Randomized Smoothing Techniques in Optimization

John Duchi

Based on joint work with Peter Bartlett, Michael Jordan, Martin Wainwright, Andre Wibisono

Stanford University

Information Systems Laboratory Seminar
October 2014

Problem Statement

Goal: solve the following problem

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in \mathcal{X}
\end{aligned}
$$

Problem Statement

Goal: solve the following problem

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in \mathcal{X}
\end{aligned}
$$

Often, we will assume

$$
f(x):=\frac{1}{n} \sum_{i=1}^{n} F\left(x ; \xi_{i}\right) \quad \text { or } \quad f(x):=\mathbb{E}[F(x ; \xi)]
$$

Gradient Descent

Goal: solve

$$
\operatorname{minimize} \quad f(x)
$$

Technique: go down the slope,

$$
x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

When is optimization easy?

Easy problem: function is convex, nice and smooth

When is optimization easy?

Easy problem: function is convex, nice and smooth

Not so easy problem: function is non-smooth

When is optimization easy?

Easy problem: function is convex, nice and smooth

Not so easy problem: function is non-smooth

Even harder problems:

- We cannot compute gradients $\nabla f(x)$
- Function f is non-convex and non-smooth

Example 1: Robust regression

- Data in pairs $\xi_{i}=\left(a_{i}, b_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}$
- Want to estimate $b_{i} \approx a_{i}^{\top} x$

Example 1: Robust regression

- Data in pairs $\xi_{i}=\left(a_{i}, b_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}$
- Want to estimate $b_{i} \approx a_{i}^{\top} x$
- To avoid outliers, minimize

$$
f(x)=\frac{1}{n} \sum_{i=1}^{n}\left|a_{i}^{\top} x-b_{i}\right|=\frac{1}{n}\|A x-b\|_{1}
$$

Example 2: Protein Structure Prediction

(A)

(Grace et al., PNAS 2004)

Protein Structure Prediction

Featurize edges e in graph: vector ξ_{e}. Labels y are matching in a graph, set \mathcal{V} is all matchings.

Protein Structure Prediction

Featurize edges e in graph: vector ξ_{e}. Labels y are matching in a graph, set \mathcal{V} is all matchings.

Goal: Learn weights x so that

$$
\underset{\widehat{\nu} \in \mathcal{V}}{\operatorname{argmax}}\left\{\sum_{e \in \widehat{\nu}} \xi_{e}^{\top} x\right\}=\nu
$$

i.e. learn x so maximum matching in graph with edge weights $x^{\top} \xi_{e}$ is correct

Protein Structure Prediction

Goal: Learn weights x so that

$$
\underset{\widehat{\nu} \in \mathcal{V}}{\operatorname{argmax}}\left\{\sum_{e \in \widehat{\nu}} \xi_{e}^{\top} x\right\}=\nu
$$

i.e. learn x so maximum matching in graph with edge weights $x^{\top} \xi_{e}$ is correct

Protein Structure Prediction

Goal: Learn weights x so that

$$
\underset{\widehat{\nu} \in \mathcal{V}}{\operatorname{argmax}}\left\{\sum_{e \in \widehat{\nu}} \xi_{e}^{\top} x\right\}=\nu
$$

i.e. learn x so maximum matching in graph with edge weights $x^{\top} \xi_{e}$ is correct

Loss function: $L(\nu, \widehat{\nu})$ is number of disagreements in matchings

$$
F(x ;\{\xi, \nu\}):=\max _{\widehat{\nu} \in \mathcal{V}}\left(L(\nu, \widehat{\nu})+x^{\top} \sum_{e \in \widehat{\nu}} \xi_{e}-x^{\top} \sum_{e \in \nu} \xi_{e}\right)
$$

When is optimization easy?

Easy problem: function is convex, nice and smooth

Not so easy problem: function is non-smooth

Even harder problems:

- We cannot compute gradients $\nabla f(x)$
- Function f is non-convex and non-smooth

One technique to address many of these

Instead of only using $f(x)$ and $\nabla f(x)$ to solve

$$
\operatorname{minimize} \quad f(x),
$$

get more global information

One technique to address many of these

Instead of only using $f(x)$ and $\nabla f(x)$ to solve

$$
\operatorname{minimize} \quad f(x),
$$

get more global information

Let Z be a random variable, and for small u, look at f near points

$$
f(x+u Z)
$$

where u is small

One technique to address many of these

Instead of only using $f(x)$ and $\nabla f(x)$ to solve

$$
\operatorname{minimize} \quad f(x),
$$

get more global information

Let Z be a random variable, and for small u, look at f near points

$$
f(x+u Z)
$$

where u is small

One technique to address many of these

Instead of only using $f(x)$ and $\nabla f(x)$ to solve

$$
\operatorname{minimize} \quad f(x),
$$

get more global information

Let Z be a random variable, and for small u, look at f near points

$$
f(x+u Z)
$$

where u is small

Three instances

I Solving previously unsolvable problems [Burke, Lewis, Overton 2005]

- Non-smooth, non-convex problems

Three instances

I Solving previously unsolvable problems [Burke, Lewis, Overton 2005]

- Non-smooth, non-convex problems

II Optimal convergence guarantees for problems with existing algorithms [D., Jordan, Wainwright, Wibisono 2014]

- Smooth and non-smooth zero order stochastic and non-stochastic optimization problems

Three instances

I Solving previously unsolvable problems [Burke, Lewis, Overton 2005]

- Non-smooth, non-convex problems

II Optimal convergence guarantees for problems with existing algorithms [D., Jordan, Wainwright, Wibisono 2014]

- Smooth and non-smooth zero order stochastic and non-stochastic optimization problems

III Parallelism: really fast solutions for large scale problems [D., Bartlett, Wainwright 2013]

- Smooth and non-smooth stochastic optimization problems

Instance I: Gradient Sampling Algorithm

Problem: Solve

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x)
$$

where f is potentially non-smooth and non-convex (but assume it is continuous and a.e. differentiable) [Burke, Lewis, Overton 2005]

Instance I: Gradient Sampling Algorithm

Problem: Solve

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x)
$$

where f is potentially non-smooth and non-convex (but assume it is continuous and a.e. differentiable) [Burke, Lewis, Overton 2005]

At each iteration t,

- Draw Z_{1}, \ldots, Z_{m} i.i.d. $\left\|Z_{i}\right\| \leq 1$
- Set $g_{t}^{i}=\nabla f\left(x_{t}+u Z_{i}\right)$
- Set gradient g_{t} as

$$
\begin{aligned}
& g_{t}=\operatorname{argmin}_{g} \\
& \qquad\left\{\|g\|_{2}^{2}: \begin{array}{r}
g=\sum_{i} \lambda_{i} g_{t}^{i} \\
\lambda \geq 0, \sum_{i} \lambda_{i}=1
\end{array}\right\}
\end{aligned}
$$

- Update $x_{t+1}=x_{t}-\alpha g_{t}$, where
 $\alpha>0$ chosen by line search

Instance I: Gradient Sampling Algorithm

Problem: Solve

$$
\operatorname{minimize}_{x \in \mathcal{X}} f(x)
$$

where f is potentially non-smooth and non-convex (but assume it is continuous and a.e. differentiable) [Burke, Lewis, Overton 2005]
Define the set

$$
G_{u}(x):=\operatorname{Conv}\left\{\nabla f\left(x^{\prime}\right):\left\|x^{\prime}-x\right\|_{2} \leq u, \quad \nabla f\left(x^{\prime}\right) \text { exists }\right\}
$$

Proposition (Burke, Lewis, Overton):
There exist cluster points \bar{x} of the sequence x_{t}, and for any such cluster point,

$$
0 \in G_{u}(\bar{x})
$$

Instance II: Zero Order Optimization

Problem: We want to solve

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x)=\mathbb{E}[F(x ; \xi)]
$$

but we are only allowed to observe function values $f(x)$ (or $F(x ; \xi)$)

Instance II: Zero Order Optimization

Problem: We want to solve

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x)=\mathbb{E}[F(x ; \xi)]
$$

but we are only allowed to observe function values $f(x)$ (or $F(x ; \xi)$) Idea: Approximate gradient by function differences
$f^{\prime}(y) \approx g_{u}:=\frac{f(y+u)-f(y)}{u}$

Instance II: Zero Order Optimization

Problem: We want to solve

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x)=\mathbb{E}[F(x ; \xi)]
$$

but we are only allowed to observe function values $f(x)$ (or $F(x ; \xi)$) Idea: Approximate gradient by function differences
$f^{\prime}(y) \approx g_{u}:=\frac{f(y+u)-f(y)}{u}$

- Long history in optimization: Kiefer-Wolfowitz, Spall, Robbins-Monroe

Instance II: Zero Order Optimization

Problem: We want to solve

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x)=\mathbb{E}[F(x ; \xi)]
$$

but we are only allowed to observe function values $f(x)$ (or $F(x ; \xi)$) Idea: Approximate gradient by function differences
$f^{\prime}(y) \approx g_{u}:=\frac{f(y+u)-f(y)}{u}$

- Long history in optimization: Kiefer-Wolfowitz, Spall, Robbins-Monroe
- Can randomized perturbations give insights?

Stochastic Gradient Descent

Algorithm: At iteration t

- Choose random ξ, set

$$
g_{t}=\nabla F\left(x_{t} ; \xi_{i}\right)
$$

- Update

$$
x_{t+1}=x_{t}-\alpha g_{t}
$$

Stochastic Gradient Descent

Algorithm: At iteration t

- Choose random ξ, set

$$
g_{t}=\nabla F\left(x_{t} ; \xi_{i}\right)
$$

- Update

$$
x_{t+1}=x_{t}-\alpha g_{t}
$$

Stochastic Gradient Descent

Algorithm: At iteration t

- Choose random ξ, set

$$
g_{t}=\nabla F\left(x_{t} ; \xi_{i}\right)
$$

- Update

$$
x_{t+1}=x_{t}-\alpha g_{t}
$$

Theorem (Russians): Let $\widehat{x}_{T}=\frac{1}{T} \sum_{t=1}^{T} x_{t}$ and assume $R \geq$ $\left\|x^{*}-x_{1}\right\|_{2}, G^{2} \geq \mathbb{E}\left[\left\|g_{t}\right\|_{2}^{2}\right]$. Then

$$
\mathbb{E}\left[f\left(\widehat{x}_{T}\right)-f\left(x^{*}\right)\right] \leq R G \frac{1}{\sqrt{T}}
$$

Stochastic Gradient Descent

Algorithm: At iteration t

- Choose random ξ, set

$$
g_{t}=\nabla F\left(x_{t} ; \xi_{i}\right)
$$

- Update

$$
x_{t+1}=x_{t}-\alpha g_{t}
$$

Theorem (Russians): Let $\widehat{x}_{T}=\frac{1}{T} \sum_{t=1}^{T} x_{t}$ and assume $R \geq$ $\left\|x^{*}-x_{1}\right\|_{2}, G^{2} \geq \mathbb{E}\left[\left\|g_{t}\right\|_{2}^{2}\right]$. Then

$$
\mathbb{E}\left[f\left(\widehat{x}_{T}\right)-f\left(x^{*}\right)\right] \leq R G \frac{1}{\sqrt{T}}
$$

Note: Dependence on G important

Derivative-free gradient descent

$$
\mathbb{E}\left[f\left(\widehat{x}_{T}\right)-f\left(x^{*}\right)\right] \leq R G \frac{1}{\sqrt{T}}
$$

Question: How well can we estimate gradient ∇f using only function differences? And how small is the norm of this estimate?

Derivative-free gradient descent

$$
\mathbb{E}\left[f\left(\widehat{x}_{T}\right)-f\left(x^{*}\right)\right] \leq R G \frac{1}{\sqrt{T}}
$$

Question: How well can we estimate gradient ∇f using only function differences? And how small is the norm of this estimate?

First idea gradient estimator:

- Sample $Z \sim \mu$ satisfying $\mathbb{E}_{\mu}\left[Z Z^{\top}\right]=I_{d \times d}$
- Gradient estimator at x :

$$
g=\frac{f(x+u Z)-f(x)}{u} Z
$$

Perform gradient descent using these g

Two-point gradient estimates

- At any point x and any direction z, for small $u>0$

$$
\frac{f(x+u z)-f(x)}{u} \approx f^{\prime}(x, z):=\lim _{h \downarrow 0} \frac{f(x+h z)-f(x)}{h}
$$

- If $\nabla f(x)$ exists, $f^{\prime}(x, z)=\langle\nabla f(x), z\rangle$
- If $\mathbb{E}\left[Z Z^{\top}\right]=I$, then $\mathbb{E}\left[f^{\prime}(x, Z) Z\right]=\mathbb{E}\left[Z Z^{\top} \nabla f(x)\right]=\nabla f(x)$

Two-point gradient estimates

- At any point x and any direction z, for small $u>0$

$$
\frac{f(x+u z)-f(x)}{u} \approx f^{\prime}(x, z):=\lim _{h \downarrow 0} \frac{f(x+h z)-f(x)}{h}
$$

- If $\nabla f(x)$ exists, $f^{\prime}(x, z)=\langle\nabla f(x), z\rangle$
- If $\mathbb{E}\left[Z Z^{\top}\right]=I$, then $\mathbb{E}\left[f^{\prime}(x, Z) Z\right]=\mathbb{E}\left[Z Z^{\top} \nabla f(x)\right]=\nabla f(x)$

Random estimates

Average $\approx \nabla f$

Two-point stochastic gradient: differentiable functions
To solve d-dimensional problem

$$
\underset{x \in \mathcal{X} \subset \mathbb{R}^{d}}{\operatorname{minimize}} f(x):=\mathbb{E}[F(x ; \xi)]
$$

Algorithm: Iterate

- Draw ξ according to distribution, draw $Z \sim \mu$ with $\operatorname{Cov}(Z)=I$
- Set $u_{t}=u / t$ and

$$
g_{t}=\frac{F\left(x_{t}+u_{t} Z ; \xi\right)-F\left(x_{t} ; \xi\right)}{u_{t}} Z
$$

- Update $x_{t+1}=x_{t}-\alpha g_{t}$

Two-point stochastic gradient: differentiable functions

To solve d-dimensional problem

$$
\underset{x \in \mathcal{X} \subset \mathbb{R}^{d}}{\operatorname{minimize}} f(x):=\mathbb{E}[F(x ; \xi)]
$$

Algorithm: Iterate

- Draw ξ according to distribution, draw $Z \sim \mu$ with $\operatorname{Cov}(Z)=I$
- Set $u_{t}=u / t$ and

$$
g_{t}=\frac{F\left(x_{t}+u_{t} Z ; \xi\right)-F\left(x_{t} ; \xi\right)}{u_{t}} Z
$$

- Update $x_{t+1}=x_{t}-\alpha g_{t}$

Theorem (D., Jordan, Wainwright, Wibisono): With appropriate α, if $R \geq\left\|x^{*}-x_{1}\right\|_{2}$ and $\mathbb{E}\left[\|\nabla F(x ; \xi)\|_{2}^{2}\right] \leq G^{2}$ for all x, then

$$
\mathbb{E}\left[f\left(\widehat{x}_{T}\right)-f\left(x^{*}\right)\right] \leq R G \cdot \frac{\sqrt{d}}{\sqrt{T}}+O\left(u^{2} \frac{\log T}{T}\right)
$$

Comparisons to knowing gradient

Convergence rate scaling

$$
R G \frac{1}{\sqrt{T}} \quad \text { versus } \quad R G \frac{\sqrt{d}}{\sqrt{T}}
$$

Comparisons to knowing gradient

Convergence rate scaling

$$
R G \frac{1}{\sqrt{T}} \quad \text { versus } \quad R G \frac{\sqrt{d}}{\sqrt{T}}
$$

- To achieve ϵ-accuracy, $1 / \epsilon^{2}$ versus d / ϵ^{2}

Comparisons to knowing gradient

Convergence rate scaling

$$
R G \frac{1}{\sqrt{T}} \quad \text { versus } \quad R G \frac{\sqrt{d}}{\sqrt{T}}
$$

- To achieve ϵ-accuracy, $1 / \epsilon^{2}$ versus d / ϵ^{2}

Comparisons to knowing gradient

Convergence rate scaling

$$
R G \frac{1}{\sqrt{T}} \quad \text { versus } \quad R G \frac{\sqrt{d}}{\sqrt{T}}
$$

- To achieve ϵ-accuracy, $1 / \epsilon^{2}$ versus d / ϵ^{2}

Two-point stochastic gradient: non-differentiable functions

Problem: If f is non-differentiable, "kinks" make estimates too large

Two-point stochastic gradient: non-differentiable functions

Problem: If f is non-differentiable, "kinks" make estimates too large

Two-point stochastic gradient: non-differentiable functions

Problem: If f is non-differentiable, "kinks" make estimates too large Example: Let $f(x)=\|x\|_{2}$. Then if $\mathbb{E}\left[Z Z^{\top}\right]=I_{d \times d}$, at $x=0$

$$
\mathbb{E}\left[\|(f(u Z)-0) Z / u\|_{2}^{2}\right]=\mathbb{E}\left[\|Z\|_{2}^{2}\|Z\|_{2}^{2}\right] \geq d^{2}
$$

Two-point stochastic gradient: non-differentiable functions

Problem: If f is non-differentiable, "kinks" make estimates too large Example: Let $f(x)=\|x\|_{2}$. Then if $\mathbb{E}\left[Z Z^{\top}\right]=I_{d \times d}$, at $x=0$

$$
\mathbb{E}\left[\|(f(u Z)-0) Z / u\|_{2}^{2}\right]=\mathbb{E}\left[\|Z\|_{2}^{2}\|Z\|_{2}^{2}\right] \geq d^{2}
$$

Idea: More randomization!

Two-point stochastic gradient: non-differentiable functions

Problem: If f is non-differentiable, "kinks" make estimates too large
Proposition (D., Jordan, Wainwright, Wibisono): If Z_{1}, Z_{2} are $N\left(0, I_{d \times d}\right)$ or uniform on $\|z\|_{2} \leq \sqrt{d}$, then

$$
g:=\frac{f\left(x+u_{1} Z_{1}+u_{2} Z_{2}\right)-f\left(x+u_{1} Z_{1}\right)}{u_{2}} Z_{2}
$$

satisfies
$\mathbb{E}[g]=\nabla f_{u_{1}}(x)+\mathcal{O}\left(u_{2} / u_{1}\right)$ and $\mathbb{E}\left[\|g\|_{2}^{2}\right] \leq d\left(\sqrt{\frac{u_{2}}{u_{1}}} d+\log (2 d)\right)$.

Two-point stochastic gradient: non-differentiable functions

Problem: If f is non-differentiable, "kinks" make estimates too large
Proposition (D., Jordan, Wainwright, Wibisono): If Z_{1}, Z_{2} are $N\left(0, I_{d \times d}\right)$ or uniform on $\|z\|_{2} \leq \sqrt{d}$, then

$$
g:=\frac{f\left(x+u_{1} Z_{1}+u_{2} Z_{2}\right)-f\left(x+u_{1} Z_{1}\right)}{u_{2}} Z_{2}
$$

satisfies
$\mathbb{E}[g]=\nabla f_{u_{1}}(x)+\mathcal{O}\left(u_{2} / u_{1}\right)$ and $\mathbb{E}\left[\|g\|_{2}^{2}\right] \leq d\left(\sqrt{\frac{u_{2}}{u_{1}}} d+\log (2 d)\right)$.

Note: If $u_{2} / u_{1} \rightarrow 0$, scaling linear in d

Two-point sub-gradient: non-differentiable functions
To solve d-dimensional problem

$$
\text { minimize } f(x) \text { subject to } x \in \mathcal{X} \subset \mathbb{R}^{d}
$$

Algorithm: Iterate

- Draw $Z_{1} \sim \mu$ and $Z_{2} \sim \mu$ with $\operatorname{Cov}(Z)=I$
- Set $u_{t, 1}=u / t, u_{t, 2}=u / t^{2}$, and

$$
g_{t}=\frac{f\left(x_{t}+u_{t, 1} Z_{1}+u_{t, 2} Z_{2}\right)-F\left(x_{t}+u_{t, 1} Z_{1}\right)}{u_{t}} Z_{2}
$$

- Update $x_{t+1}=x_{t}-\alpha g_{t}$

Two-point sub-gradient: non-differentiable functions

To solve d-dimensional problem

$$
\text { minimize } f(x) \text { subject to } x \in \mathcal{X} \subset \mathbb{R}^{d}
$$

Algorithm: Iterate

- Draw $Z_{1} \sim \mu$ and $Z_{2} \sim \mu$ with $\operatorname{Cov}(Z)=I$
- Set $u_{t, 1}=u / t, u_{t, 2}=u / t^{2}$, and

$$
g_{t}=\frac{f\left(x_{t}+u_{t, 1} Z_{1}+u_{t, 2} Z_{2}\right)-F\left(x_{t}+u_{t, 1} Z_{1}\right)}{u_{t}} Z_{2}
$$

- Update $x_{t+1}=x_{t}-\alpha g_{t}$

Theorem (D., Jordan, Wainwright, Wibisono): With appropriate α, if $R \geq\left\|x^{*}-x_{1}\right\|_{2}$ and $\|\partial f(x)\|_{2}^{2} \leq G^{2}$ for all x, then

$$
\mathbb{E}\left[f\left(\widehat{x}_{T}\right)-f\left(x^{*}\right)\right] \leq R G \cdot \frac{\sqrt{d \log d}}{\sqrt{T}}+O\left(u \frac{\log T}{T}\right)
$$

Two-point sub-gradient: non-differentiable functions

To solve d-dimensional problem

$$
\underset{x \in \mathcal{X} \subset \mathbb{R}^{d}}{\operatorname{minimize}} f(x):=\mathbb{E}[F(x ; \xi)]
$$

Algorithm: Iterate

- Draw ξ according to distribution, draw $Z_{1} \sim \mu$ and $Z_{2} \sim \mu$ with $\operatorname{Cov}(Z)=I$
- Set $u_{t, 1}=u / t, u_{t, 2}=u / t^{2}$, and

$$
g_{t}=\frac{F\left(x_{t}+u_{t, 1} Z_{1}+u_{t, 2} Z_{2} ; \xi\right)-F\left(x_{t}+u_{t, 1} ; \xi\right)}{u_{t}} Z_{2}
$$

- Update $x_{t+1}=x_{t}-\alpha g_{t}$

Two-point sub-gradient: non-differentiable functions

To solve d-dimensional problem

$$
\underset{x \in \mathcal{X} \subset \mathbb{R}^{d}}{\operatorname{minimize}} f(x):=\mathbb{E}[F(x ; \xi)]
$$

Algorithm: Iterate

- Draw ξ according to distribution, draw $Z_{1} \sim \mu$ and $Z_{2} \sim \mu$ with $\operatorname{Cov}(Z)=I$
- Set $u_{t, 1}=u / t, u_{t, 2}=u / t^{2}$, and

$$
g_{t}=\frac{F\left(x_{t}+u_{t, 1} Z_{1}+u_{t, 2} Z_{2} ; \xi\right)-F\left(x_{t}+u_{t, 1} ; \xi\right)}{u_{t}} Z_{2}
$$

- Update $x_{t+1}=x_{t}-\alpha g_{t}$

Corollary (D., Jordan, Wainwright, Wibisono): With appropriate α, if $R \geq\left\|x^{*}-x_{1}\right\|_{2}$ and $\mathbb{E}\left[\|\nabla F(x ; \xi)\|_{2}^{2}\right] \leq G^{2}$ for all x, then

$$
\mathbb{E}\left[f\left(\widehat{x}_{T}\right)-f\left(x^{*}\right)\right] \leq R G \cdot \frac{\sqrt{d \log d}}{\sqrt{T}}+O\left(u \frac{\log T}{T}\right)
$$

Wrapping up zero-order gradient methods

- If gradients available, convergence rates of $\sqrt{1 / T}$
- If only zero order information available, in smooth and non-smooth case, convergence rates of $\sqrt{d / T}$
- Time to ϵ-accuracy: $1 / \epsilon^{2} \mapsto d / \epsilon^{2}$

Wrapping up zero-order gradient methods

- If gradients available, convergence rates of $\sqrt{1 / T}$
- If only zero order information available, in smooth and non-smooth case, convergence rates of $\sqrt{d / T}$
- Time to ϵ-accuracy: $1 / \epsilon^{2} \mapsto d / \epsilon^{2}$
- Sharpness: In stochastic case, no algorithms exist that can do better than those we have provided. That is, lower bound for all zero-order algorithms of

$$
R G \frac{\sqrt{d}}{\sqrt{T}} .
$$

Wrapping up zero-order gradient methods

- If gradients available, convergence rates of $\sqrt{1 / T}$
- If only zero order information available, in smooth and non-smooth case, convergence rates of $\sqrt{d / T}$
- Time to ϵ-accuracy: $1 / \epsilon^{2} \mapsto d / \epsilon^{2}$
- Sharpness: In stochastic case, no algorithms exist that can do better than those we have provided. That is, lower bound for all zero-order algorithms of

$$
R G \frac{\sqrt{d}}{\sqrt{T}}
$$

- Open question: Non-stochastic lower bounds? (Sebastian Pokutta, next week.)

Instance III: Parallelization and fast algorithms

Goal: solve the following problem

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in \mathcal{X}
\end{aligned}
$$

where

$$
f(x):=\frac{1}{n} \sum_{i=1}^{n} F\left(x ; \xi_{i}\right) \quad \text { or } \quad f(x):=\mathbb{E}[F(x ; \xi)]
$$

Stochastic Gradient Descent

Problem: Tough to compute

$$
f(x)=\frac{1}{n} \sum_{i=1}^{n} F\left(x ; \xi_{i}\right) .
$$

Instead: At iteration t

- Choose random ξ_{i}, set

$$
g_{t}=\nabla F\left(x_{t} ; \xi_{i}\right)
$$

- Update

$$
x_{t+1}=x_{t}-\alpha g_{t}
$$

Stochastic Gradient Descent

Problem: Tough to compute

$$
f(x)=\frac{1}{n} \sum_{i=1}^{n} F\left(x ; \xi_{i}\right) .
$$

Instead: At iteration t

- Choose random ξ_{i}, set

$$
g_{t}=\nabla F\left(x_{t} ; \xi_{i}\right)
$$

- Update

$$
x_{t+1}=x_{t}-\alpha g_{t}
$$

What everyone "knows" we should do
Obviously: get a lower-variance estimate of the gradient.
Sample $g_{j, t}$ with $\mathbb{E}\left[g_{j, t}\right]=\nabla f\left(x_{t}\right) \quad$ and use $g_{t}=\frac{1}{m} \sum_{j=1}^{m} g_{j, t}$

What everyone "knows" we should do
Obviously: get a lower-variance estimate of the gradient.
Sample $g_{j, t}$ with $\mathbb{E}\left[g_{j, t}\right]=\nabla f\left(x_{t}\right)$ and use $g_{t}=\frac{1}{m} \sum_{j=1}^{m} g_{j, t}$

What everyone "knows" we should do
Obviously: get a lower-variance estimate of the gradient.
Sample $g_{j, t}$ with $\mathbb{E}\left[g_{j, t}\right]=\nabla f\left(x_{t}\right) \quad$ and use $g_{t}=\frac{1}{m} \sum_{j=1}^{m} g_{j, t}$

What everyone "knows" we should do
Obviously: get a lower-variance estimate of the gradient.
Sample $g_{j, t}$ with $\mathbb{E}\left[g_{j, t}\right]=\nabla f\left(x_{t}\right) \quad$ and use $g_{t}=\frac{1}{m} \sum_{j=1}^{m} g_{j, t}$

Problem: only works for smooth functions.

Non-smooth problems we care about:

- Classification

$$
F(x ; \xi)=F(x ;(a, b))=\left[1-b x^{\top} a\right]_{+}
$$

- Robust regression

$$
F(x ;(a, b))=\left|b-x^{\top} a\right|
$$

Non-smooth problems we care about:

- Classification

$$
F(x ; \xi)=F(x ;(a, b))=\left[1-b x^{\top} a\right]_{+}
$$

- Robust regression

$$
F(x ;(a, b))=\left|b-x^{\top} a\right|
$$

- Structured prediction (ranking, parsing, learning matchings)

$$
F(x ;\{\xi, \nu\})=\max _{\widehat{\nu} \in \mathcal{V}}\left[L(\nu, \widehat{\nu})+x^{\top} \Phi(\xi, \widehat{\nu})-x^{\top} \Phi(\xi, \nu)\right]
$$

Difficulties of non-smooth

Intuition: Gradient is poor indicator of global structure

Better global estimators

Idea: Ask for subgradients from multiple points

Better global estimators

Idea: Ask for subgradients from multiple points

The algorithm

Normal approach: sample ξ at random,

$$
g_{j, t} \in \partial F\left(x_{t} ; \xi\right) .
$$

Our approach: add noise to x

$$
g_{j, t} \in \partial F\left(x_{t}+u_{t} Z_{j} ; \xi\right)
$$

Decrease magnitude u_{t} over time

The algorithm

Normal approach: sample ξ at random,

$$
g_{j, t} \in \partial F\left(x_{t} ; \xi\right) .
$$

Our approach: add noise to x

$$
g_{j, t} \in \partial F\left(x_{t}+u_{t} Z_{j} ; \xi\right)
$$

Decrease magnitude u_{t} over time

The algorithm

Normal approach: sample ξ at random,

$$
g_{j, t} \in \partial F\left(x_{t} ; \xi\right) .
$$

Our approach: add noise to x

$$
g_{j, t} \in \partial F\left(x_{t}+u_{t} Z_{j} ; \xi\right)
$$

Decrease magnitude u_{t} over time

Algorithm

Generalization of accelerated gradient methods (Nesterov 1983, Tseng 2008, Lan 2010). Have query point and exploration point

Algorithm

Generalization of accelerated gradient methods (Nesterov 1983, Tseng 2008, Lan 2010). Have query point and exploration point
I. Get query point and gradients:

$$
y_{t}=\left(1-\theta_{t}\right) x_{t}+\theta_{t} z_{t}
$$

Sample $\xi_{j, t}$ and $Z_{j, t}$, compute gradient approximation

$$
g_{t}=\frac{1}{m} \sum_{j=1}^{m} g_{j, t}, \quad g_{j, t} \in \partial F\left(y_{t}+u_{t} Z_{j, t} ; \xi_{j, t}\right)
$$

Algorithm

Generalization of accelerated gradient methods (Nesterov 1983, Tseng 2008, Lan 2010). Have query point and exploration point
I. Get query point and gradients:

$$
y_{t}=\left(1-\theta_{t}\right) x_{t}+\theta_{t} z_{t}
$$

Sample $\xi_{j, t}$ and $Z_{j, t}$, compute gradient approximation

$$
g_{t}=\frac{1}{m} \sum_{j=1}^{m} g_{j, t}, \quad g_{j, t} \in \partial F\left(y_{t}+u_{t} Z_{j, t} ; \xi_{j, t}\right)
$$

II. Solve for exploration point

$$
z_{t+1}=\underset{x \in \mathcal{X}}{\operatorname{argmin}}\{\underbrace{\sum_{\tau=0}^{t} \frac{1}{\theta_{\tau}}\left[\left\langle g_{\tau}, x\right\rangle\right]}_{\text {Approximate } f}+\underbrace{\frac{1}{2 \alpha_{t}}\|x\|_{2}^{2}}_{\text {Regularize }}\}
$$

Algorithm

Generalization of accelerated gradient methods (Nesterov 1983, Tseng 2008, Lan 2010). Have query point and exploration point
I. Get query point and gradients:

$$
y_{t}=\left(1-\theta_{t}\right) x_{t}+\theta_{t} z_{t}
$$

Sample $\xi_{j, t}$ and $Z_{j, t}$, compute gradient approximation

$$
g_{t}=\frac{1}{m} \sum_{j=1}^{m} g_{j, t}, \quad g_{j, t} \in \partial F\left(y_{t}+u_{t} Z_{j, t} ; \xi_{j, t}\right)
$$

II. Solve for exploration point

$$
z_{t+1}=\underset{x \in \mathcal{X}}{\operatorname{argmin}}\{\underbrace{\sum_{\tau=0}^{t} \frac{1}{\theta_{\tau}}\left[\left\langle g_{\tau}, x\right\rangle\right]}_{\text {Approximate } f}+\underbrace{\frac{1}{2 \alpha_{t}}\|x\|_{2}^{2}}_{\text {Regularize }}\}
$$

III. Interpolate

$$
x_{t+1}=\left(1-\theta_{t}\right) x_{t}+\theta_{t} z_{t+1}
$$

Theoretical Results

Objective:

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x) \quad \text { where } f(x)=\mathbb{E}[F(x ; \xi)]
$$

using m gradient samples for stochastic gradients.

Theoretical Results

Objective:

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x) \quad \text { where } f(x)=\mathbb{E}[F(x ; \xi)]
$$

using m gradient samples for stochastic gradients.
Non-strongly convex objectives:

$$
f\left(x_{T}\right)-f\left(x^{*}\right)=\mathcal{O}\left(\frac{C}{T}+\frac{1}{\sqrt{T m}}\right)
$$

Theoretical Results

Objective:

$$
\underset{x \in \mathcal{X}}{\operatorname{minimize}} f(x) \quad \text { where } f(x)=\mathbb{E}[F(x ; \xi)]
$$

using m gradient samples for stochastic gradients.
Non-strongly convex objectives:

$$
f\left(x_{T}\right)-f\left(x^{*}\right)=\mathcal{O}\left(\frac{C}{T}+\frac{1}{\sqrt{T m}}\right)
$$

λ-strongly convex objectives:

$$
f\left(x_{T}\right)-f\left(x^{*}\right)=\mathcal{O}\left(\frac{C}{T^{2}}+\frac{1}{\lambda T m}\right)
$$

A few remarks on distributing

Convergence rate:

$$
f\left(x_{T}\right)-f\left(x^{*}\right)=\mathcal{O}\left(\frac{1}{T}+\frac{1}{\sqrt{T m}}\right)
$$

- If communication is expensive, use larger batch sizes m :
(a) Communication cost is c
(b) n computers with batch size m
(c) S total update steps

A few remarks on distributing

Convergence rate:

$$
f\left(x_{T}\right)-f\left(x^{*}\right)=\mathcal{O}\left(\frac{1}{T}+\frac{1}{\sqrt{T m}}\right)
$$

- If communication is expensive, use larger batch sizes m :
(a) Communication cost is c
(b) n computers with batch size m
(c) S total update steps

Backsolve: after $T=S(m+c)$ units of time, error is

$$
\mathcal{O}\left(\frac{m+c}{T}+\frac{1}{\sqrt{T n}} \cdot \sqrt{\frac{m+c}{m}}\right)
$$

Experimental results

Iteration complexity simulations

Define $T(\epsilon, m)=\min \left\{t \in \mathbb{N} \mid f\left(x_{t}\right)-f\left(x^{*}\right) \leq \epsilon\right\}$, solve robust regression problem

$$
f(x)=\frac{1}{n} \sum_{i=1}^{n}\left|a_{i}^{\top} x-b_{i}\right|=\frac{1}{n}\|A x-b\|_{1}
$$

Robustness to stepsize and smoothing

- Two parameters: smoothing parameter u, stepsize η

Plot: optimality gap after 2000 iterations on synthetic SVM problem

$$
f(x)+\varphi(x):=\frac{1}{n} \sum_{i=1}^{n}\left[1-\xi_{i}^{\top} x\right]_{+}+\frac{\lambda}{2}\|x\|_{2}^{2}
$$

Text Classification

Reuter's RCV1 dataset, time to ϵ-optimal solution for

$$
\frac{1}{n} \sum_{i=1}^{n}\left[1-\xi_{i}^{\top} x\right]_{+}+\frac{\lambda}{2}\|x\|_{2}^{2}
$$

Text Classification

Reuter's RCV1 dataset, optimization speed for minimizing

$$
\frac{1}{n} \sum_{i=1}^{n}\left[1-\xi_{i}^{\top} x\right]_{+}+\frac{\lambda}{2}\|x\|_{2}^{2}
$$

Parsing

Penn Treebank dataset, learning weights for a hypergraph parser (here x is a sentence, $y \in \mathcal{V}$ is a parse tree)

$$
\frac{1}{n} \sum_{i=1}^{n} \max _{\widehat{\nu} \in \mathcal{V}}\left[L\left(\nu_{i}, \widehat{\nu}\right)+x^{\top}\left(\Phi\left(\xi_{i}, \widehat{\nu}\right)-\Phi\left(\xi_{i}, \nu_{i}\right)\right)\right]+\frac{\lambda}{2}\|x\|_{2}^{2}
$$

Is smoothing necessary?

Solve multiple-median problem

$$
f(x)=\frac{1}{n} \sum_{i=1}^{n}\left\|x-\xi_{i}\right\|_{1},
$$

$\xi_{i} \in\{-1,1\}^{d}$. Compare standard stochastic gradient:

Discussion

- Randomized smoothing allows
- Stationary points of non-convex non-smooth problems
- Optimal solutions in zero-order problems (including non-smooth)
- Parallelization for non-smooth problems

Discussion

- Randomized smoothing allows
- Stationary points of non-convex non-smooth problems
- Optimal solutions in zero-order problems (including non-smooth)
- Parallelization for non-smooth problems
- Current experiments in consultation with Google for large-scale parsing/translation tasks
- Open questions: non-stochastic optimality guarantees? True zero-order optimization?

Discussion

- Randomized smoothing allows
- Stationary points of non-convex non-smooth problems
- Optimal solutions in zero-order problems (including non-smooth)
- Parallelization for non-smooth problems
- Current experiments in consultation with Google for large-scale parsing/translation tasks
- Open questions: non-stochastic optimality guarantees? True zero-order optimization?

Thanks!

Discussion

- Randomized smoothing allows
- Stationary points of non-convex non-smooth problems
- Optimal solutions in zero-order problems (including non-smooth)
- Parallelization for non-smooth problems
- Current experiments in consultation with Google for large-scale parsing/translation tasks
- Open questions: non-stochastic optimality guarantees? True zero-order optimization?

References:

- Randomized Smoothing for Stochastic Optimization (D., Bartlett, Wainwright). SIAM Journal on Optimization, 22(2), pages 674-701.
- Optimal rates for zero-order convex optimization: the power of two function evaluations (D., Jordan, Wainwright, Wibisono). arXiv:1312.2139 [math.OC].

Available on my webpage (http://web.stanford.edu/~jduchi)

