1. Using two separate methods:
 (i) by computing $\det A$ and $\text{adj } A$, and
 (ii) using elementary row operations to reduce $(A|I)$ to $(I|B)$,
 calculate the inverse of the 3×3 matrix
 \[
 \begin{pmatrix}
 1 & 4 & 3 \\
 1 & 4 & 5 \\
 2 & 5 & 1 \\
 \end{pmatrix}
 \]

2. Let
 \[
 \Delta = \det \begin{pmatrix}
 1 & 1 & \cdots & 1 \\
 x_1 & x_2 & \cdots & x_n \\
 \vdots & \vdots & \cdots & \vdots \\
 x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \\
 \end{pmatrix},
 \]
 which is called a Vandermonde determinant. Show that
 \[
 \Delta = \prod_{1 \leq i < j \leq n} (x_j - x_i).
 \]
 (Hint: Consider using row operations to reduce the n-variable case to the $(n-1)$-variable case.)

3. Suppose A, B are $n \times n$ matrices and that $AB = I$ (so B is a “right inverse” of A; we do not assume $BA = I$ so we are not given that B is the full inverse A^{-1}).
 (i) Prove that $\det A \neq 0$.
 (ii) Prove that $B = (\det A)^{-1} \text{adj } A$, i.e. that B is necessarily is the unique inverse $(\det A)^{-1} \text{adj } A$ of A and so $BA = I$ after all.
 (iii) Give an example of an $n \times m$ matrix C and an $m \times n$ matrix D such that $CD = I_n$ but $DC \neq I_m$.

4. Let A_1, \ldots, A_m be distinct subsets of $[n]$. Assume that their pairwise symmetric differences have only two sizes (so there are positive integers a and b such that $|A_i \Delta A_j| = a$ or b for all $1 \leq i < j \leq m$). Prove that $m \leq 1 + \frac{n(n+1)}{2}$.
 Give an example of such a family of size $m = 1 + \frac{n(n-1)}{2}$, for each n.
 [The symmetric difference $A \Delta B$ of two sets A, B is the set $(A \setminus B) \cup (B \setminus A)$ of elements in A or B, but not both.]

5. Let S be a subset of F_3^n and suppose that for every pair of distinct vectors $u, v \in S$ there is an index i, $1 \leq i \leq n$, for which $v_i \equiv u_i + 1 \pmod{3}$. Show that $|S| \leq 2^n$.
 [Here u_i is the i-th coordinate of u, and v_i is the i-th coordinate of v. Also, the above property (that $v_i \equiv u_i + 1 \pmod{3}$ for some i) holds for all $2\binom{|S|}{2}$ ordered pairs (u, v) with $u, v \in S$ distinct.]

6. A spherical 2-distance set S is a collection of points in \mathbb{R}^n such that each has distance one from the origin and the pairwise distances of points in S take on only two values (i.e. $\|x\| = 1$ for each $x \in S$ and there exist positive real numbers $a, b \in \mathbb{R}$ such that $\|x - y\| = a$ or b for each distinct pair $x, y \in S$).
 Show that $|S| \leq n(n + 3)/2$.
 [You can refer to M15 in explaining your answer.]
 (Remark: There are beautiful geometric examples showing this bound is tight for $n = 2, 6, 22$.)