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Abstract

Consider a sequence (Xk : k ≥ 0) of regularly varying independent and identically
distributed random variables with mean 0 and finite variance. We develop efficient
rare-event simulation methodology associated with large deviation probabilities for the
random walk (Sn : n ≥ 0). Our techniques are illustrated by examples, including large
deviations for the empirical mean and path-dependent events. In particular, we describe
two efficient state-dependent importance sampling algorithms for estimating the tail of
Sn in a large deviation regime as n ↗ ∞. The first algorithm takes advantage of large
deviation approximations that are used to mimic the zero-variance change of measure.
The second algorithm uses a parametric family of changes of measure based on mixtures.
Lyapunov-type inequalities are used to appropriately select the mixture parameters in
order to guarantee bounded relative error (or efficiency) of the estimator. The second
example involves a path-dependent event related to a so-called knock-in financial option
under heavy-tailed log returns. Again, the importance sampling algorithm is based on a
parametric family of mixtures which is selected using Lyapunov bounds. In addition to
the theoretical analysis of the algorithms, numerical experiments are provided in order
to test their empirical performance.
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tail; strong efficiency; rare-event simulation

2000 Mathematics Subject Classification: Primary 60G50; 60J05; 68W40
Secondary 60G70

1. Introduction

Our goal is to develop efficient rare-event simulation estimators for large deviation probabili-
ties of regularly varying random walks (an estimator for such large deviation probabilities is said
to be strongly efficient if its coefficient of variation remains bounded as the target probability
approaches 0).

The development of analytical or numerical methods for random walks (RWs) often suggest
useful techniques that are applicable to more general models. A classical example that illustrates
how the ideas underlying the structure of RWs can provide insight into more general settings is
given by Cramer’s theorem and its connection to large deviations theory for systems with light-
tailed input. Loosely speaking, these are systems in which there is a law of large numbers or
‘averaging principle’operating directly to random variables that have a finite moment generating
function (see, for instance, Dembo and Zeitouni (1998, Chapter 5)). Cramer’s theorem is
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a celebrated result that captures the exact exponential rate of decay for the probability that
the empirical mean of n light-tailed independent and identically distributed (i.i.d.) random
variables (RVs) deviates from the (population) mean by amounts of order O(1) as n↗∞. The
principles underlying Cramer’s theorem have found far reaching generalizations, pioneered by
the work of Donsker and Varadhan (1975), not only to random walks (in the form, for instance,
of Sanov’s theorem—see Dembo and Zeitouni (1998, Section 3.1)) but also to much more
general systems and processes. In addition, it is of great value that some of the basic proof
techniques underlying the ideas behind Cramer’s theorem in turn allow us to develop a rich
set of computational tools that are useful to estimate large deviation probabilities efficiently
via importance sampling. Indeed, it is well known that from the proof of asymptotic lower
bounds in traditional large deviations results we can obtain a change of measure that often (but
unfortunately not always—see Glasserman and Wang (1997) and Glasserman and Kou (1995))
can be proved to be efficient; Dupuis and Wang (2004), (2005) have developed techniques
to guarantee the efficiency of exponential changes of measure. For excellent expositions of
rare-event simulation methodology, see Bucklew (2004, Chapter 4), Juneja and Shahabuddin
(2006), and Asmussen and Glynn (2007, Chapter VI).

RWs are used to build a large variety of stochastic models such as queueing models and
insurance/reservoir processes; see Asmussen (2003, Chapter 3). Some of these models are used
to study phenomena that exhibit certain stylized features that are well captured by heavy-tailed
characteristics in the input data; see Adler et al. (1998). This motivates the large deviation
analysis of RWs with heavy-tailed features. Recently, Hult and Lindskog (2005) and Hult
et al. (2005) have developed sample path large deviations for regularly varying processes and
other results that parallel some of the development reached by the light-tailed counterpart.
However, contrary to the light-tailed situation, the proof techniques do not lead themselves
directly to the design of efficient importance sampling algorithms for rare-event simulation.
Other large deviations results have recently been obtained for heavy-tailed processes with
Markovian structure; see, for instance, Foss and Korshunov (2006) and Foss et al. (2007). Our
techniques here can also be applied to these types of processes, this research will be reported
elsewhere.

The connection between large deviations theory for heavy-tailed systems and importance
sampling has received substantial attention in recent years. The work by Asmussen et al.
(2000) provides a number of examples that indicates some of the problems that arise when
trying to apply importance sampling ideas based on large deviations theory for systems with
heavy-tailed characteristics; see also Bassamboo et al. (2005) for additional issues arising in
rare-event simulation for systems with heavy tails. Perhaps the simplest way to see the types of
issues that arise in rare-event simulation of systems with heavy-tailed features stems from the
fact that often, in the heavy-tailed setting, the large deviations behavior of the system is caused
by one or a few components with ‘extreme’ behavior, while the rest of the system is operating
in ‘normal’ circumstances. Implementing a change of measure with such characteristics is not
entirely obvious. The reason is that the contribution to the variances from the sample paths that
lie in the large deviations domain for which none or more than just a few components exhibit
‘extreme’ behavior is nonnegligible. It is then important to have a good understanding of the
contribution of the sample paths that will add to the variance significantly, but are negligible in
terms of the most likely asymptotic behavior of the system.

Recently, state-dependent importance sampling (SDIS) has proved to be useful in developing
efficient simulation estimators. For instance, Blanchet and Glynn (2007) took advantage of
well-known asymptotics in the design of an SDIS algorithm for the tail of the maximum of
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an RW with heavy-tailed increments, including regularly varying, Weibull, lognormal, and
many other types of heavy-tailed distributions. Blanchet and Glynn (2007) also introduced the
use of Lyapunov inequalities to test the efficiency of SDIS schemes. Blanchet et al. (2007)
developed an efficient SDIS algorithm for the tail of the steady-state delay in the G/G/1 queue
with regularly varying input. Blanchet et al.’s (2007) algorithm is applied to the regenerative
ratio representation for steady-state measures whose main ideas can be applied to more general
queueing systems such as multiserver queues; see Blanchet et al. (2008). Blanchet and Liu
(2006) also considered rare-event simulation for the empirical mean of i.i.d. regularly varying
RVs. Blanchet and Liu (2006) developed an algorithm that is close in spirit to that of Blanchet
and Glynn (2007), in the sense that their importance sampling scheme takes advantage of
well-known asymptotics (although in contrast to Blanchet and Glynn (2007), the change of
measure proposed by Blanchet and Liu (2006) is time inhomogeneous). In this work we discuss
important implementation issues that were left open in Blanchet and Liu’s (2006) development,
such as the additional complexity involved in generating paths under Blanchet and Liu’s (2006)
proposed change of measure. In addition, we propose a different SDIS algorithm that copes
with the problem of variate generation under their change of measure. It is important to note
that the new algorithm requires only an asymptotic lower bound for the probability to claim the
decaying rate of the theoretical limit. Both the asymptotic upper bound for such probability
and the proof of efficiency of the importance sampling algorithm are obtained via Lyapunov
inequalities. Thereby, the large deviations analysis and importance sampling are connected in
the same spirit as in the light-tailed situations discussed previously.

In order to describe more precisely the types of results that we develop, let S0 = 0 and define
Sn = X1 + · · · + Xn, where the Xis have regularly varying right tails with index α > 2 (i.e.
P(X > xt)/ P(X > t) → x−α as t ↗ ∞ for each x ∈ (0,∞)). Assume that the Xis have
mean 0 and finite variance. We will develop an efficient importance sampling methodology
for estimating large deviation probabilities, such as P(Sn > b) when n and b ≥ cn1/2+ε (for
any ε > 0) and P(mink≤n Sk ≤ −a, Sn > b), assuming, for instance, that a = nγ > 0 and
b = cn > 0 for some γ and c > 0. The last probability can be interpreted as the chance of
exercising a financial call option that is activated only if the underlying price hits a minimum
threshold before maturity—such a financial contract is a knock-in option, more precisely, it is
a down-and-in call option.

As we indicated before, in order to prove efficiency of our estimator, we do not require to have
exact large deviations (although such results obviously exist for the empirical mean and are due
to Nagaev (1969a), (1969b); see also Rozovskii (1989)). It suffices to have an asymptotic lower
bound for the probability of interest. In order to develop an upper bound for the second moment
of our estimator (and, by Jensen’s inequality, an upper bound for the probability of interest),
we take advantage of a Lyapunov inequality. We believe that the technique can potentially be
sharpened to obtain exact asymptotics (rather than just so-called ‘big O’ asymptotics), but we
do not pursue this line of research here; we content ourselves with proving efficiency of the
scheme and with providing a method that allows us to connect large deviations estimates with
rare-event simulation via importance sampling, which is one of the main points that we aim to
convey.

Some remarkable features of our results here concern the spatial scales and the efficiency
criteria that are applicable to algorithms relative to the standard results that are well known for
the light-tailed counterpart. In the light-tailed case, the standard exponential change of measure
obtained directly from the proof of the lower bound in Cramer’s theorem yields an algorithm
that can be used to estimate P(Sn > b), say if c0n

1/2+ε ≤ b ≤ c1n (for any c0, c1 > 0 and
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ε ∈ (0, 1
2 ); see Sadowsky and Bucklew (1990) or the text of Bucklew (2004, Chapter 3)).

The algorithm can only be proved to be weakly efficient (which means that the coefficient of
variation is not bounded, but grows slowly as n ↗ ∞). In contrast, our algorithm for heavy-
tailed RWs can be guaranteed to apply throughout the large deviations region, b ≥ γ n for
γ > 0. The algorithms that we propose here also cover moderate deviations, since we only
assume that b ≥ cn1/2+ε for some c > 0 and any ε > 0. In addition, our algorithms can be
shown to be strongly efficient in the sense that the coefficient of variation remains bounded as
n↗∞.

Rare-event simulation for sums of heavy-tailed increments has been the topic of several
papers in the literature. However, most of the previous work in this line has considered the
case in which n is fixed (n is often allowed to be an RV with exponentially decaying tails) and
b ↗∞. This situation is motivated by the problem of efficient estimation of the tail distribution
of the steady-state waiting time of the M/G/1 queue, which can be expressed as a sum of a
random number of positive i.i.d. RVs with a geometric distribution by virtue of the Pollaczek–
Khintchine representation. Several efficient algorithms have been developed for the situation in
which n is fixed. The first algorithm which applies to the case of regularly varying increments
and is based on conditional Monte Carlo was proposed by Asmussen et al. (2000), Juneja and
Shahabuddin (2002) proposed an importance sampling algorithm based on hazard rate twisting.
Asmussen and Kroese (2006) proposed improved estimators that are strongly efficient and have
excellent practical performance. Dupuis et al. (2006) proposed algorithms that are based on
SDIS. Their approach, motivated from a control-theoretic perspective, introduced the use of
mixture samplers such as those discussed here. Their development is not designed to cover the
case in which n is large and the techniques used to prove efficiency are completely different to
the ones that we propose here.

Our general strategy involves three steps. First, we propose a parametric family of impor-
tance sampling distributions for the increments of the RW. The parameters of the family are
allowed to depend on the current position of the RW. Such a parametric family captures the
asymptotic behavior of the RW conditional on the occurrence of a large deviations event. Since
we are in a heavy-tailed setting, such a large deviations event is expected to be caused by a
single large jump. As a consequence, the parametric family of distributions takes the form of
a mixture: with some probability, say p, determined using a Lyapunov inequality, as we will
explain, we sample the next increment (given the current state of the RW) conditional on it being
large, and with probability (1− p) we sample basically from the nominal (original) increment
distribution. Then, we need to tune the parameters of the mixture distributions. This tuning
is done in the second and the third steps of the procedure. These two steps involve solving a
Lyapunov inequality that is required to upper bound the second moment of the estimator. Such
an inequality is basically a system of linear equations and its solution is called a Lyapunov
function. The second step involves guessing an appropriate parametric family of functions
from which a Lyapunov function will be selected. Since we are interested in efficiency, which
basically implies that the second moment of the estimator should behave at least asymptotically
as the square of its first moment, good guesswork for a convenient Lyapunov function involves
understanding the behavior of P(Sn > b | S0 = y) (in terms of n, b, and y). The last step
of our strategy involves a rigorous verification of the guesswork, that is, testing the Lyapunov
inequality. It is in this last procedure that we force both the mixture parameters and the
parameters in our Lyapunov function to comply with the inequality in Proposition 1.

The rest of the paper is organized as follows. In Section 2 we summarize some results on
large deviations for heavy-tailed RVs and discuss their applications in the context of Blanchet
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and Liu’s (2006) algorithm for the empirical mean. In Section 3 we introduce some Lyapunov
inequalities for SDIS and discuss some elements behind our strategy, namely, those correspond-
ing to steps one and two outlined previously. The verification of efficiency of our proposed
estimator for the empirical mean, which corresponds to the third step of our strategy, is given in
Section 4. In Section 5 we apply our strategy to the probability of exercising a call-in financial
option. Numerical experiments and implementation issues are given in Section 6.

2. An SDIS approach

Throughout the rest of the paper, we will assume that (Xk : k ≥ 1) is a sequence of i.i.d.
RVs with mean 0 and unit variance. In addition, we assume that the Xns possess a regularly
varying right tail with index α > 2. That is, F̄ (t) = P(Xk > t) = t−αL(t), where L(·) is a
slowly varying function at∞ (i.e. L(tx)/L(t)→ 1 as t ↗∞ for each x > 0).

In this section we will describe a simulatable estimatorZ(b) that can be shown to be (strongly)
efficient throughout moderate and large deviations regions. More precisely, Z(b) will satisfy
E(Z(b)) = P(Sn > b), with S0 = 0 and Sn = X1 + · · · +Xn, and

sup
n≥1

b≥ξ(n)

E(Z2(b))

P(Sn > b)2 <∞, (1)

where ξ(n) = c0n
1/2+ε. Strong efficiency is a concept that is widely applied in the rare-event

simulation community (see, for instance, Asmussen and Glynn (2007, Chapter VI) and Juneja
and Shahabuddin (2006)). In our current context, strong efficiency implies that the number of
replications required to obtain an estimator with a prescribed relative precision is uniformly
bounded as n↗∞ over b ≥ ξ(n).

Using SDIS, Blanchet and Liu (2006) constructed an estimator satisfying (1). Let us
summarize the ideas behind their development.

First, let us define δ = 1/n and write (for t ∈ {0, δ, 2δ, . . . , 1− δ})
Yδ(t + δ) = Yδ(t)+ δXt/δ+1.

Note that Yδ(t) = Stn/n and Yδ(0) = y = S0/n. Let ηδ = δb ≥ c0, and set

uδ(t, y) = P(t,y)(Yδ(1) ≥ ηδ),

where P(t,y)(·) is the conditional probability given Yδ(t) = y. Using this notation, we have
P(Y (1) > ηδ) = uδ(0, 0). It is well known that the function uδ(·) can be used to describe the
zero-variance change of measure. Indeed, Q∗δ (·), defined via

Q∗δ (y0, y1, t) dy = P(Yδ(t + δ) ∈ y1 + dy1 | Yδ(t) = y0)
uδ(t + δ, y1)

uδ(t, y0)
,

describes a bona fide transition density, which can be verified by conditioning on the next
transition of Yδ(·) at time t . Note that if path-generation according to Q∗δ (·) was feasible then
the corresponding importance sampling estimator would be

Z∗(b) =
n−1∏
j=0

uδ(jδ, Yδ(jδ))

uδ((j + 1)δ, Yδ((j + 1)δ))
= uδ(0, 0)

uδ(1, Yδ(1))
= uδ(0, 0),
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which estimates the target probability uδ(0, 0) with zero variance. Obviously, if we had access
to Q∗δ (·), there would not be any need for estimating uδ(·). Nevertheless, the basic idea
is to take advantage of an approximation vδ(·) to uδ(·) and construct a change of measure
based on vδ(·). This formal idea, which is known in the simulation literature (see Juneja and
Shahabuddin (2006) for a review), was rigorously exploited by Blanchet and Liu (2006). In
order to describe their sampling strategy, let us first recall a basic result from the large deviations
theory for regularly varying RWs due to Rozovskii (1989).

Theorem 1. Assume that the Xks are regularly varying with finite mean and unit variance.
Then

uδ(0, 0) =
(

δ−1F̄

(
ηδ

δ

)
+ �̄(ηδδ

−1/2)

)
(1+ o(1))

as δ ↘ 0 uniformly over ηδ ≥ δ1/2, where �̄(y) = P(N(0, 1) ≥ y).

Using Theorem 1, Blanchet and Liu (2006) suggested using

vδ(t, y) :=
(

(1− t)

δ
F̄

(
(ηδ − y)

δ

)
+ �̄

(
(ηδ − y)δ−1/2

(1− t)1/2

))
1((ηδ − y)δ−1/2 > (1− t)1/2)

+ 1((ηδ − y)δ−1/2 ≤ (1− t)1/2)

to construct a suitable Markov transition kernel that mimics the behavior of Q∗δ (·). In particular,
Blanchet and Liu (2006) proposed using

Qδ(y0, y1, t) = P(Yδ(t + δ) ∈ y1 + dy1 | Yδ(t) = y0)
vδ(t + δ, y1)

wδ(t, y0)
,

where wδ(t, y0) is defined as

wδ(t, y0) = E(vδ(t + δ, y0 + δX1)).

Since vδ(·) is a suitable approximation to uδ(·) in a certain asymptotic sense, it is natural to
expect that the ‘local’ likelihood ratio (wδ(t, y0)/vδ(t + δ, y1)) will be well behaved (i.e. close
to unity) on a certain region (described in terms of time and space) that represents the domain
under which the asymptotics provide a description that is close enough to the behavior of uδ(·).
So, it is intuitive that the performance of an algorithm based on Qδ(·) (in terms of the behavior
of the local likelihood ratios and the ability to mimic the zero-variance change of measure) will
be very good in the domain under which the asymptotics are guaranteed to also be good.

The algorithm of Blanchet and Liu (2006) follows next. We assume that the Xis have a reg-
ularly varying density f (·) that is continuously differentiable, satisfying f ′(t) ∼ t−(α+2)L(t)

as t ↗∞.

Algorithm 1. (Blanchet and Liu (2006).) The parameters b ≥ cn1/2+ε, c > 0, δ = 1/n, and
ε > 0 are given.

(i) Set s = 0, m = 0, and ZA = 1.

(ii) Step 1. Sample X from the density fm+1(·) defined via

fm+1(x) = f (x)
vδ(t + δ, s + δx)

wδ(t, s)
. (2)
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Update

ZA←− ZA

wδ(t, s)

vδ(t + δ, s + δX)
,

s ←− s + δX,

m←− m+ 1.

(iii) Repeat step 1 until s > b − c(n−m)1/2+ε/2 or m = n.

(iv) Step 2. If m = n then return ZA 1(s > b), else generate n−m i.i.d. RVs (X1, . . . , Xn−m)

according to the densityf (·), evaluate s′ = X1+· · ·+Xn−m, and return ZA 1(s′+s > b).

The following result summarizes the performance of Blanchet and Liu’s (2006) estimator.

Theorem 2. (Blanchet and Liu (2006).) Assume that the Xks have a density f (·) satisfying
f ′(t) ∼ t−(α+2)L(t) with α > 2. The estimator ZA, provided by Algorithm 1, is strongly
efficient according to (1).

The proof of the previous result is given in Blanchet and Liu (2006). Although the previous
result shows efficiency of the estimator ZA, the simulation of the increments via the state-
dependent density indicated in step 2 of the algorithm is not straightforward. These issues
must be considered in the cost of generating each replication of the estimator ZA. As we will
see in Section 5, each replication can be done in approximately O(bn2) elementary operations
(assuming that we count function evaluations, sums, and products as elementary operations).

3. Lyapunov inequalities and SDIS

In the previous section we described an SDIS algorithm that can be shown to be strongly
efficient for the tail probability P(Sn > b) as n ↗ ∞, assuming that b ≥ cn1/2+ε. We
also discussed, however, some issues related to the path generation and the computation of the
normalizing constants that come up when implementing such an SDIS algorithm. An alternative
approach consists in restricting our importance samplers to a parametric family for which path
generation can be easily implemented. In order to achieve this, we first derive some Lyapunov
inequalities that are applicable to general state-dependent importance samplers. We then apply
these inequalities to a specific parametric family that is rich enough to mimic the behavior of
the zero-variance change of measure in our current setting and for which path generation can
be implemented easily.

A general SDIS strategy is characterized by transition densities Kδ(·) of the form

Kδ(y0, y1, t) dy = rδ(y0, y1, t)
−1 P(Yδ(t + δ) ∈ y1 + dy1 | Yδ(t) = y0), (3)

where rδ(·) represents the local likelihood ratio (i.e. rδ(·)−1 is a nonnegative, integrable function
that is normalized in such a way that Kδ(·) is a well-defined (time inhomogeneous) Markov
transition density). Simulating according to Kδ(·) gives rise to an estimator of the form

ZK =
n−1∏
j=0

rδ(Yδ(jδ), Yδ((j + 1)δ), jδ) 1(Yδ(1) > ηδ).

The efficiency analysis of the estimator ZK involves studying its second moment, namely,
EK

(0,y)(Z
2
K). Throughout the rest of our discussion, we will use EK

(t,y) to denote the expectation
operator in the path space induced by the transition density Kδ(y, ·, t), given that Yδ(t) = y.
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The following result will be useful to bound the second moment of ZK . Also, let E(t,x) be the
conditional expectation given Y (t) = x.

Proposition 1. Suppose that there exist a function gδ : [0, 1) × R → (0,∞) and a constant
ρ ∈ (0,∞) such that

E(t,x)(gδ(t + δ, Yδ(t + δ))r(x, Yδ(t + δ), t)) ≤ gδ(t, x) (4)

and gδ(1, x) ≥ ρ for x ≥ ηδ . Then,

gδ(t, x)

ρ
≥ EK

(t,x)

( n−1∏
j=t/δ

rδ(Yδ(jδ), Yδ((j + 1)δ), jδ)2 1(Yδ(1) ≥ ηδ)

)

= E(t,x)

( n−1∏
j=t/δ

rδ(Yδ(jδ), Yδ((j + 1)δ), jδ) 1(Yδ(1) ≥ ηδ)

)
.

Proof. For k ∈ {t/δ, t/δ + 1, . . . , n}, define

Mk = gδ(kδ, Yδ(kδ))

k−1∏
j=t/δ

rδ(Yδ(jδ), Yδ((j + 1)δ), jδ),

with Mt/δ = gδ(t, x). We claim that the process (Mk : t/δ ≤ k ≤ n) is a supermartingale with
respect to the filtration (Fj : t/δ ≤ j ≤ n), where Fj = σ(Yδ(mδ) : 0 ≤ m ≤ j). In order to
see this, just note that

E(Mk+1 | Fk) =
k−1∏

j=t/δ

rδ(Yδ(jδ), Yδ((j + 1)δ), jδ)

× E(gδ((k + 1)δ, Yδ((k + 1)δ)rδ(Yδ(kδ), Yδ((k + 1)δ), jδ)) | Fk)

≤ gδ(kδ, Yδ(kδ))

k−1∏
j=t/δ

rδ(Yδ(jδ), Yδ((j + 1)δ), jδ)

= Mk.

The conclusion of the proposition follows immediately after taking expectations and using the
fact that gδ(1, x) 1(x ≥ ηδ) ≥ 1(x ≥ ηδ).

The main strategy behind our procedure involves the three steps discussed at the end of the
introduction. First, we propose a parametric form for the function rδ(·). If we pick a parametric
family that is powerful enough to capture the behavior of the zero-variance change of measure
then gδ(·) should behave similarly as uδ(·)2 (recall the definition of efficiency given in (1)).
The second step in the strategy is to propose a function gδ(·), possibly indexed by additional
parameters, based on an approximation to uδ(·)2, which could be heuristic. Then, in the third
and last step, we need to tune various parameters (both in rδ(·) and gδ(·)) in order to force the
Lyapunov inequality, (4). Throughout the rest of this section, we will illustrate the first two
steps of this approach in the context of regularly varying RWs.

Large deviation probabilities for the empirical mean of regularly varying i.i.d. RVs is
achieved by the contribution of a large jump. As a consequence, it is intuitive that a family of



1112 J. H. BLANCHET AND J. LIU

changes of measures which induces this type of behavior is appropriate. Let us define

λδ := λδ(y) = ηδ − y

δ
and βδ := βδ(t) = 1− t

δ
.

We then consider, for a ∈ (0, 1),

rδ(y0, y1, t)
−1 = pt

1(y1 − y0 > aδλδ(y0))

F̄ (aλδ(y0))
+ (1− pt )

1(y1 − y0 ≤ aδλδ(y0))

F (aλδ(y0))
.

In other words, under the transition kernel K(·), given that Yδ(t) = y0, the next increment has
density f̃ (· | y0) defined as

f̃ (x | y0) = pt

f (x) 1(x > aλδ(y0))

F̄ (aλδ(y0))
+ (1− pt )

f (x) 1(x ≤ aλδ(y0))

F (aλδ(y0))

for some mixture probability pt which will eventually be allowed to depend not only on time
but also on the current position y0, and a ∈ (0, 1). The parameter a is chosen to lie in (0, 1)

because we need to consider the contribution to the variance of such sample paths in which the
rare event occurs, because of the occurrence of more than one single jump. The contribution
of such sample paths is known to play an important role in the design of efficient rare-event
simulation estimators; this has been noted several times since the development of the first
efficient rare-event simulation estimator in a heavy-tailed setting in Asmussen et al. (2000).
This strategy is over sampling those sample paths that take more than one jump to achieve the
rare event. Nevertheless, as we will see, the inclusion of a ∈ (0, 1) will prove to be useful in
our technical development and will not preclude our estimator from achieving efficiency. An
interesting exercise would be to send a ↗ 1 as δ ↘ 0 at some convenient rate in order to
optimize performance.

Once we have fixed a parametric family of importance samplers that seems appropriate, we
need to propose a parametric family of functions from which to pick gδ(·). For the reasons
indicated in our discussion following Proposition 1, our guesswork should be guided by any
approximation (rigorous or heuristic) available for uδ(·)2. Typically, in heavy-tailed problems,
there are a number of fluid heuristics that are useful in order to develop plausible approximations
for large deviations probabilities (see, for instance, Anantharam (1989) and Zwart (2001)). We
can use such heuristics and then use Proposition 1 to develop a rigorous upper bound and,
simultaneously, show strong efficiency. An alternative, when available, is to base the guesswork
on rigorous approximations. In this case we have access to an approximation in Rozovskii
(1989), which we stated in Theorem 1 and now use to construct our Lyapunov function.

First, let F1(·) be any distribution function with a continuously differentiable density f1(·)
such that f ′1(t) ∼ t−(α+2)(α + 2)(α + 1)L(t) as t ↗ ∞ (where L(·) is a slowly varying
function at∞, that is, L(tx)/L(t) −→ 1 as t ↗∞ for each x > 0). By Karamata’s theorem
we have F̄1(t) = 1 − F1(t) ∼ t−αL(t) as t ↗ ∞ (in particular, F̄1(·) is slowly varying with
index α). Moreover, we will pick F1(·) so that F1(t) ∼ F(t) as t ↗ ∞. If F(·) is not twice
continuously differentiable then we can construct F1(·) by convolving F(·) with a Gaussian or
an exponential kernel—these types of constructions are standard in the analysis of regularly
varying functions (see, for instance, Resnick (1987, Chapter 0)). Then, set D̄1(t) = (F̄1(t))

ν .
Note that, for any given ε > 0, we can always choose ν > 0 such that, for some β0 > 0,

D̄1

(
λδ(y)

βδ(t)1/2+ε

)
< βδ(t)F̄1(λδ(y)) (5)
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if λδ(y) ≥ βδ(t)
1/2+2ε and βδ(t) > β0. In order to have (5), we need

αν

(
log(λδ(y))

log(βδ(t))
− 1

2
− ε

)
>

α log(λδ(y))

log(βδ(t))
− 1.

We will choose ν = max{1, (α(1/2 + 2ε) − 1)/αε} + 1. The choice of ν is to make sure
that βδ(t)F̄1(λδ(y)) is the dominating term in the interesting area. Furthermore, we use the
notation ∂t D̄1(t) = −d1(t) throughout the rest of our development. Finally, for t ∈ [0, 1− δ]
and δ ∈ (0, 1), define

hδ(t, y) = βδ(t)F̄1(λδ(y))+ D̄1

(
λδ(y)

βδ(t)1/2+ε

)
,

set hδ(1, y) = 1(λδ(y) ≤ 0), and, for κ > 0 to be specified later, write

gδ(t, y) = min(κhδ(t, y)2, 1). (6)

The Gaussian contribution in the approximation suggested by Theorem 1 has been replaced
by D̄1, such substitution is appropriate because our goal is to bound the second moment of an
estimator for P(Sn > b) with b ≥ n1/2+ε. Before we continue, it is important to remark on
some basic properties of gδ(·).
Remark 1. As we will see, the region of points (t, y) where gδ(t, y) < 1 leads to the most
interesting part in the development of the Lyapunov bound. In particular, note that ifgδ(t, y) < 1
then F̄1(λδ(y)/βδ(t)

1/2+ε) < 1/κ1/2, which implies that

λδ(y) > βδ(t)
1/2+εm0(κ)→∞ as κ →∞,

where m0(κ) = F̄−1
1 (κ−1/2)↗∞ as κ ↗∞ and F̄−1(·) is the inverse function of F̄ (·). This

observation makes sure that we can choose κ large enough such that λδ(y) is large enough and
all the asymptotics hold whenever gδ(·) < 1.

4. Efficiency via Lyapunov bounds

In this section we discuss the third step of the proposed strategy to develop our efficient
SDIS. Recall, as we mentioned in the introduction, that this step involves tuning the various
parameters (pt , a, and κ) in order to apply Proposition 1. The Lyapunov inequality, (4), takes
the form

1 ≥ E

(
rδ(y, y + δX)

gδ(t + δ, y + δX)

gδ(t, y)

)

= F̄ (aλδ(y))

pt

J1 + F(aλδ(y))

1− pt

J2,

where

J1 = E

(
gδ(t + δ, y + δX)

gδ(t, y)
;X > aλδ(y)

)
,

J2 = E

(
gδ(t + δ, y + δX)

gδ(t, y)
;X ≤ aλδ(y)

)
.

We now analyze the expectations J1 and J2. First we start with J1. Observe that, whenever
gδ(t, y) = 1, we can pick rδ(y, ·, t) = 1, which automatically makes the Lyapunov function
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satisfied, since gδ ≤ 1. Picking rδ(y, ·, t) = 1 means that, for such a particular value of (t, y),
we do not apply importance sampling. Given this, we will assume that gδ(t, y) < 1 throughout
the rest of our development. Again, since gδ ≤ 1, after conditioning on the event {X > aλδ(y)},
we obtain

F̄ (aλδ(y))

pt

J1 ≤ F̄ (aλδ(y))

pt

F̄ (aλδ(y))

gδ(t, y)
≤ F̄ (aλδ(y))F̄1(aλδ(y))

ptκhδ(t, y)2 . (7)

We propose selecting

pt = θ
F̄ (aλδ(y))

hδ(t, y)
(8)

for some θ > 0 to be chosen later. This selection is sensible because pt behaves roughly
according to the probability that the next increment causes the rare event.

The most interesting part of the analysis involves the term J2, which we now discuss. First,
note that by applying Taylor’s theorem with remainder we obtain, for each z ∈ (−∞,∞),

gδ(t + δ, y + δz) = gδ(t, y)+ E(∂tgδ(t + δU, y + δz)δ + ∂ygδ(t, y)δz)

+ E(∂yygδ(t, y + UU1δz)(δz)
2),

assuming that U and U1 are independent and uniformly distributed on (0, 1). We then conclude
that

J2 ≤ 1+ J2,1 + J2,2 + J2,3,

where

J2,1 = E

(
∂tgδ(t + δU, y + δX)

gδ(t, y)
δ;X ≤ aλδ(y)

)
,

J2,2 = E

(
∂ygδ(t, y)

gδ(t, y)
δX;X ≤ aλδ(y)

)
,

J2,3 = E

(
∂2
ygδ(t, y + UU1δX)

2gδ(t, y)
(δX)2;X ≤ aλδ(y)

)
,

and U and U1 are independent of X.
In order to analyze the previous expressions, we require some properties that are summarized

in the following lemma. The proof is given at the end of this section. Nevertheless, we simply
note that in the proof of this lemma the parameter a ∈ (0, 1) is particularly useful. Indeed, as
we can see from the proof, such a selection of a facilitates a uniform integrability argument
that can be applied thanks to the regularly varying property.

Lemma 1. There exists κ0 > 0 such that if κ ≥ κ0 and gδ(t, y) < 1 then the following
assertions hold.

(i) It is possible to find constants γ1, γ2 > 0 such that

J2,1 ≤ −γ1
F̄1(λδ(y))

hδ(t, y)
− γ2

d1(λδ(y)/βδ(t)
1/2+ε)λδ(y)/βδ(t)

3/2+ε

hδ(t, y)
.

(ii) J2,2 ≤ 0.
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(iii) There exists m3 ∈ (0,∞) such that

|J2,3| ≤ m3
|βδ(t)ḟ1(λ)| + |ḋ1(λδ(y)/βδ(t)

1/2+ε)|/βδ(t)
1+2ε

hδ(t, y)
,

where ḟ (x) = df (x)/ dx.

We need to introduce some additional notation in order to strip out the most important
ingredients in the construction of our Lyapunov function. Let mf1 , md1 , mF , mF1 ∈ (0,∞)

such that

sup
t≥1

|ḟ1(t)t
2|

F̄1(t)
< mf1 , sup

t≥1

|ḋ1(t)t |
d1(t)

< md1 , (9)

sup
t≥1

F̄ (at)

F̄1(t)
≤ mF , sup

t≥1

F̄1(at)

F̄1(t)
≤ mF1 . (10)

The existence of these constants is guaranteed by virtue of regular variation and because the
ratios on all the previous expressions are guaranteed to be bounded on any compact set. The next
result shows the validity of the Lyapunov function for an appropriate selection of parameters.

Theorem 3. There exist a ∈ (0, 1), θ > 0, and κ ≥ 0 such that

1. κ > 0 is selected satisfying the assumptions of Lemma 1;

2. θ > 0 and κ > 0 satisfy the inequality

γ1

2
≥ 2θmF + mF1

θκ

and also

pt = θF̄ (λδ(y))

hδ(t, y)
≤ 1

2
;

3. if gδ(t, y) < 1,

F̄ (aλδ(y))

pt

J1 + (1− F̄ (aλδ))

(1− pt )
J2 ≤ 1−

(
γ1

2
− 2θmF − mF1

θκ

)
F̄1(aλδ)

hδ

≤ 1.

Proof. Throughout the proof, we will often drop the arguments in the functions in order to
simplify the notation (for instance, we will write hδ instead of hδ(t, y)). Lemma 1 yields

j2 − 1 ≤ −γ1
F̄1(λδ)

hδ

− γ2
d1(λδ/β

1/2+ε
δ )λδ/β

3/2+ε
δ

hδ

+m3
|βδḟ1(λδ)|

hδ

+m3
|ḋ1(λδ/β

1/2+ε
δ )|/β1+2ε

δ

hδ

.

We need to make sure that the negative contribution is larger than the positive contribution
on the right-hand side of the above inequality. As we pointed out in Remark 1, gδ(t, y) < 1
implies that

λδ ≥ β
1/2+ε
δ m0(κ) ≥ m0(κ), (11)



1116 J. H. BLANCHET AND J. LIU

where m0(κ)↗∞ as κ ↗∞. Therefore, using the definition of mf1 given in (9), we obtain

|βδḟ1(λδ)| ≤ F̄1(λδ)

(
mf1

βδ

λ2
δ

)
.

Using (11), we can choose κ large enough such that

γ1

2

F̄1(λδ)

hδ

≥ m3

hδ

F̄1(λδ)

(
mf1

m0(κ)2β2ε
δ

)
≥ m3

hδ

F̄1(λδ)

(
mf1

βδ

λ2
δ

)
≥ m3

|βδḟ1(λδ)|
hδ

. (12)

Similarly, we will control the contribution of the rest of the positive terms, using to our advantage
the negative factor with coefficient γ2 in Lemma 1(i). Using the definition of md1 given in (9),
we obtain

|ḋ1(λδ/β
1/2+ε
δ )|

β1+2ε
δ

≤ md1

d1(λδ/β
1/2+ε
δ )

λδβ
1/2+ε
δ

= d1(λδ/β
1/2+ε
δ )λδ

β
3/2+ε
δ

md1βδ

λ2
δ

.

Note that βδ/λ
2
δ ≤ m0(κ)−2 (assuming, as we have been doing of course, that gδ(t, y) < 1).

We find that the inequality

γ2
d1(λδ/β

1/2+ε
δ )λδ/β

3/2+ε
δ

hδ

≥ m3
|ḋ1(λδ/β

1/2+ε
δ )|/β1+2ε

δ

hδ

(13)

holds if κ is chosen large enough and gδ(t, y) < 1. Together with (12) and (13), we conclude
that, for such selection of κ , as long as gδ(t, y) < 1,

J2 ≤ 1+ J2,1 + J2,2 + J2,3

≤ 1− γ1
F̄1(λδ)

hδ

− γ2
d1(λδ/β

1/2+ε
δ )λδ

hδβ
3/2+ε
δ

+m3
|βδḟ1| + |ḋ1(λδ/β

1/2+ε
δ )|/β1+2ε

δ

hδ

≤ 1− γ1

2

F̄1(λδ)

hδ

.

Recall that we are after a bound for (1− F̄ (aλδ))J2/(1− pt ) (which then must be combined
with our estimate involving J1). We can always choose θ > 0 small enough (but uniformly
bounded away from 0 as δ → 0) so that we can guarantee pt ≤ 1

2 for all values of (t, y) for
which gδ(t, y) < 1. If pt ≤ 1

2 , we have (1 − pt )
−1 ≤ 1 + 2pt . Using this inequality, the

definition of pt , the fact that F̄ (aλδ) ∈ (0, 1), and also recalling the definition of mF given in
(10), we obtain

(1− F̄ (aλδ))J2

(1− pt )
≤ J2

1− pt

≤ 1− γ1F̄ (λδ)/2hδ

1− pt

≤
(

1− γ1

2

F̄ (λδ)

hδ

)
(1+ 2pt )

≤ 1−
(

γ1

2
− 2θmF

)
F̄1(λδ)

hδ

.
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Now it is time to introduce the contribution of the term involving J1. Our selection of pt yields,
using bound (7) and the definition of mF1 given in (10),

F̄ (aλδ)

pt

J1 ≤ F̄1(aλδ)

θκhδ

≤ mF1 F̄1(λδ)

θκhδ

.

We then conclude that if κ > 0 is selected large enough then, for all (t, y) for which gδ(t, y) < 1,
we have

F̄ (aλδ)

pt

J1 + (1− F̄ (aλδ))J2

(1− pt )
≤ 1−

(
γ1

2
− 2θmF − mF1

θκ

)
F̄1(λδ)

hδ

.

The conclusion of the theorem follows after choosing θ > 0 small enough and κ > 0 large
enough so that

γ1

2
≥ 2θmF1 +

mF1

θκ
.

The construction of the Lyapunov bound given in the previous theorem suggests an impor-
tance sampling algorithm that we now describe.

Algorithm 2. The parameters b ≥ cn1/2+ε, c > 0, δ = 1/n, and ε > 0 are given. Select
a ∈ (0, 1) and θ, κ > 0 satisfying the conditions of Theorem 3. This can be done analytically
following the steps in the development.

(i) Set s = 0, m = 0, and ZB = 1.

(ii) for k ∈ {0, 1, . . . , n− 1} do

(a) If gδ(mδ, sδ) < 1 then let

p = θ
F̄ (a(bδ − s)/δ)

hδ(mδ, δs)
,

if gδ(mδ, sδ) = 1 then let p = F̄ (a(bδ − s)/δ). Sample X from the density
fm+1(·) defined via

fm+1(x) = p
f (x)

F̄ (a(bδ − s)/δ)
1(δx > a(δb − s))

+ (1− p)
f (x)

F (a(bδ − s)/δ)
1(δx ≤ a(δb − s)).

(b) Update

ZB ←− ZB

(
F̄ (a(bδ − s)/δ) 1(δx > δb − s)

p

+ F(a(bδ − s)/δ) 1(δx ≤ δb − s)

1− p

)
,

s ←− s + δX,

m←− m+ 1.

end for
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(iii) Update

ZB ←− ZBF̄
δb − s

δ

and return ZB .

We close this section with our main result, namely, the proof of strong efficiency of the
estimator ZB . In contrast to the estimator ZA, the estimator ZB requires only O(n) elementary
operations for its construction.

Theorem 4. For any ε̃ > 0, the estimator ZB , provided by Algorithm 2, is strongly efficient
when b ≥ n1/2+ε̃.

Proof. Let us use Q(·) to denote the distribution induced by the importance sampling scheme
given in the previous algorithm. Theorem 3 implies that

EQ
(0,0)(Z

2
B) ≤ gδ(0, 0)

min(κ, 1)
.

Recall that the choice of γ given ε in Section 3 implies that

gδ(0, 0) ≤ 4κβδ(0)2F̄1(λδ(0))2 = 4κn2F̄ (b)2

if b > n1/2+2ε and n > β0. From the estimates of Roszovskii (1989) (note that here we actually
need only an asymptotic lower bound, not exact asymptotics),

sup
n≥1

b≥n1/2+2ε

gδ(0, 0)

P(Sn > b)2 <∞.

By letting ε̃ = 2ε, it yields the conclusion of the theorem.

The pending proof of Lemma 1 is given next.

Proof of Lemma 1. We will start with part (i). Consider

E

(
∂tgδ(t + δU, y + δX)

gδ(t, y)
δ;X ≤ aλδ(y)

)
.

Note that, for u ∈ (0, 1), we have

δ∂tgδ(t + δu, y + δx)

gδ(t, y)
= −2

δ

hδ(t + δu, y + δx)

hδ(t, y)

×
(

F̄ (λδ(y + δx))

hδ(t, y)

+ (1/2+ ε)

hδ(t, y)

λδ(y + δx)

βδ(t + uδ)1/2+ε
d1

(
λδ(y + δx)

βδ(t + uδ)1/2+ε

))
.

We have λδ(y + δx) = λδ(y) − x and βδ(t + δu) = βδ(t) − u. Also, as we pointed out in
Remark 1, gδ(t, y) < 1 implies that λδ(y) ≥ βδ(t)

1/2+εm0(κ) ≥ m0(κ) ↗ ∞ as κ ↗ ∞.
In particular, it follows from regular variation that if x ≤ aλδ(y) and gδ(t, y) < 1 then there
exists γ ′1,1 > 0 such that, for all κ > 0 and u ∈ (0, 1),

inf{(t,y) : gδ(t,y)<1, 0≤x≤aλδ(y)}
hδ(t + δu, y + δx)

hδ(t, y)
≥ γ ′1,1 > 0.
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Similarly, we have, for some γ ′1,2, γ
′
1,3 > 0,

inf{(t,y) : gδ(t,y)<1, 0≤x≤aλδ(y)}
F̄1(λδ(y + δx))

F̄1(λδ(y))
≥ γ ′1,2 > 0

and
(λδ(y)− x)βδ(t)

1/2+ε

(βδ(t)− u)1/2+ελδ(y)

d1((λδ(y)− x)/(βδ(t)− u)1/2+ε)

d1(λδ(y)/βδ(t)1/2+ε)
≥ γ ′1,3 > 0.

Then

J2,1 ≤ E

(
δ∂tgδ(t + δU, y + δX)

gδ(t, y)
δ; 0 ≤ X ≤ aλδ(y)

)

≤ −γ ′1,1γ
′
1,2

F̄ (λδ)

hδ

− γ ′1,1γ
′
1,3

d1(λδ/β
1/2+ε
δ )λδ/β

3/2+ε
δ

hδ

.

Part (i) then follows immediately from these estimates. Part (ii) is immediate by noting that
E(X;X ≤ aλδ(y)) < 0. Part (iii) follows along the same lines as part (i).

5. A path-dependent example

In order to illustrate how to apply our method to some path-dependent examples we consider
the problem of estimating

P
(

min
k≤n

Sk ≤ −nη−, Sn > nη+
)

for η−, η+ ∈ (0,∞). (14)

We will assume that both the left and right tails of X1 are regularly varying; in particular, we
assume that, for each x > 0, F̄ (xt)/F̄ (t)→ x−α as t ↗ ∞ and F(xt)/F (t) → x−β as
t ↘ −∞, where α, β > 2. Moreover, let us assume that var(X1) = 1. For simplicity, we will
suppose that X1 has a continuously differentiable positive density f ; this assumption can be
relaxed using the smoothing technique explained at the end of Section 3.

The probability displayed in (14) can be interpreted as the chance of exercising a call-in
financial option. Such an option gives the right to the owner of buying one unit of a stock at a
specified price (called the strike price) at a given time (called the exercise time) as long as the
price process hits a minimum threshold before the exercise time (i.e. the option is only activated
when the price process hits a minimum level). The logarithm of the price process is modeled via
the RW (Sk : k ≥ 0), the strike price is represented by exp(nη+), the time horizon is n, and the
activation level is exp(−nη−) (assuming that the initial price is equal to unity). A popular model
used in financial applications is the so-called Black–Scholes model, which, in discrete time,
postulates that the logarithm of price processes follows a Gaussian RW. Efficient simulation
algorithms based on importance sampling have been studied for evaluating (14) under various
light-tailed assumptions (see Glasserman (2004, Chapter 4) and Asmussen and Glynn (2007,
Chapter VI)). A criticism of light-tailed models is that returns are often observed empirically
to exhibit heavy tails. Instead of the Gaussian increments for the log-return process, we could
consider, for instance, t-distributed increments or other types of heavy-tailed distributions. The
method that we propose allows us to deal with general regularly varying log returns (including
t-distributions) if the increments have finite second moment.

Contrary to the light-tailed case, the rate of decay to 0 of the probability (14) depends on the
drift of the RW. For instance, if E(X1) < −η−, we expect (14) to be of orderO(nF̄ (n(η++η−)))
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as n ↗ ∞ (this is because the law of large numbers will naturally drive the RW to the lower
threshold, at which point there will be O(n) units of time to reach boundary η+). If E(X1) ∈
(−η−, η++η−), we expect that (14) decreases to 0 at rate O(n2F̄ (nη+)F (−nη−)) as n↗∞.
Similarly, if E(X1) > η++η−, (14) is expected to be O(nF(−nη−)) as n↗∞. The methods
that we propose here can be adapted to deal with all the previous cases.

Throughout the rest of our discussion, we will assume that var(X1) = 1 and E(X1) ∈
[0, η++η−) (situations where E(X1) ∈ (−η−, 0), E(X1) < −η−, and E(X1) > η++η−) can
be adapted using the techniques that we explain next. The case that occupies our attention here
is particularly interesting because the large deviations behavior dictated by (14) is caused by the
influence of two large jumps (in contrast to the example in our previous section, which involves
a single large jump). Our objective is to propose a state-depending importance sampling
estimator, say Zn, that can be guaranteed to be strongly efficient as n ↗ ∞. In other words,
we must have

sup
n≥1

E(Z2
n)

P(mink≤n Sk ≤ −nη−, Sn > nη+)2 <∞.

Once again, let δ = 1/n, and consider Yδ(t+δ) = Yδ(t)+δXt/δ+1 for t ∈ {0, δ, 2δ, . . . , 1}.
Let τδ = inf{u ≥ 0 : Yδ(u) ≤ −η−}. The estimator Zn that we will construct takes the form

Zn =
n−1∏

k=t/δ

rδ(Yδ(kδ), Yδ((k + 1)δ), jδ) 1(τδ < 1− t, Yδ(1− t) > η+)

with t = 0 and y = 0. The transitions of Yδ(·) are generated according to a kernel Kδ(·) with
form (3). As in Section 3, we use PK

(t,y)(·) and EK
(t,y)(·) to denote the associated probability

measure and expectation operator induced by Kδ(·).
In order to analyze the second moment of our estimator, we need to study

EK
(t,y)

( n−1∏
k=t/δ

rδ(Yδ(kδ), Yδ((k + 1)δ))2 1(τδ < 1− t, Yδ(1− t) > η+)

)
.

In previous sections we derived a successful importance sampling strategy that we can apply
for t ≥ τδ . If we apply such a strategy then we can bound the previous expectation by

EK
(t,y)

(τδ/δ−1∏
k=t/δ

rδ(Yδ(kδ), Yδ((k + 1)δ), kδ)2 1(τδ < 1− t)gδ(τδ, Yδ(τδ))

)

≤ EK
(t,y)

(τδ/δ−1∏
k=t/δ

rδ(Yδ(kδ), Yδ((k + 1)δ), kδ)2 1(τδ < 1− t)gδ(τδ,−η−)

)

= E(t,y)

(τδ/δ−1∏
k=t/δ

rδ(Yδ(kδ), Yδ((k + 1)δ), kδ) 1(τδ < 1− t)gδ(τδ,−η−)

)
.

Just as we did in previous sections, we will construct a Lyapunov function to bound the
previous expectation. The next proposition, whose proof is completely analogous to that of
Proposition 1, provides the means to develop such a Lyapunov function.
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Proposition 2. Suppose that there exists a function g̃δ : [0, 1)× R→ (0,∞) such that

E(t,x)(g̃δ(t + δ, Yδ(t + δ))r(x, Yδ(t + δ), t)) ≤ g̃δ(t, x)

for x > −η− and 0 ≤ t ≤ 1− δ. Moreover, assume that g̃δ(t, x) ≥ ρgδ(t,−η−) on x ≤ −η−
and t ≤ 1− δ for some ρ ∈ (0,∞). Then,

g̃δ(t, x)

ρ
≥ EK

(t,y)

(τδ/δ−1∏
k=t/δ

rδ(Yδ(kδ), Yδ((k + 1)δ), kδ)2 1(τδ < 1− t)gδ(τδ,−η−)

)
.

With this proposition in hand, we can develop a successful importance sampling scheme that
we can apply whenever t < τδ . We will develop such a scheme using the three-step program
described in the previous section. Namely, (i) propose a parametric family of importance
samplers that capture the large deviations behavior of interest, (ii) propose an educated guess
for the form of a convenient Lyapunov function g̃δ , and (iii) tune the parameters in the proposed
parametric family of changes of measure and the form of the candidate function g̃δ to force the
Lyapunov inequality.

Finding a convenient family of importance sampling distributions when t < τδ is not difficult.
Note that τδ < 1 − t is a rare event that is caused by a single downwards jump. So, given
Yδ(t) = y and τδ > t , we propose to sample the next increment according to the density

fX | y(x) = p1f (x) 1(x ≤ −aλδ,1(y))

F (−aλδ,1(y))
+ (1− p1)f (x) 1(x > −aλδ,1(y))

F̄ (−aλδ,1(y))
,

where a, p1 ∈ (0, 1) and λδ,1(y) = (y + η−)/δ.
Our educated guess comes from a crude large deviations estimate. We have (1 − t)/δ

increments and one of them must be negative enough in order to make the event {τδ < 1− t}
occur. On the other hand, as the distance to the lower threshold approaches the central limit
theorem scaling, the event {τδ < 1− t} becomes rarer. As a consequence, we propose to define,
for t ∈ [0, 1− δ],

h̃δ(t, y) = 1− t

δ
F (−λδ,1(y))+D1

(
− λδ,1(y)

βδ(t)1/2+ε

)
,

where βδ(t) = (1 − t)/δ and D1(x) = F(x)2. This function is completely analogous to the
function hδ(·) that we defined in Section 3; this should not be surprising because certainly
P(Sn ≤ −nη−) ∼ P(mink≤n Sk ≤ −nη−) as n ↗ ∞ (see Borovkov and Borovkov (2001)).
We then set

g̃δ,1(t, y) = min(κ̃h̃δ(t, y)2, 1),

and propose as our candidate Lyapunov function

g̃δ(t, y) = g̃δ,1(t, y)gδ(t,−η−),

where gδ is defined in (6).
Since gδ(·,−η−) is decreasing, in order to verify Proposition 2, we need to show that

g̃δ,1(t, y) ≥ ρ for y ≤ −η− and

J̃1F(−aλ1,δ(y))

p1
+ J̃2F̄ (−aλ1,δ(y))

1− p1
≤ 1, (15)
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where

J̃1 = E

(
g̃δ,1(t + δ, y + δX)

g̃δ,1(t, y)
;X ≤ −aλ1,δ(y)

)
,

J̃2 = E

(
g̃δ,1(t + δ, y + δX)

g̃δ,1(t, y)
;X > −aλ1,δ(y)

)
.

Note that inf{h̃δ(t, y) : 0 ≤ t ≤ 1 − δ, y ≤ −η−} > 0; so there exists ρ > 0 such that
g̃δ,1(t, y) ≥ ρ for y ≤ −η−. We just need to concentrate on showing that (15) holds whenever
g̃δ,1(t, y) < 1 and for this we need to analyze J̃1 and J̃2 much in the same manner as we did
for J1 and J2. In particular, we select

p1 = θ̃F (−aλ1,δ(y))

h̃δ(t, y)

for θ̃ > 0 appropriately chosen. The parameters θ̃ , κ̃ > 0 are selected in order to force the
Lyapunov inequality in a completely analogous way as we did in the previous section. In
particular, we can show that there exist a κ̃0 > 0 and a constant γ̃ > 0 so that if κ̃ ≥ κ̃0 and
g̃δ,1(t, y) < 1 then

J̃1F(−aλ1,δ(y))

p1
+ J̃2F̄ (−aλ1,δ(y))

1− p1

≤ 1−
(

γ̃

2
− 2θ̃ m̃F − m̃F

θ̃ κ̃

)
F(−aλ1,δ(y))

h̃δ(t, y)
, (16)

where

sup
t≥1

F̄ (at)

F1(t)
≤ m̃F <∞.

We then immediately conclude the following result.

Theorem 5. Given a ∈ (0, 1), it is possible to select θ̃ > 0 and κ̃ ≥ 0 satisfying (16) whenever
g̃δ,1(t, y) < 1, and so (

γ̃

2
− 2θ̃ m̃F − m̃F

θ̃ κ̃

)
≥ 0.

As a consequence, g̃δ satisfies the conditions of Proposition 2.

The description of the algorithm suggested by the previous development is given next.

Algorithm 3. Set η−, η+, and δ = 1/n. Select a ∈ (0, 1) and θ̃ , κ̃ > 0 satisfying the
conditions of Theorem 5.

(i) Set s̃ = 0, m̃ = 0, ZC = 1, and hit = 0.

(ii) while hit = 0 or m̃ < n− 2 do

(a) if g̃δ,1(m̃δ, s̃δ) < 1 then let

p1 = θ̃
F (−a(η− + s̃)/δ)

h̃δ(m̃δ, δs̃)
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and sample X from the density fm̃+1(·) defined via

fm̃+1(x) = p1
f (x)

F (−a(η− + s̃)/δ)
1(δx ≤ −a(η− + s̃))

+ (1− p1)
f (x)

F̄ (−a(η− + s̃)/δ)
1(δx > −a(η− + s̃)).

Update

ZC ←− ZC

(
F(−a(η− + s̃)/δ) 1(δX ≤ −a(η− + s̃))

p1

+ F̄ (−a(η− + s̃)/δ) 1(δX > −a(η− + s̃))

1− p1

)

else
Sample X from f (·).

end if

(b) Update
s̃ ←− s̃ + δX, m̃←− m̃+ 1.

if s̃ ≤ −η−
Update hit←− 1.

end if

end while

(iii) if hit = 0

(a) Sample X with its conditional law given that {δX ≤ −(η− + s̃)}. Let

ZC ←− ZCF

(
−η− + s̃

δ

)
.

(b) Update s̃ ←− s̃ + δX and return

ZC ←− ZCF̄
η+ − s̃

δ

else
Run Algorithm 2 with initial parameters b = nη+− s̃, ZB = ZC , and s = s̃, and

let ZC be the output of Algorithm 2 (that was denoted by ZB ), given the specified
parameters.

(c) return ZC .

We conclude the section with a result that summarizes the efficiency of the previous algo-
rithm’s estimator.

Theorem 6. The estimator given by Algorithm 3 is strongly efficient in the sense that

sup
n≥1

EK
(0,0)(Z

2
C)

P(mink≤n Sk ≤ −nη−, Sn > nη+)
<∞.
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Proof. Sharp asymptotics can be derived for the probability of interest (i.e. the denominator
in the previous ratio); however, to keep the discussion self-contained and to show the simplicity
of the method, we content ourselves with a crude estimate. In particular, it follows easily that

P
(

min
k≤n

Sk ≤ −nη−, Sn > nη+
)

≥ P
(

min
k≤n/2

Sk ≤ −nη−
)

inf
n/2≤k≤n

P(Sk > n(η− + η+))

∼
(

n

2

)2

F(−nη−)F̄ (n(η+ + η−)).

Using Theorem 5 and defining

ρ = min(κ̃ inf{h̃δ(t, y) : 0 ≤ t ≤ 1− 2δ, y ≤ −η−}2, 1) > 0,

we have

EK
(0,0)(Z

2
C) ≤ g̃δ(0, 0)

ρ

= g̃δ,1(0, 0)

ρ
gδ,1(0,−η−)

∼ κ̃κ

ρ
n4F(−nη−)2F̄ (nη−)2.

The conclusion of the theorem then follows from regular variation.

6. Numerical experiments

We will discuss the implementation of the importance sampling strategies described in
Algorithm 1 and Algorithm 2.

6.1. Implementing Algorithm 1

A couple of issues arise regarding the implementation of Algorithm 1. The first one relates
to the path generation under the change of measure and the computation of the w(n− i−1, s)s.
The path generation can be done using acceptance/rejection, as in Blanchet and Glynn (2007),
and the estimation of w(n − i − 1, s) can be performed by numerical integration (see also
Blanchet and Liu (2007) for a Monte Carlo idea based on path sampling that can be used
even in higher dimensions). In this paper we adopt an alternative approach, in which we use
some other, easy-to-evaluate change of measure, f̄i (·) as an approximation to fi(·) (defined
in (2)). Using this density, we follow the same procedure described in Algorithm 1. The new
estimator is

Z̃A = 1(Sn > b)

τ−1∏
i=1

f (Xi)

f̄i(Xi)

= 1(Sn > b)

τ−1∏
i=1

fi(Xi)

f̄i(Xi)

f (Xi)

fi(Xi)
,

where τ = inf{k ≤ n : Sk > b − c(n− k)1/2+ε/2}. If we can control the approximation error
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so that fi(x)/f̄i(x) ≤ (1+ cn−1), uniformly over x, then we have

E(Z̃2
A) ≤ e2c E

(τ−1∏
i=1

f (Xi)
2

f̄i (Xi)2
1(Sn > b)

)
≤ C P(Sn > b)2

for some C > 0 and, therefore, Z̃2
A is strongly efficient. Note that fi(x) = f (x)v(n − i, s +

x)/w(n− i + 1, s). One choice for f̄i (·) is

f̄i (x) = 1

w̄(n− i + 1, s)

m∑
k=1

gk(n− i, s + x) 1(xk−1 < x ≤ xk)

+ 1

w̄(n− i + 1, s)
1(x > xm)f (x)+ v(n− i, x1)f (x) 1(x ≤ x1),

where {xi}m1 is an appropriate partition and

gk(n− i, s + x) = max[xk−1,xk)
f (x)v(n− i, s + x),

w̄(n− i + 1, s) = v(n− i, x1)F (x1)+ F̄ (xm)+
m∑

k=1

gk(n− i, s + x)(xk − xk−1).

Under the assumptions of Theorem 2, it follows that if we choose xm = b − s − √n and
xk+1 − xk = O(1/n) then we can guarantee that, for some c > 0,

sup
i≤n,s

w̄(n− i + 1, s)

w(n− i + 1, s)
≤

(
1+ c

n

)
. (17)

As a consequence, the total number of elementary operations required to compute L̄ is roughly
of order O(bn2). As a particular example, we consider the following model.

Example 1. Define X = �R, where P(� > x) = min(x−4, 1), R ∼ Laplace(1), and � is
independent of R. As we will see below, we can compute the density function of X and its
characteristic function analytically. Therefore, we are able to compare our estimates with an
estimate based on numerical transform inversion for P(Sn > b). Note that

E(exp(iθ�R)) = E

(
1

1+�2θ2

)

=
∫ ∞

1

1

1+ x2θ2

4

x5
dx

=
∫ ∞

1

1

1+ x2θ2 dx

= 1− 2θ2 + 2θ4 log

(
1+ 1

θ2

)

= 1− 2θ2 + 2θ4
∞∑

k=1

θ−2k

k
(−1)k+1

= 2θ4
∞∑

k=3

θ−2k

k
(−1)k+1. (18)
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The tail of X is

F̄ (t) = E(�R > t)

= 1
2 E(e−t/�)

=
∫ ∞

1
e−t/x 2

x5
dx

= 2
∫ 1

0
e−txx3 dx

= −2

t4 e−tx(6+ 6tx + 3t2x2 + t3x3)

∣∣∣∣
1

0

= 2

t4 (6− e−t (6+ 6t + 3t2 + t3))

for all t > 0, and the corresponding density is

f (x) = 8

x−5
(6− e−x(6+ 6x + 3x2 + x3))− 2

x
e−x.

6.2. Implementing Algorithm 2

In order to apply Algorithm 2 to estimate P(Yδ(1) > 1), we choose a change of measure
based on the density, given

f (x | y, t) = f (x)

(
pt

1(x > a(1− y)/δ)

F̄ (a(1− y)/δ)
+ (1− pt )

1(x ≤ a(1− y)/δ)

F (a(1− y)/δ)

)
.

The Lypunov function takes the form gδ(t, y) = min(κhδ(t, y)2, 1), where

hδ(t, y) = βδ(t)F̄ (λδ(y))+ F̄ (λδ(y)/βδ(t)
0.8)5.

We have chosen a = 0.5 and pt = min(F̄ (λδ(y))/hδ(t, y), 0.3) (this selection of pt corre-
sponds to choosing θ = 1); finally, we select κ = 25.

The comparisons between the analytic approximation given by Theorem 1 (displayed under
LDA for ‘large deviations approximation’), and the estimates under Algorithm 1 and Algo-
rithm 2 are shown in Table 1. The values under ‘true value’ were computed using a numerical
Fourier transform. Keep in mind that, despite having smaller relative error, Algorithm 2 is
actually preferable when one considers the fact that Algorithm 1 requires about O(n2) times
more operations than Algorithm 1 to produce each replication. We used 10 000 replications for
each of the estimators displayed.

Table 1: Numerical results for Algorithms 1 and 2, where sd is the standard deviation based on 10 000
independent simulations.

P(Sn > n) Algorithm 1 Algorithm 2

n True value LDA ZA sd CV ZB sd CV

100 2.21× 10−5 1.20× 10−5 2.37× 10−5 2.27× 10−6 10.3 2.09× 10−5 1.04× 10−6 4.7
500 1.04× 10−7 9.60× 10−8 1.02× 10−7 1.00× 10−9 1.0 1.11× 10−7 4.31× 10−9 4.1

1000 1.25× 10−8 1.20× 10−8 1.23× 10−8 1.39× 10−10 1.1 1.16× 10−8 4.72× 10−10 3.8
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Table 2: Numerical results for Algorithm 3.

P(Sn > n, mink Sk < −n) Algorithm 3

10 000 replications 100 000 replications 1000 000 replications

n ZC sd CV ZC sd CV ZC sd CV

50 6.82× 10−10 9.38× 10−11 10.4 8.99× 10−10 1.07× 10−10 37.4 9.05× 10−10 3.65× 10−11 40.3
100 6.74× 10−12 1.24× 10−12 19.2 6.42× 10−12 3.29× 10−13 16.2 6.42× 10−12 1.23× 10−13 19.2
500 2.64× 10−16 3.94× 10−17 16.0 2.55× 10−16 1.25× 10−17 16.0 2.45× 10−16 3.87× 10−18 15.7

1000 4.62× 10−18 6.65× 10−19 18.4 3.90× 10−18 1.89× 10−19 16.5 3.63× 10−18 5.72× 10−20 15.8

Example 2. We assume that X follows the same distribution as in Example 1. We want to
compute P(Sn > n, mink Sk < −n). We let a = 0.5,

pt = 0.3 ∧

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2F̄ (−aλ1,δ(y))

h̃δ(t, y)
if τ−n > t,

F̄ (aλδ(y))

hδ(t, y)
otherwise,

where τ−n = inf{t : y(t) < −n}. We select κ = κ̃ = 25. In Table 2 we present the estimates
using different numbers of replications, which show that the estimates were stabilized for a
million replications. Also, simply as a verification of our code, we compute the probability
with n = 10, using 100 000 replications. The estimate is 1.95 × 10−5, with standard error
8.82 × 10−7. We also use crude Monte Carlo to compute the same probability, based on 108

replications, which yields an estimate of 1.94× 10−5 with standard error 4.41× 10−7.
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