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ABSTRACT
We consider a model of an irreducible network in which each node is subjected to a random demand,
where the demands are jointly normally distributed. Each node has a given supply that it uses to try to
meet its demand; if it cannot, the node distributes its unserved demand equally to its neighbors, which in
turn do the same. The equilibrium is determined by solving a linear program (LP) to minimize the sum
of the unserved demands across the nodes in the network. One possible application of the model might
be the distribution of electricity in an electric power grid. This paper considers estimating the probability
that the optimal objective function value of the LP exceeds a large threshold, which is a rare event. We
develop a conditional Monte Carlo algorithm for estimating this probability, and we provide simulation
results indicating that our method can significantly improve statistical efficiency.

1 INTRODUCTION
This paper considers a model of a distribution network, in which there is a single commodity to be distributed
and each node is subject to a random demand of the item. Each node has a fixed supply of the commodity,
which it uses to try to meet its demand. If the demand at a node exceeds its supply, then the excess demand
is distributed equally to each of its neighbors, which in turn do the same. A linear program (LP) determines
the equilibrium, where the objective is to minimize the sum of the unserved demands across all nodes.
Our goal is to estimate the probability α(k) that the optimal objective function value exceeds a threshold
k, which we consider to be a failure. We are particularly interested in the case when k is large.

One possible practical example where such a problem might arise is an electric power grid. Here, the
commodity is electricity, and each node represents a geographic region. Each region has generators, which
provide the region’s supply of electricity. Also, each region has a random load (i.e., demand for electricity).
Regions are connected by transmission lines, and if a region’s load exceeds its supply, then the network
tries to serve a node’s excess load by sending it to neighboring regions. If the total amount of load not
served at their originating regions exceeds a threshold k, then we consider the network to have failed.
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For our model, we consider estimating α(k) via simulation. When the threshold k is large, naive
simulation (i.e., without the use of any variance reduction) is inefficient. We thus develop a method based
on conditional Monte Carlo (e.g., see Section 8.3 of Ross 2006) for the case when the demands have a
joint Gaussian distribution. To do this, we express the Gaussian demands in polar coordinates. Given the
angle, the conditional probability of the LP’s optimal objective function value exceeding k can be expressed
as the probability of the radial component of the Gaussian lying in an interval or union of intervals, and
this conditional probability can be computed analytically. We ran experiments comparing our conditional
Monte Carlo approach with naive simulation on some simple networks, and we find that our method can
significantly improve efficiency when the threshold k is large.

Our study has some connection to cascading failures, on which there has been previous work. For
example, Watts (2002) studies cascades in a sparse, random network of interacting agents whose decisions
are determined by the actions of their neighbors according to a simple threshold rule. Dobson, Carreras,
Lynch, and Newman (2007) consider a branching process model of cascading failures in an electric power
grid. Iyer, Nakayama, and Gerbessiotis (2009) analyze a continuous-time Markov chain of a dependability
model with cascading failures.

The rest of the paper is organized as follows. Section 2 presents the model of the distribution network,
and it also defines the LP problem and its dual. We establish some properties of the primal and dual LPs in
Section 3. We describe the naive simulation and conditional Monte Carlo method for estimating α(k) in
Section 4. Section 5 contains the experimental results from some examples, and we give some concluding
remarks in Section 6.

2 MODEL
We consider a network model which is induced by a directed graph G = (V,E), where V = {1,2, . . . ,d}
is the set of vertices and E = {(i, j) : ∃ directed edge from vertex i to vertex j} is the set of edges. The
incidence matrix of the graph is denoted by H = (H(i, j) : i, j ∈ V ), where H(i, j) = 1 if (i, j) ∈ E, and
H(i, j) = 0 otherwise, and H(i, i) = 0 for any i ∈V . We assume that

• The graph is irreducible in the sense that the matrix H is irreducible.
• Each node i has a given supply si, and let s = (s1,s2, . . . ,sd)

′, where prime denotes transpose.
• Each node i is subjected to a random demand Di, and let D = (D1,D2 . . . ,Dd)

′. A discussion on
the distribution of the vector D will be given momentarily.

When the demands are realized, each node serves its demand if it is less than its supply. Otherwise, it
equally distributes the unserved demand to its neighbors, which, in turn, do the same with their respective
neighbors. Thus, in the end, the demands achieve an equilibrium point given by the following linear
program:

min
d

∑
i=1

x+i

s.t. Di− si + ∑
j:( j,i)∈E

x+j /n( j) = x+i − x−i ,∀i

x+i ≥ 0,x−i ≥ 0,∀i.

The quantity n( j) = ∑i∈V H( j, i) is the number of neighbors of j. Since H is irreducible we have
that n( j) ≥ 1. The quantity x+i ≥ 0 represents the shedded demand from node i in equilibrium, which is
distributed equally among its neighbors. The quantity x−i ≥ 0 represents the unused supply at node i in
equilibrium. Therefore, in equilibrium, if x+i − x−i > 0, then node i sheds demand; if x+i − x−i < 0, then
node i has unused supply. The solution moves around excess demands and supplies to neighbors but does
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so in such a way that the sum of x+i ’s, which are the equilibrium shedded demands, is minimized. The
problem can be expressed in matrix notation as follows. Define n = H1, and let A(i, j) = H(i, j)/n(i) (note
that A(i, i) = 0), where 1 = (1,1, . . . ,1)′ is the d-dimensional column vector with all components equal to
1. Then the previous linear programming problem can be written as:

min 1′x++0′x−

s.t. (A′− I)x++ Ix− = s−D

x+ ≥ 0,x− ≥ 0,

where 0 = (0,0, . . . ,0)′ is the d-dimensional column vector with all components equal to 0, A = (A(i, j) :
i, j ∈V ), I is the d×d identity matrix, x+ = (x+1 ,x

+
2 , . . . ,x

+
d )
′, and x− = (x−1 ,x

−
2 , . . . ,x

−
d )
′. The goal is that

the sum of shedded demands is as small as possible because, e.g., the cost of distributing demands is
high. If the cost is too high, for example, larger than a given number, say k, or the LP is infeasible, we
consider the network to have failed. We are interested in computing the probability that the network fails,
for different values of k.

The dual linear program is the following:

max λ
′(s−D)

s.t. (A− I)λ ≤ 1
λ ≤ 0.

Equivalently, we can write the dual as

max y′r

s.t. My≤ 1
y≥ 0,

where M = I−A and r = D− s.

3 PROPERTIES OF OUR PRIMAL AND DUAL LINEAR PROGRAMS
We now establish some properties of our primal and dual LPS.

3.1 Feasibility
Theorem 1

(a) The dual problem is always feasible.
(b) The primal problem is feasible if and only if ∑

d
i=1 Di ≤ ∑

d
i=1 si.

Proof. For part (a), take y = 0, which is clearly feasible.
For part (b), note that if ∑

d
i=1 Di > ∑

d
i=1 si, i.e., 1′r > 0, then the dual is unbounded and therefore the

primal is infeasible. To see this, note that −M can be interpreted as the rate matrix of a continuous-time
Markov chain, so M1 = 0, and m1 is a feasible solution to the dual, for all m > 0. Therefore, if 1′r > 0,
we clearly have that the dual is unbounded.

If ∑
d
i=1 Di ≤ ∑

d
i=1 si, i.e., 1′r ≤ 0, then we claim the dual is bounded and therefore the primal has an

optimal feasible solution. To see this, we argue by contradiction. Suppose that the dual is unbounded.
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Then there exists a vector v = (v1,v2, . . . ,vd)
′ ≥ 0 such that v′r > 0, and Mv≤ 0. Let vi0 = max j=1,2,...,d v j.

Without loss of generality, we assume that i0 = 1. Since A is irreducible, there exists some h2 ≥ 1 such that
a(h2)

12 > 0, where a(h2)
i j denotes the (i, j) element of Ah2 . Because A is the transition matrix of a discrete-time

Markov chain, A1 = 1 and Ah21 = 1. Thus,

(I−Ah2)v =


1−a(h2)

11 −a(h2)
12 . . . −a(h2)

1d

−a(h2)
21 1−a(h2)

22 . . . −a(h2)
2d

...
...

...
−a(h2)

d1 −a(h2)
d2 . . . 1−a(h2)

dd




v1
v2
...

vd



=


a(h2)

12 (v1− v2)+a(h2)
13 (v1− v3)+ · · ·+a(h2)

1d (v1− vd)

a(h2)
21 (v2− v1)+a(h2)

23 (v2− v3)+ · · ·+a(h2)
2d (v2− vd)

...
a(h2)

d1 (vd− v1)+a(h2)
d2 (vd− v2)+ · · ·+a(h2)

d,d−1(vd− vd−1)

 ,

where the second equality follows from Ah21 = 1. Also we have

(I−Ah2)v = (I +A+A2 + · · ·+Ah2−1)(I−A)v = (I +A+A2 + · · ·+Ah2−1)Mv≤ 0,

where the inequality follows from Mv≤ 0, and the fact that every entry of the matrix I+A+A2+ · · ·+Ah2−1

is non-negative. Therefore,

(I−Ah2)v =


a(h2)

12 (v1− v2)+a(h2)
13 (v1− v3)+ · · ·+a(h2)

1d (v1− vd)

a(h2)
21 (v2− v1)+a(h2)

23 (v2− v3)+ · · ·+a(h2)
2d (v2− vd)

...
a(h2)

d1 (vd− v1)+a(h2)
d2 (vd− v2)+ · · ·+a(h2)

d,d−1(vd− vd−1)

≤


0
0
...
0

 .

Consider the first element of (I−Ah2)v. Because a(h2)
1 j ≥ 0 and v1− v j ≥ 0 for all j 6= 1, we have

∑ j 6=1 a(h2)
1 j (v1−v j) = 0. Therefore, a(h2)

1 j (v1−v j) = 0 for all j 6= 1. Because a(h2)
12 > 0, we must have v1 = v2.

Similarly, by irreducibility, there exists some h3 ≥ 1 such that a(h3)
13 > 0. Again we conclude that v1 = v3.

Therefore, by iteration, we claim that v1 = v2 = · · ·= vd > 0. Then 1′r = 1
v1

v′r > 0, which contradicts our
assumption that 1′r ≤ 0.

3.2 Shape of the Objective Function of the Dual

Assume that D∼ N(µ,Σ) is jointly Gaussian, i.e., its density function f (x) = 1
(
√

2π)d
√
|Σ|

e−
1
2 (x−µ)′Σ−1(x−µ),

where |Σ| is the determinant of matrix Σ. We can write the polar-coordinate representation: D = µ +RWΨ,

where R2 ∼ Γ(d
2 ,

1
2), i.e., its density function f (x) = x

d
2 e−

x
2 ( 1

2 )
d
2

Γ( d
2 )

, WW T = Σ, Ψ = z
‖z‖ , z = (z1,z2, . . . ,zd)

′ ∼

N(0, I), ‖z‖=
√

z2
1 + z2

2 + · · ·+ z2
d , and R and Ψ are independent. Note that Di could be either positive or

negative, for i = 1,2, . . . ,d. If Di is negative for some i, we assume that node i receives an extra supply.
We also assume that 1′s > 1′µ , which means that the total supply exceeds the mean total demand.
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In the set {(R,Ψ) : primal with (R,Ψ) is feasible}, let F(D) = F̃(R,Ψ) denote the optimal value of
the primal when the demand vector is D, and let FΨ(R) denote F̃(R,Ψ) when Ψ is fixed. Then we have
the following
Theorem 2 For fixed Ψ,

(a) FΨ(R) is a piecewise linear function of R in the set

JΨ = {R≥ 0 : primal with (R,Ψ) is feasible}; (1)

(b) FΨ(R) is a convex function of R in the set JΨ.

Proof. We can write the primal as

min g′x

s.t. Θx = s−µ−RWΨ

x≥ 0,

where x =
(

x+

x−

)
, g = (1,1, . . . ,1,0,0, . . . ,0)′, and Θ = (A′− I, I). Obviously, the rows of Θ are linearly

independent.
The dual can be written as

max y′(µ +RWΨ− s)

s.t. y′(−Θ)≤ g′.

Because the dual is always feasible, for any R ∈ JΨ, FΨ(R) is finite and by strong duality (e.g., Theorem
4.4 of Bertsimas and Tsitsiklis 1997), is equal to the optimal value of the dual objective.

Let us fix a particular element R∗ ∈ JΨ. Then there exists a primal optimal basic feasible solution. Let
B be the corresponding optimal basis matrix. The vector xB of basic variables at that optimal solution is
given by xB = B−1(s−µ−R∗WΨ), which is strictly positive with probability 1 because R∗2 follows the
continuous distribution Γ(d

2 ,
1
2). In addition, the vector of reduced costs is nonnegative. If we change R∗

to R and if the difference R−R∗ is sufficiently small, B−1(s− µ −RWΨ) remains positive and we still
have a basic feasible solution. The reduced costs are not affected by the change from R∗ to R and remain
nonnegative. Therefore, B is an optimal basis for the new problem with R as well. Then FΨ(R) for the
new problem is given by

FΨ(R) = g′BB−1(s−µ−RWΨ) for R close to R∗,

where gB is the cost vector corresponding to the basis. This establishes that in the vicinity of R∗, FΨ(R)
is a linear function of R.

To show part (b), let R(1) and R(2) be two elements of JΨ. For i = 1,2, let x(i) be an optimal solution to
the primal corresponding to R(i). Thus, FΨ(R(1)) = g′x(1) and FΨ(R(2)) = g′x(2). Fix a scalar γ ∈ [0,1], and
note that the vector x = γx(1)+(1− γ)x(2) is a feasible solution to the primal, so γR(1)+(1− γ)R(2) ∈ JΨ.
Therefore,

FΨ(γR(1)+(1− γ)R(2))≤ g′x = γg′x(1)+(1− γ)g′x(2) = γFΨ(R(1))+(1− γ)FΨ(R(2)),

establishing the convexity of FΨ(R).
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4 FAILURE PROBABILITY AND ESTIMATION ALGORITHMS
4.1 Failure Probability
We consider the network to have failed in two cases:

1. The primal is infeasible, i.e., the total demand exceeds the total supply.
2. The primal is feasible, but the cost of distributing demand is too high, i.e., F(D) is larger than k.

Let Q(D) = 1 if the primal is feasible, and Q(D) = 0 otherwise. Let β1 = P(Q(D) = 0), which is the
probability of the first kind of failure, and β2(k) = P(Q(D) = 1,F(D) ≥ k), which is the probability of
the second kind of failure. If β1 or β2(k) is large, the network is at a high risk of failure. Then we are
interested in computing α(k) = β1 +β2(k), which is the probability that the networks fails.

Let L(D) denote the optimal value of the dual when the demand vector is D. Note that

α(k) = β1 +β2(k)

= P(Q(D) = 0)+P(Q(D) = 1,F(D)≥ k)

= P(Q(D) = 0)+P(Q(D) = 1)P(F(D)≥ k|Q(D) = 1)

= P(Q(D) = 0)P(L(D)≥ k|Q(D) = 0)+P(Q(D) = 1)P(L(D)≥ k|Q(D) = 1)

= P(L(D)≥ k),

where the fourth equality follows from strong duality, and the fact that when Q(D) = 0, i.e., the primal is
infeasible, we have L(D) = +∞. Therefore, we want to compute the probability that the optimal value of
the dual L(D) is larger than k.

Notice that while β1 is independent of k, β2(k) is decreasing in k. Thus, if β1 is large compared to
β2(k), then α(k)≈ β1 as k increases, which is a constant. On the other hand, if β1 is small compared to
β2(k) even for large k, then α(k)≈ β2(k) is decreasing in k. In our experiments (Section 5), we consider
examples in which β1� β2(k) for all k, so the latter situation occurs.

4.2 Naive Simulation
We first describe how to use naive simulation (i.e., with no variance reduction) to estimate α(k). Recall that
α(k) = P(L(D) ≥ k) = E[U ], where U = I{L(D) ≥ k}. Let α̂n(k) = 1

n ∑
n
i=1Ui, then α̂n(k) is an unbiased

estimator of α(k). Below is an algorithm for computing the estimator α̂n(k) with naive simulation.

1. Set i = 1 and let n be the total number of replications to simulate.
2. Generate Ψi =

zi
‖zi‖ , where zi ∼ N(0, I). Generate R2

i ∼ Γ(d
2 ,

1
2), independent of Ψi. Let D(i) =

µ +RiWΨi.
3. Solve the dual problem with demand D(i). If the optimal value L(D(i))≥ k, set Ui = 1; otherwise,

set Ui = 0.
4. If i < n, then set i = i+1 and go to step 2; otherwise, go to step 5.
5. Compute α̂n(k) = 1

n ∑
n
i=1Ui as an estimator of α(k), and a 100(1−δ )% confidence interval for α(k)

is (α̂n(k)±Φ−1(1− δ/2)Sn/
√

n)), where S2
n = 1

n−1 ∑
n
i=1(Ui− α̂n(k))2, and Φ is the distribution

function of a standard normal.

4.3 Conditional Monte Carlo
We now develop a conditional Monte Carlo approach for estimating α(k). Note that α(k) can be written
as α(k) = E[E[U |Ψ]], so if we can compute E[U |Ψ] = P(L(D)≥ k|Ψ), then sampling E[U |Ψ] rather than
U as in naive simulation reduces variance since Var[U ] = E[Var[U |Ψ]]+Var[E[U |Ψ]].
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Note that

E[U |Ψ] = P(L(D)≥ k|Ψ)

= P(F(D)≥ k,Q(D) = 1|Ψ)+P(Q(D) = 0|Ψ)

= P(FΨ(R)≥ k,Q(D) = 1|Ψ)+P(Q(D) = 0|Ψ)

= P(R ∈ KΨ|Ψ)+P(R ∈ Jc
Ψ|Ψ)

= P(R ∈ KΨ∪ Jc
Ψ|Ψ)

where KΨ = {R ∈ JΨ : FΨ(R)≥ k}, JΨ is defined in (1), and Jc
Ψ
= {R≥ 0 : primal with (R,Ψ) is infeasible}

is the complement of JΨ. The last equality follows from the fact that KΨ∩ Jc
Ψ
= /0.

By Theorem 2, for fixed Ψ, FΨ(R) is piecewise linear and convex on JΨ. Therefore, KΨ is an interval
or union of intervals if not empty. By Theorem 1, for fixed Ψ, JΨ = {R≥ 0 : R1′WΨ≤ 1′s−1′µ}. Recall
that we assume 1′s > 1′µ . If 1′WΨ > 0, then JΨ = [0, 1′s−1′µ

1′WΨ
]; JΨ = [0,+∞) otherwise. In both cases,

JΨ is an interval. Thus, KΨ∪ Jc
Ψ

is an interval or union of intervals if not empty. Because R2 ∼ Γ(d
2 ,

1
2),

E[U |Ψ] can be calculated analytically.
While Jc

Ψ
is easy to find, as noted above, calculating KΨ only requires finding R∗ ∈ JΨ such that

FΨ(R∗) = k. (2)

There are three cases for the root, as we now explain.

• There is no root in the set JΨ.
If FΨ(R) < k for all R ∈ JΨ, then KΨ = /0 and E[U |Ψ] = P(R ∈ Jc

Ψ
). If FΨ(R) ≥ k for all R ∈ JΨ,

then KΨ = JΨ and E[U |Ψ] = 1.
• There is only one root R∗ in the set JΨ.

If the slope of FΨ(R) at R∗ is positive, then KΨ = [R∗, 1′s−1′µ
1′WΨ

] when 1′WΨ > 0, and KΨ = [R∗,+∞)

when 1′WΨ≤ 0; in both cases E[U |Ψ] = P(R ∈ [R∗,+∞)). If the slope of FΨ(R) at R∗ is negative,
then KΨ = [0,R∗] and E[U |Ψ] = P(R ∈ [0,R∗]∪ Jc

Ψ
).

• There are two different roots R∗(1) < R∗(2) in the set JΨ.
Because FΨ(R) is convex on JΨ, it must be that the slope at R∗(1) is negative and the slope
at R∗(2) is positive. Then KΨ = [0,R∗(1)]∪ [R∗(2), 1′s−1′µ

1′WΨ
] or KΨ = [0,R∗(1)]∪ [R∗(2),+∞) and

E[U |Ψ] = P(R ∈ [0,R∗(1)]∪ [R∗(2),+∞)).

Now we explain how we search for the root R∗ of (2) for a fixed Ψ using Newton’s method. Let

bl =
√

G−1
Γ
(0.5c) and bu =

√
G−1

Γ
(GΓ(b2)−0.5c), where GΓ is the distribution function of Γ(d

2 ,
1
2),

b = 1′s−1′µ
1′WΨ

or +∞ and c is a small constant such that P(R ∈ [bl,bu])> 0. In our algorithm, bl and bu are
lower and upper bounds for the root R∗, and we search for R∗ ∈ [bl,bu]. Let K̃Ψ = {R∈ [bl,bu] : FΨ(R)≥ k}.
Then our algorithm calculates K̃Ψ instead of KΨ. Because P(R ∈ JΨ)−P(R ∈ [bl,bu]) = c, we have
0≤ P(R∈KΨ)−P(R∈ K̃Ψ)≤ c, and the error between our estimate and E[U |Ψ] will not exceed c. We first
start from an initial value R0 = bl , and by strong duality, we solve the dual LP with demand D = µ +R0WΨ

using the simplex algorithm to obtain the corresponding FΨ(R0) and slope l0 of FΨ(R) at R0.

• If l0 > 0, there is at most one root.
– If FΨ(R0)> k or FΨ(bu)< k, then there is no root.
– Otherwise, update R1 = min(R0+

k−FΨ(R0)
l0

,bu). Solve the dual LP with demand D = µ +R1WΨ

to obtain the corresponding FΨ(R1) and slope l1. We keep updating until we find the root R∗.
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• If l0 < 0, there are at most two different roots.
– If FΨ(R0)< k and FΨ(bu)< k, then there is no root.
– If FΨ(R0)≥ k and FΨ(bu)< k, then there is one root. We update R1 = R0+

k−FΨ(R0)
l0

. Solve the
dual LP with demand D = µ +R1WΨ to obtain the corresponding FΨ(R1) and slope l1. We
keep updating until we find the root R∗.

– If FΨ(R0) < k and FΨ(bu) ≥ k, then there exists one root. We first increase R from R0 to R1

in JΨ such that l1 > 0, and then update R2 = min(R1 +
k−FΨ(R1)

l1
,bu). Solve the dual LP with

demand D = µ +R2WΨ to obtain the corresponding FΨ(R2) and slope l2. We keep updating
until we find the root R∗.

– If FΨ(R0) ≥ k and FΨ(bu) ≥ k, then there exists no root or there exist two roots. We first
test if there exists a root. We update R1 = R0 +

k−FΨ(R0)
l0

. Solve the dual LP with demand
D = µ +R1WΨ to obtain the corresponding FΨ(R1) and slope l1. We keep updating until we
find a root R∗(1), or we reach some point with non-negative slope before we find a root. If the
latter case happens, there is no root. If the former case happens, there exists two roots. We
increase R from R∗(1) to R′1 in JΨ such that l′1 > 0, and then update R′2 = min(R′1+

k−FΨ(R′1)
l′1

,bu).
Solve the dual LP with demand D = µ +R′2WΨ to obtain the corresponding FΨ(R′2) and slope
l′2. We keep updating until we find the second root R∗(2).

Below is an algorithm for computing the estimator α̃n(k) with conditional Monte Carlo.

1. Set i = 1 and let n be the total number of replications to simulate.
2. Generate Ψi =

zi
‖zi‖ , where zi ∼ N(0, I).

3. Search for the root R∗i of the equation FΨi(R) = k if it exists, and calculate E[Ui|Ψi].
4. If i < n, then set i = i+1 and go to step 2; otherwise, go to step 5.
5. Compute α̃n(k) = 1

n ∑
n
i=1 E[Ui|Ψi] as an estimator of α(k), and a 100(1−δ )% confidence interval

for α(k) is (α̃n(k)±Φ−1(1−δ/2)S̃n/
√

n)), where S̃2
n =

1
n−1 ∑

n
i=1(E[Ui|Ψi]− α̃n(k))2.

5 EXAMPLES
5.1 Efficiency of Simulation Estimators
We now discuss a basis for comparing the estimators α̂n(k) for naive simulation and α̃n(k) for conditional
Monte Carlo.
Definition 1 Suppose we want to estimate α = E[X ], and X1,X2, . . . ,Xn are independent replications of X .
Then α̂n =

1
n ∑

n
i=1 Xi is an unbiased estimator of α , and S2

n =
1

n−1 ∑
n
i=1(Xi− α̂n)

2 is an unbiased estimator
of Var[X ] = σ2, which we assume is finite. By the central limit theorem, the error α̂n−α is approximately
normally distributed with mean 0, and standard deviation σ√

n , which can be estimated by Sn√
n . We then

define the RSE (relative standard error) as Sn√
nα̂n

.

The standard deviation σ√
n is a measure of the absolute error α̂n−α . Other things being equal, when

comparing two unbiased estimator of the same quantity, we prefer the one with smaller standard deviation.
However, what if the estimator with smaller standard deviation takes longer computing time (CT )? Glynn
and Whitt (1992) suggest a criterion: in comparing alternative estimators, each of which is the average of
unbiased independent replications, we prefer the one with smaller (variance per replication) × (expected
computing time per replication), which can be estimated by S2

n
n ×CT . We also would like to compare the

estimators for different k. Therefore, we use the relative measure RSE2×CT as the criterion.
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In our experiments we apply naive simulation method and conditional Monte Carlo method to different
networks, and compare RSE2×CT .

5.2 Design of Networks
We designed the networks in our examples so that the correlation of the demands between two nodes is
related to the the topology of the network, with correlation decreasing the further apart the nodes are. For
each i, j ∈V with i < j, we define a distance d(i, j) to measure the closeness. Because we assume that the
network is irreducible, there exists some m≥ 1 such that there is a directed path i = i0→ i1→ ·· ·→ im = j.
Let d(i, j) denote the minimum of such m’s. Then if d(i, j) is small, we assign a “large” correlation
between the two nodes. On the contrary, if d(i, j) is large, we assign a “small” correlation. Considering
the correlation matrix is symmetric, we set d( j, i) = d(i, j) for each i, j ∈ V with i < j. We also assign
a variance to Di for each i ∈V . Moreover, because we need to calculate the Cholesky decomposition of
covariance matrix of Σ, we choose Σ such that it is positive definite.

Because we are interested in the case when α(k) is decreasing in k, we choose parameters s,u, and
Σ such that β1 is very small. We tested two examples with n = 105. We set c = 10−10 in our search
algorithm for the root R∗ of (2); this value was selected as it is significantly smaller than α̃n(k) in all of
our experiments. Simulation results are as follows.

5.3 Example 1: d = 3

The first example is a 3-dimensional network with the following parameters:

H =

0 1 0
1 0 1
0 1 0

 , s =

 3
1

13

 , u =

1
1
2

 , Σ =

 1 0.5 0.1
0.5 1 0.5
0.1 0.5 1

 .

Table 1: Results of Naive Simulation and Conditional Monte Carlo for d = 3

Naive Simulation Conditional MC
k α̂n(k) RSE2×CT α̃n(k) RSE2×CT
1 1.82×10−1 1.45×10−2 1.81×10−1 1.61×10−2

5 2.16×10−2 1.44×10−1 2.11×10−2 4.78×10−2

10 2.34×10−3 1.36×100 2.47×10−3 7.45×10−2

13 5.30×10−4 6.01×100 5.20×10−4 9.31×10−2

16 1.30×10−4 2.45×101 8.89×10−5 1.13×10−1

20 3.00×10−5 1.06×102 6.13×10−6 1.41×10−1

24 0 NA 2.93×10−7 1.69×10−1

26 0 NA 5.49×10−8 1.78×10−1

The estimate of β1 is 3.30×10−9, which is smaller than α̃n(k) for all the above values of k.



Blanchet, Li and Nakayama

5.4 Example 2: d = 10

The second example is a 10-dimensional network with the following parameters:

H =



0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0


, s =



4
4
4
4
4
4
4
4
4
4


, u =



1
5
1
1
1
1
1
1
1
1


,

Σ =



0.5 0.3 0.3 0.25 0.2 0.15 0.2 0.25 0.2 0.15
0.3 0.5 0.25 0.2 0.15 0.1 0.15 0.2 0.15 0.1
0.3 0.25 0.5 0.3 0.25 0.2 0.25 0.3 0.25 0.2
0.25 0.2 0.3 0.5 0.3 0.25 0.3 0.25 0.2 0.15
0.2 0.15 0.25 0.3 0.5 0.3 0.25 0.2 0.15 0.1
0.15 0.1 0.2 0.25 0.3 0.5 0.3 0.25 0.2 0.15
0.2 0.15 0.25 0.3 0.25 0.3 0.5 0.3 0.25 0.2
0.25 0.2 0.3 0.25 0.2 0.25 0.3 0.5 0.3 0.25
0.2 0.15 0.25 0.2 0.15 0.2 0.25 0.3 0.5 0.3
0.15 0.1 0.2 0.15 0.1 0.15 0.2 0.25 0.3 0.5


.

Table 2: Results of Naive Simulation and Conditional Monte Carlo for d = 10

Naive Simulation Conditional MC
k α̂n(k) RSE2×CT α̃n(k) RSE2×CT
1 5.03×10−1 4.20×10−3 5.02×10−1 7.23×10−3

5 3.20×10−2 1.28×10−1 3.05×10−2 2.12×10−1

10 3.88×10−3 1.09×100 3.88×10−3 6.38×10−1

15 4.50×10−4 9.40×100 4.42×10−4 1.62×100

20 3.00×10−5 1.41×102 4.07×10−5 3.93×100

23 0 NA 8.76×10−6 5.28×100

30 0 NA 3.95×10−7 1.18×101

34 0 NA 4.58×10−8 1.62×101

The estimate of β1 is 9.85×10−10, which is smaller than α̃n(k) for all the above values of k.

5.5 Discussion of Results
1. As we expect, if we choose parameters s,u, and Σ such that β1 is very small, α(k) is decreasing

in k.
2. For naive simulation, the performance deteriorates very quickly as k increases. Because we fix the

number of simulations n, when k is very large (i.e., α(k)< 1
n ), we do not get even one observation

of the event {L(D)≥ k}.
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3. For conditional Monte Carlo, the performance deteriorates as well, but not as quickly as naive
simulation. No matter how large k is, we can obtain a non-zero estimate of α(k) although we fix n.

4. For non-rare events (i.e., when k is small), naive simulation method works fine, sometimes even
better than our conditional Monte Carlo algorithm, as we now explain. The naive simulation method
only needs to solve a single optimization problem to determine Ui in each replication i. In contrast,
our conditional Monte Carlo method needs to solve several optimization problems to find R∗i in
each replication i. However, as k increases, conditional Monte Carlo method works much better.
The larger k is, the bigger the advantage conditional Monte Carlo has compared to naive simulation.
The advantage arises because of the significant variance reduction obtained for large k overwhelms
the additional computational effort.

5. As the dimension of the network increases, neither method gives good results when k is large.
However, conditional Monte Carlo offers a much better estimate.

In conclusion, naive simulation can do well when k is small, but conditional Monte Carlo method
outperforms naive simulation when k is large.

6 CONCLUDING REMARKS
We presented a model of network with a goal of fulfilling random demands at the nodes given fixed supplies.
Excess demand at a node is distributed equally to its neighbors and the equilibrium is determined by solving
a linear program. We are interested in estimating the probability that the optimal objective function value
of the LP exceeds a threshold k. We developed a conditional Monte Carlo approach to efficiently simulate
the problem when k is large. Empirical results show significant improvement over naive simulation for
large k.

There are several extensions we are now pursuing. Our model currently assumes that nodes equally
distribute unserved demands to neighbors, but we can modify our (primal) LP to determine the optimal
allocation of unserved demands to neighbors. The current objective function of our (primal) LP is the sum
of the unserved demands across the nodes; alternatively, we can consider weighted sums, which can take
into account differences in costs of distributing demands over different edges. We are also investigating
applying importance sampling (e.g., Section 8.6 of Ross 2006) to estimate α(k) for large k.
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