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A crucial feature of many strategic situations is that players interact
repeatedly over time, not just once. For instance, American Airlines and
United compete for business every day, bosses try to motivate workers on an
ongoing basis, suppliers and buyers make deals repeatedly, nations engage in
ongoing trade, and so on. The repeated game model is perhaps the simplest
model that captures this notion of ongoing interaction. Of course, in all
these examples, there is a strong argument to be made that the game itself
changes over time. The basic repeated game model abstracts from this issue,
and focuses just on the effect of repetition.

1 Some Examples

1.1 Example 1: Cooperation in the Prisoners’ Dilemma

Probably the best-known repeated game argument is that ongoing interac-
tion can explain why people might behave cooperatively when it is against
their self-interest in the short run. The classic example is the repeated
prisoners’ dilemma.

C D
C 1, 1 −1, 2
D 2,−1 0, 0

The unique Nash equilibrium if the game is played once is (D,D).
Suppose that players 1 and 2 play the game repeatedly at time t =

0, 1, 2... and that i’s payoff for the entire repeated game is:

ui
¡
{a1, a2, ....}

¢
= (1− δ)

∞X
t=0

δtgi(a
t
i, a

t
−i)

where δ ∈ [0, 1). The fact that δ < 1 means that players discount the future
– a dollar tomorrow is less than a dollar today. The overall payoffs are
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multiplied by (1− δ) to get a per-period average payoff for the game (note
that this makes the repeated game payoff comparable to the stage game
payoffs).

Proposition 1 If δ ≥ 1
2 , the repeated prisoners’ dilemma game has a sub-

game perfect equilibrium in which (C,C) is played in every period.

Proof. Suppose the players use “grim trigger” strategies:

I. Play C in every period unless someone plays D, in which go to II.

II. Play D forever.

To check that these strategies form a subgame perfect equilibrium if
δ ≥ 1

2 , we need to verify that there is no single period where i can make a
profitable deviation (this is the “one-stage deviation principle” – for details,
see Fudenberg and Tirole, p. 108—110).

Suppose up to time t, D has never been played. Then i’s payoffs looking
forward are:

Play C ⇒ (1− δ)
£
1 + δ + δ2 + ...

¤
= 1

Play D ⇒ (1− δ)
£
2 + δ · 0 + δ2 · 0 + ...

¤
= (1− δ)2

so if δ ≥ 1
2 , C is optimal.

Suppose that at time t, D has already been played. Then j will play D
and no matter what will continue to play D, so i’s payoffs are:

Play C ⇒ (1− δ)
£
−1 + δ · 0 + δ2 · 0 + ...

¤
= (1− δ)(−1)

Play D ⇒ (1− δ)
£
0 + δ · 0 + δ2 · 0 + ...

¤
= 0

So D is definitely optimal. Q.E.D.

1.2 Example 2: Use of Non-Nash Reversion

A second example shows that repeated play can lead to worse outcomes
than in the one-shot game.

A B C
A 2, 2 2, 1 0, 0
B 1, 2 1, 1 −1, 0
C 0, 0 0,−1 −1,−1

In this game, A is strictly dominant, and the unique Nash Equilibrium is
(A,A).

2



Proposition 2 If δ ≥ 1
2 , this game has a subgame perfect equilibrium in

which (B,B) is played in each period.

Proof. Here, we construct slightly more complicated strategies than
grim trigger.

I. Play B in every period unless someone deviates, in which case go to II.

II. Play C. If no one deviates, go to I. If someone deviates, stay in II.

These strategies have what Abreu (1988) calls a “stick” (threatening to
play C if someone deviates from B) and a “carrot” (promising to go back
to B if everyone carries out the C punishment). Let’s check that this is a
SPE.

Suppose no one deviated at t−1, so players should play B at time t (i.e.
they’re in phase I):

Play B ⇒ (1− δ)
£
1 + δ + δ2 + δ3 + ...

¤
= 1

Best Dev. (A) ⇒ (1− δ)
£
2 + δ(−1) + δ2 + δ3 + ...

¤
= 1 + (1− δ)(1− 2δ)

so it’s optimal to play B if δ ≥ 1
2 .

Suppose someone deviated at t − 1, so players should play C at time t
(i.e. they’re in phase II)

Play C ⇒ (1− δ)
£
−1 + δ + δ2 + δ3 + ...

¤
= 1− (1− δ)(2)

Best Dev. (A) ⇒ (1− δ)
£
0 + δ(−1) + δ2 + δ3 + ...

¤
= 1− (1− δ)(1 + 2δ)

so it’s optimal to play C if δ ≥ 1
2 . Q.E.D.

2 A General Model

• Let G be a normal form game with action spaces A1, ..., AI , payoff
functions gi : A→ R, where A = A1 × ...×AI .

• Let G∞(δ) be the infinitely repeated version of G played at t =
0, 1, 2, ... where players discount at δ and observe all previous actions.

• A history is Ht = {(a01, ..., a0I), ..., (at−11 , ..., at−1I )}.

• A strategy is sit : Ht → Ai.
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• Average payoffs for i are:

ui(si, s−i) = (1− δ)
∞X
t=0

δtgi(ai, a−i).

We now investigate what average payoffs could result from different equi-
libria when δ is near 1. That is, what can happen in equilibrium when players
are very patient?

Fact 1 (Feasibility) If (v1, ..., vI) are average payoffs in a Nash equilibrium,
then

(v1, ..., vI) ∈ Conv {(x1, ..., xI) : ∃(a1, ..., aI) with gi(a) = xi for all i}

Definition 1 Player i’s min-max payoff is

vi = minσ−i
max
σi

gi(σi, σ−i)

Fact 2 (Individual Rationality) In any Nash equilibrium, player i must re-
ceive at least vi.

Proof. Suppose (σi, σ−i) is a Nash equilibrium. Then let σ0i be the strat-
egy of playing a static best-response to σ−i in each period. Then (σ0i, σ−i)
will give i a payoff of at least vi, and playing σi must give at least this much.
Q.E.D.

3 The Folk Theorem

The first result is the (Nash) folk theorem which states that any feasible
and strictly individually rational payoff vector can be achieved as a Nash
equilibrium of the repeated game, provided players are sufficienly patient.

Theorem 1 (Nash Folk Theorem) If (v1, ..., vI) is feasible and strictly in-
dividually rational, then there exists δ < 1 such that for all δ > δ, there is a
Nash Equilibrium of G∞(δ) with average payoffs (v1, ..., vI).

Proof. Assume there exists a profile a = (a1, ..., aI) such that gi(a) = vi
for all i (I’ll comment on this assumption later.) Letmi

−i denote the strategy
profile of players other than i that holds i to at most vi and write m

i
i for i’s

best-response to mi
−i.

Now consider the following strategies:

4



I. Play (a1, ..., aI) as long as no one deviates.

II. If some player j deviates, play mj
i thereafter.

If i plays this strategy, he gets vi. If he deviates in some period t, then
if vi = supa gi(a), the most that i could get is:

(1− δ)
£
vi + δvi + ...+ δt−1vi + δtvi + δt+1vi + δt+2vi + ...

¤
Following the suggested strategy will be optimal if:

δ

1− δ
(vi − vi) ≥ (vi − vi)

As δ → 1, the ratio δ
1−δ → ∞, so simply pick δ = maxi (vi − vi) /(vi − vi).

Q.E.D.

This Nash folk theorem says that essentially anything goes as a Nash
equilibrium when players are sufficiently patient. Of course, we should be
a little bit cautious about using Nash equilibrium as our solution concept
since it might specify punishment behavior that is implausible. For example,
consider the game

L R
U 6, 6 0,−100
D 7, 1 0,−100

.

The Folk Theorem says that (6, 6) is possible as a Nash equilibrium payoff,
but the strategies suggested in the proof require the column player to play
R in every period following a deviation. While this will hurt Row, it will
hurt Column a lot – it seems unreasonable to expect her to carry ought the
threat.

What we’d like to do is get (6, 6), or more generally, the whole set of
feasible and individually rational payoff vectors as subgame perfect equilib-
rium payoffs. The Fudenberg and Maskin (1986) folk theorem says that this
possible.

Theorem 2 (Folk Theorem) Let V ∗ be the set of feasible and strictly indi-
vidually rational payoffs. Assume that dimV ∗ = I. Then for any (v1, ..., vI) ∈
V ∗, there exists a δ < 1, such that for any δ > δ, there is a subgame perfect
equilibrium of G∞(δ) with average payoffs (v1, ..., vI).

Proof. Fixing a payoff vector (v1, ..., vI) ∈ V ∗, we construct a SPE
that achieves it. For convenience, let’s assume that there is some profile
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(a1, ..., aI) such that gi(a) = vi for all i. The key to the proof is find payoffs
that allow us to “reward” all agents j 6= i in the event that i deviates and
has to be min-maxed for some length of time.

• Choose v0 ∈ Int(V ∗) such that v0i < vi for all i.

• Choose T such that maxa gi(a) + Tvi < mina gi(a) + Tv0i

• Choose ε > 0 such that for each i,

vi(ε) =
¡
v01 + ε, ..., v0i−1 + ε, v0i, v

0
i+1 + ε, ...., v0I + ε

¢
.

• Let ai be the profile with g(ai) = vi(ε)

• Let mi be the profile that min-maxes i, so gi(mi) = vi.

u1

u2

v1

v2

•v’
•

•

•

vv1

v2

Consider the following strategies for i = 1, 2, ..., I.

I. Play ai so long as no player deviates from (a1, ..., aI). If j alone deviates,
go to IIj . (If two or more players simultaneously deviate, play stays
in I.)

IIj. Play m
j
i for T periods, then go to IIIj if no one deviates. If k deviates,

re-start IIk.

IIIj. Play a
j
i so long as no one deviates. If k deviates, go to IIk.

6



Note that strategies involve both punishments (the stick) and rewards
(the carrot). Let’s check that they are indeed a subgame perfect equilibrium
using the one-shot deviation principle. We need to check for each of the
different subgames.

Subgame I. Consider i’s payoff to playing the strategy and deviating:

i follows strategy : (1− δ) [vi + δvi + ...] = vi

ideviates : (1− δ)
£
vi + δvi + ...+ δT vi + δT+1v0i + ...

¤
Subgame IIi. (suppose there are T 0 ≤ T periods left)

i follows strategy : (1− δT
0
)vi + δT

0
v0i

ideviates : (1− δ)vi + δ(1− δT )vi + δT+1v0i

Subgame IIj . (suppose there are T 0 ≤ T periods left)

i follows strategy : (1− δT
0
)gi(m

j) + δT
0
(v0i + ε)

ideviates : (1− δ)vi + δ(1− δT )vi + δT+1v0i

Subgame IIIi,IIIj . Consider i’s payoff to playing the strateg and deviating:

i follows strategy : v0i
ideviates : (1− δ)vi + δ(1− δT )vi + δT+1v0i

The payoffs here are the least i could get if he follows the strategy and the
most he could get if he deviates. A small amount of algebra shows that for
δ ≈ 1, it is best not to deviate. Q.E.D.

Remark 1 The equilibrium constructed in the above proof involves both the
“stick” (Phase II) and the “carrot” (Phase III). Often, however, only the
stick is necessary. The carrot phase is needed only if the parties punishing
in Phase II get less than their min-max payoffs.

Note that the (perfect) Folk Theorem requires an extra (though relatively
mild) assumption, namely that dimV ∗ = I. The assumption ensures that
each player i can, in the event of a deviation, be singled out for punishment.
It rules out special games like the one in the following example.
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Example 1 Consider the following game with three players: 1 chooses Row,
2 chooses column, and 3 chooses matrix.

A
A B

A 1, 1, 1 0, 0, 0
B 0, 0, 0 0, 0, 0

B
A B

A 0, 0, 0 0, 0, 0
B 0, 0, 0 1, 1, 1

In this game the min-max level is zero. To min-max i, j and k just
need to mis-coordinate. The set of feasible and individually rational
payoffs is:

V ∗ = {(v, v, v) : v ∈ [0, 1]}

Claim. For any δ ∈ (0, 1), there is no SPE of G∞(δ) with average payoff
less than 1

4 .

Proof. Fix δ, and let x = inf {v : (v, v, v) is a SPE payoff}. The first
step of the proof is to show that it (v, v, v) is an SPE payoff then:

v ≥ (1− δ)
1

4
+ δx.

To see this, let (σ1, σ2, σ3) denote the first period mixtures used in a SPE
with payoff v. Then there must exist either two players with σi(A) ≥ 1

2 or
two players with σi(B) ≥ 1

2 . Assume the former, and suppose σ1(A), σ2(A) ≥
1
2 .
Suppose 3 plays A in the first period and then follows his equilibrium

strategy. His payoff from this will be at least (1 − δ)14 + δx – since
σ1(A), σ2(A) ≥ 1

2 , he gets at least
1
4 in the first period, and over all fu-

ture periods he must average at least x, given that continuation play will be
an SPE. Since this deviation is unprofitable, the initial claim holds.

But now we’re essentially done, since

x = inf
v is SPE

v ≥ (1− δ)
1

4
+ δx =⇒ x ≥ 1

4
.

The problem is that no individual can be punished for deviating without
punishing everyone, so there is no way to “reward” the punishers. Q.E.D.
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4 Comments

There are many variations and strengthenings of the perfect monitoring folk
theorem.

1. The assumption that dimV ∗ = I (full-dimensionality) can be relaxed.
Abreu, Dutta and Smith (1994) show that what is really needed is
that no two players have payoffs that are affine transformations of
each other – in this case it is always possible to single out individuals
for punishment.

2. The assumption of strict individual rationality can also be relaxed.

3. There are some subtle issues involving randomization. The proof above
assumes that there are profiles a, ai,mi to achieve the given payoff vec-
tors in each period, and that deviations from these profiles are observ-
able. There are several ways to justify this. The simplest is to assume
players can carry out a public coin toss (public randomization) before
each period, and that mixed strategies are observable. Randomization
can also be replaced by a deterministic variation in play over time
(which is more tricky).

4. Benoit and Krishna (1986) prove a folk theorem for finitely repeated
games. Clearly this can’t be done in the prisoners’ dilemma where
backward induction says that (D,D)will be played in each period.
The stage game must have multiple nash equilibria to allow for rewards
and punishments towards the end of the game.

5. There are also folk theorems for games where some players are long-run
(infinite-horizon) and others are short-run (myopic), for games with
overlapping generations of players, and for games where players face
a new opponent randomly drawn from the population in each period
(Kandori, 1992; Ellison, 1994).
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