Mathematics Department Stanford University
Math 61DM Practice Final Examination v.2, December 12, 2016

3 Hours

Unless otherwise indicated, you can use results covered in lecture and homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded

39 total points, score will be out of 35 (you may view 3(b) as extra credit)

<table>
<thead>
<tr>
<th>Q.1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q.2</td>
<td></td>
</tr>
<tr>
<td>Q.3</td>
<td></td>
</tr>
<tr>
<td>Q.4</td>
<td></td>
</tr>
<tr>
<td>Q.5</td>
<td></td>
</tr>
<tr>
<td>T/35</td>
<td></td>
</tr>
</tbody>
</table>

Name (Print Clearly): ____________________________

I understand and accept the provisions of the honor code (Signed) ____________________________
1(a) (3 points): Find all eigenvalues and corresponding eigenvectors for the matrix
\[A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}. \]

1(b) (3 points): Find an orthonormal basis for the subspace of \(\mathbb{R}^4 \) spanned by the vectors
\[v_1 = (1, 1, 0, 0)^T, v_2 = (0, 1, 1, 0)^T, v_3 = (0, 0, 1, 1)^T. \]
Let A be an $n \times n$ matrix. Let $f(\lambda) = \det(A - \lambda I)$.

2(a) (2 points): Prove that $f(\lambda)$ is a polynomial of degree n in λ.

2(b) (2 points): What is the coefficient of λ^n in $f(\lambda)$?

2(c) (2 points): What is the coefficient of λ^{n-1} in $f(\lambda)$?

2(d) (2 points) Prove that $\text{Tr}(A) = \sum_{i=1}^{n} \lambda_i$, where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A.
3(a) (3 points.) What is the statement of the finite field Kakeya theorem?

3(b) (4 points.) What is the main idea of the proof?
4(a) (4 points): Let $A = (a_{ij})$ be an $n \times n$ symmetric matrix. The matrix A is called positive definite if for every nonzero column vector $x \in \mathbb{R}^n$, we have $x^T Ax$ is positive. Prove that A is positive definite \iff all the eigenvalues of A are positive.

Hint: Spectral Theorem.

(b) (3 points): Can the adjacency matrix of a graph without loops be positive definite? Justify your answer.
5(a) (3 points): Suppose G is a graph with an ordering of its vertices v_1, \ldots, v_n such that each vertex v_i is adjacent to at most d vertices v_j with $j < i$. Prove that the chromatic number of G is at most $d + 1$.

(b) (4 points): Prove that for every graph G on n vertices, G or its complement has chromatic number at least \sqrt{n}.