

Demand Functions

- A <u>Marshallian</u> demand function relates the quantity demanded of a good to prices and income
- Demand depends on all prices
- Preferences and constraints together determine the shape of demand

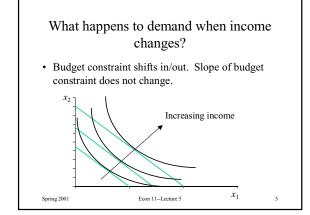
$$X_1 = f(p_1, p_2, I)$$

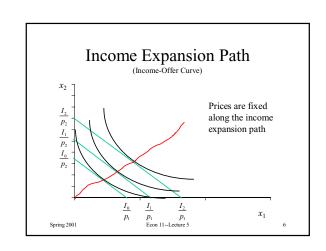
 $X_2 = g(p_1, p_2, I)$

Spring 2001

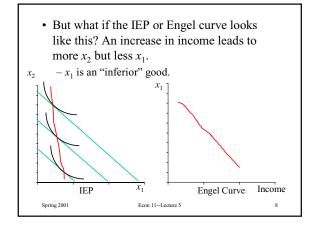
Econ 11--Lecture 5

Comparative Statics • What happens to demand when prices or income changes? -e.g., if prices double and income doubles, what happens to demand? $\frac{I}{2p_1}$ Spring 2001 Spring 2001 Spring 2001 Spring 2001


Zero Degree Homogeneity of Demand

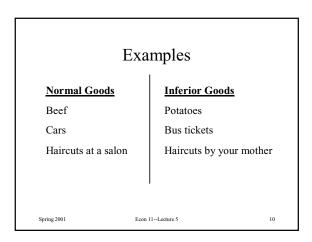

- A function $f(x_1, x_2, ... x_n)$ is homogenous of degree k if $f(tx_1, tx_n, ... tx_n) = t^k f(x_1, x_n, ... x_n)$
- Marshallian demand functions are homogenous of degree zero. This fact is consistent with the absence of "money illusion."

$$X_1(p_1, p_2, I) = X_1(2p_1, 2p_2, 2I)$$


Spring 2001

Econ 11--Lecture 5

Engel Curves • Engel curve relates income to quantity demanded. A "Normal" Good when income rises, the consumer buys more of x_1 Spring 2001 Econ 11-Lecture 5 Income



Normal and Inferior Goods

- *Normal Good*: Demand for a good x increases with income
 - This implies that the slope of the Engel curve is positive. $\partial X = 0$
- *Inferior Good*:Demand for a good x decreases with income
 - This implies that the slope of the Engel curve is negative. $\frac{\partial X}{\partial x} < 0$.

Spring 2001

Econ 11--Lecture 5

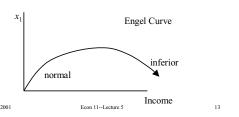
All Goods Can't Be Inferior • "Proof" #1: If income expands, the IEP cannot point toward the origin. x_2 x_2 x_3 x_4 Both Normal x_4 x_4 Inferior x_4 Normal x_4 Normal x_5 Inferior x_5 Inferior x_6 Inferior

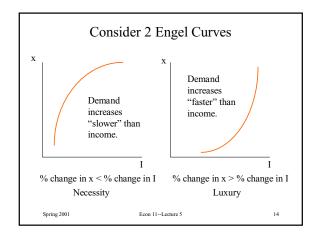
All Goods Can't Be Inferior

• Proof #2: use budget constraint.

$$p_1 x_1 + p_2 x_2 = I$$

$$p_1 \frac{\partial x_1}{\partial I} + p_2 \frac{\partial x_2}{\partial I} = I$$


Both $\frac{\partial x_1}{\partial I}$ and $\frac{\partial x_2}{\partial I}$ can't be negative.


Thus, both x_1 and x_2 can't be inferior goods.

Spring 2001 Econ 11--Lecture 5 12

A Good Can't be Inferior at all Income Levels

- Why not? Start with zero income. As income increases, if you ever consume that good, it is normal (at that income level).
- In order for a consumer to purchase <u>less</u> of a good as income increases, he must once have consumed <u>some</u> of it.

Elasticity

- The elasticity of y with respect to x is defined as the percentage change in y induced by a <u>small</u> percentage change in x.
- Why do we need this concept? It is unit free.
 - e.g. How much coffee are you willing to trade for a bagel? Determined by the slope of indifference curve = MRS.
 - The value of the MRS depends upon the "units" of coffee we are using.

Spring 2001 Econ 11--Lecture 5 15

Elasticity

• Elasticity of y with respect to x is defined as the percentage change in y induced by a small percentage change in X.

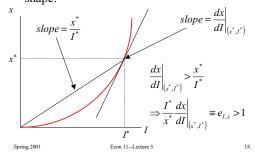
$$\varepsilon_{y,x} = \frac{dy}{dx} \cdot \frac{x}{y} \approx \frac{\Delta y}{y} / \frac{\Delta x}{x}$$

$$\varepsilon_{Y,X} = \frac{d \ln y}{d \ln x}$$
 since $d \ln y = \frac{dy}{y}$

Spring 2001 Econ 11-Lecture 5 16

Income elasticity of demand

• Elasticity of a good, x, with respect to income.


$$\frac{dx}{dI} \cdot \frac{I}{x} \equiv e_{x,I}$$

Definitions

 $e_{x,I} < 0$ Inferior $e_{x,I} < 1$ $e_{x,I} > 0$ Normal $e_{x,I} > 1$

Spring 2001 Econ 11--Lecture 5 17

Necessity Luxury • Engel curves for luxuries have a convex shape:

Engel's Law

- Engel's Law: "Food is a necessity"
- Expenditure on Food / Income
- 1935-1939
- 35.4%
- 1952
- 32.2%
- 1963
- 25.2%
- 1998
- 19%

Econ 11--Lecture 5

21

23

- If x is a necessity, then as income increases, the share of income spent on x decreases:
 - Define the share of income spent on x as S_x

$$S_x = \frac{xp_x}{I}$$

− I will prove that if *x* is a necessity:

$$\frac{dS_x}{dI} < 0$$

Spring 2001

Econ 11--Lecture 5

$$\log S_x = \log x + \log p_x - \log I$$

Totally differentiate this log "share" equation:

$$d \log S_x = d \log x + d \log p_x - \Delta \log I$$

Hold prices constant, i.e., set $d \log p_x = 0$

$$\Rightarrow d \log S_x = d \log x - d \log I$$

$$\Rightarrow \frac{d \log S_x}{d \log I} = \frac{d \log x}{d \log I} - 1$$

$$\Rightarrow \frac{I}{S_x} \frac{dS_x}{dI} = \frac{I}{x} \frac{dx}{dI} - 1$$

 $\frac{I}{S_x} \frac{dS_x}{dI} = \frac{I}{x} \frac{dx}{dI} - 1$

$$\Rightarrow \frac{I}{S_x} \frac{dS_x}{dI} = e_{I,x} - 1$$

but for necessities, $e_{I,x} < 1$

$$\Rightarrow \frac{I}{S_x} \frac{dS_x}{dI} < 0 \Rightarrow \frac{dS_x}{dI} < 0 \qquad \text{so the data confirm} \\ \text{Engel's Law}$$

Spring 2001

Econ 11--Lecture 5 22

- · The expenditure weighted sum of income elasticities is equal to 1.
- Thus, all goods cannot be necessities. Nor can all goods be luxuries.

$$S_1 e_{I,1} + S_2 e_{I,2} = 1$$

where

$$S_1 = \frac{x_1 p}{T}$$

$$S_1 = \frac{x_1 p_1}{I}$$
 $S_2 = \frac{x_2 p_1}{I}$

Spring 2001

Econ 11--Lecture 5

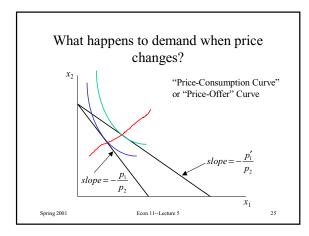
· Proof: Start with the budget constraint

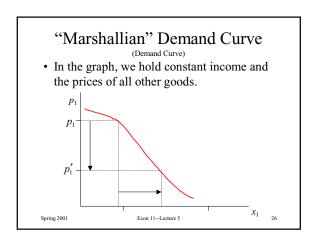
$$p_{1}x_{1} + p_{2}x_{2} = I$$

$$\Rightarrow p_{1}\frac{dx_{1}}{dI} + p_{2}\frac{dx_{2}}{dI} = 1$$

$$\Rightarrow \frac{x_{1}}{I}\frac{I}{x_{1}}p_{1}\frac{dx_{1}}{dI} + \frac{x_{2}}{I}\frac{I}{x_{2}}p_{2}\frac{dx_{2}}{dI} = 1$$

$$\Rightarrow \left(\frac{x_{1}p_{1}}{I}\right)\left(\frac{I}{x_{1}}\frac{dx_{1}}{dI}\right) + \left(\frac{x_{2}p_{2}}{I}\right)\left(\frac{I}{x_{2}}\frac{dx_{2}}{dI}\right) = 1$$


Spring 2001


 $\Rightarrow S_1 e_{I,1} + S_2 e_{I,2} = 1$

Econ 11--Lecture 5

Econ 11--Lecture 5

24

The Law of Demand

- The 'Marshallian" demand curve slopes downward (usually).
 - The "weak" law of demand.
 - It is theoretically possible for the Marshallian demand curve to slope upward.
- The "Marshallian demand curve is the demand curve that we most often use. Thus, we often just call it the "demand curve."

Spring 2001

Econ 11--Lecture 5

27

Econ 11--Lecture 5