, it is a map from [n] to S such that no two elements of [n] map to the same element of
S. If S = {a, b, c}, then S has six permutations: abc, acb, bac, bca, cab, and cba.

Example 1: Permutations. Let an denote the number of permutations of an n-element set S.
Note that this number only depends on the size of the set S. It satisfies a0 = 1 and an = nan−1

for each positive integer n. Indeed, there are n ways to map the number n, and an−1 ways
to map the remaining elements. This an example of a recursive formula, which shows how to
determine a later term in a sequence from earlier terms. We have an = n!, where 0! = 1 and,
for n > 0, n! = 1 · 2 · · ·n =

∏n
i=1 i.

Example 2: Combinations. The number of ways of choosing a subset of k elements from
an n element set is denoted by

(
n
k

)
. This satisfies

(
n
k

)
= n!

k!(n−k)! . Indeed, we can form each

permutation by first picking out the first k elements. This can be done in
(
n
k

)
ways. We can

then order these k elements in k! ways. To complete the permutation, we need to order the
remaining n− k elements, and this can be done in (n− k)! ways. Thus, n! =

(
n
k

)
k!(n− k)!.

A map f : A → B is an injection (in other words, is one-to-one) if each element of B is
mapped to by at most one element of A. For example, g : R→ R given by g(x) = x2 is not an
injection since g(−1) = g(1). However, if we restrict the domain of g to the nonnegative reals,
then g is an injection. The map f is a surjection (in other words, is onto) if each element of
the range gets mapped to. Note that the example g described above is not a surjection since no
negative number gets mapped to by g. If we restrict the range of g to the nonnegative reals, then
g becomes a surjection. A bijection is a map which is both an injection and a surjection. If we
restrict both the domain and range of g to the nonnegative real numbers, then g is a bijection.

Two sets A and B have the same size if there is a bijection from A to B. For example
A = {a, b, c} and B = {1, 2, 3} are of the same size because there is a way of matching up each
element of A with an element of B given by the bijection f : A → B defined by f(a) = 1,
f(b) = 2, and f(c) = 3.

Example 3: Symmetry of the binomial coefficients. We have the identity(
n

k

)
=

(
n

n− k

)
.

One way to see this is to substitute into the formula established in Example 2 above:(
n

n− k

)
=

n!

(n− k)!(n− (n− k))!
=

n!

(n− k)!k!
=

(
n

k

)
.

Another way is by a bijective proof. To do this, we need to find sets A and B with |A| =
(
n
k

)
and |B| =

(
n

n−k

)
and a bijection f from A to B. So let A be the set of k-element subsets of [n]
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and B be the set of (n− k)-element subsets of [n]. Define the map f : A→ B by mapping a set
S ⊂ A with |S| = k to its complement [n] \ S ∈ B.

Double counting is another combinatorial technique. It is a way of proving an identity
through counting the number of elements in a set in two different ways.

Example 4: Pascal’s identity: For 1 ≤ k ≤ n,(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

The left hand side counts the number of ways of choosing a k-element subset of [n]. The number
n is either in the k-set or not in the k-set. If n is in the k-set, then there are

(
n−1
k−1

)
ways to

complete the k-set, by picking any k− 1 elements from the remaining n− 1 elements. If n is not
in the k-set, then there are

(
n−1
k

)
ways to complete the k-set, by picking any k elements from

the remaining n − 1 elements. An alternative proof of Pascal’s identity is by plugging in the
formula for

(
n
k

)
and verifying both sides are the same.

Example 5: We have the identity (
2n

n

)
=

n∑
k=0

(
n

k

)2

.

The left hand side counts the number of ways of choosing n elements from [2n]. Note that, for
each n-element subset S of [2n], its intersection with [n] has size k, for some 0 ≤ k ≤ n. There
are thus

(
n
k

)
ways of choosing k elements to be in S from [n]. Having picked the intersection

S ∩ [n], we have |S ∩ [2n] \ [n])| = n − k. We could identity the k elements in [2n] \ [n] that
we choose not to include in S, and there are

(
n
k

)
ways of doing this. These k elements in [n]

to include in S and the k elements in [2n] \ [n] we choose to not include in S determine the

n-element subset of [2n]. Thus
(
2n
n

)
=
∑n

k=0

(
n
k

)2
.

Example 6: Counting subsets. Let tn denote the number of subsets of [n]. For each subset
S ⊂ [n − 1], we get two subsets of [n] containing S, namely S and S ∪ {n}. We thus have
tn = 2tn−1. By induction using t0 = 1, we get tn = 2n. This is an example of a linear

homogeneous recurrence relation, where the nth term in the sequence is a linear combination of
a constant number of preceding terms.

Example 7: Counting tilings and the Fibonacci sequence. The Fibonacci sequence F1 = 1, F2 =
1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 34, . . . satisfies the linear homogeneous
recurrence relation Fn+2 = Fn+1 + Fn.

Let bn denote the number of ways of tiling a 2×n board (consisting of two rows of n squares
in each row) with 1× 2 rectangles. For tiling, note that the 1 × 2 rectangle can be used either
horizontally as a 1 × 2 rectangle or vertically as a 2 × 1 rectangle. We will prove bn = Fn+1.
Indeed, one can check this identity holds for n = 0, 1, 2. For larger n, observe that in a tiling
either the top left square in the 2×n board is in a vertical 2× 1 or in a horizontal 1× 2. In the
former case, there are bn−1 choices to complete the tiling. In the latter case, the 1× 2 rectangle
below the one in the top left corner must be filled by another horizontal 1×2, leaving a remaining
2× (n− 2) board with bn−2 ways to fill it. This gives the recursive equation bn = bn−1 + bn−2.
By induction, bn = Fn+1.
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