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Problem Statement

Goal: solve the following problem

minimize f(x)

subject to x ∈ X



Problem Statement

Goal: solve the following problem

minimize f(x)

subject to x ∈ X

Often, we will assume

f(x) :=
1

n

n∑

i=1

F (x; ξi) or f(x) := E[F (x; ξ)]



Gradient Descent

Goal: solve

minimize f(x)

Technique: go down the slope,

xt+1 = xt − α∇f(xt)

f(x)

f(y) + 〈∇f(y), x− y〉

(y, f(y))



When is optimization easy?

Easy problem: function is convex,
nice and smooth
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non-smooth

Even harder problems:

◮ We cannot compute gradients ∇f(x)

◮ Function f is non-convex and non-smooth



Example 1: Robust regression

◮ Data in pairs ξi = (ai, bi) ∈ R
d × R

◮ Want to estimate bi ≈ a⊤i x



Example 1: Robust regression

◮ Data in pairs ξi = (ai, bi) ∈ R
d × R

◮ Want to estimate bi ≈ a⊤i x

◮ To avoid outliers, minimize

f(x) =
1

n

n∑

i=1

|a⊤i x− bi| =
1

n
‖Ax− b‖

1

a⊤i x− bi



Example 2: Protein Structure Prediction
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Protein Structure Prediction

Featurize edges e in graph: vector ξe. Labels y are matching in a graph,
set V is all matchings.
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Protein Structure Prediction

Featurize edges e in graph: vector ξe. Labels y are matching in a graph,
set V is all matchings.
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4
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3

x
T ξ1→2

x
T ξ1→3

x
T ξ4→6

Goal: Learn weights x so that

argmax
ν̂∈V

{∑

e∈ν̂

ξ⊤e x

}
= ν

i.e. learn x so maximum
matching in graph with edge
weights x⊤ξe is correct
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Protein Structure Prediction
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65

3

x
T ξ1→2

x
T ξ1→3

x
T ξ4→6

Goal: Learn weights x so that

argmax
ν̂∈V

{∑

e∈ν̂

ξ⊤e x

}
= ν

i.e. learn x so maximum
matching in graph with edge
weights x⊤ξe is correct

Loss function: L(ν, ν̂) is number of disagreements in matchings

F (x; {ξ, ν}) := max
ν̂∈V

(
L(ν, ν̂) + x⊤

∑

e∈ν̂

ξe − x⊤
∑

e∈ν

ξe

)
.



When is optimization easy?

Easy problem: function is convex,
nice and smooth

Not so easy problem: function is
non-smooth

Even harder problems:

◮ We cannot compute gradients ∇f(x)

◮ Function f is non-convex and non-smooth
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minimize f(x),

get more global information
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where u is small
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One technique to address many of these

Instead of only using f(x) and ∇f(x) to solve

minimize f(x),

get more global information

Let Z be a random variable,
and for small u, look at f
near points

f(x+ uZ),

where u is small

u
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Three instances

I Solving previously unsolvable problems [Burke, Lewis, Overton 2005]
◮ Non-smooth, non-convex problems

II Optimal convergence guarantees for problems with existing algorithms
[D., Jordan, Wainwright, Wibisono 2014]

◮ Smooth and non-smooth zero order stochastic and non-stochastic
optimization problems

III Parallelism: really fast solutions for large scale problems [D., Bartlett,
Wainwright 2013]

◮ Smooth and non-smooth stochastic optimization problems



Instance I: Gradient Sampling Algorithm

Problem: Solve
minimize

x∈X
f(x)

where f is potentially non-smooth and non-convex (but assume it is
continuous and a.e. differentiable) [Burke, Lewis, Overton 2005]



Instance I: Gradient Sampling Algorithm

Problem: Solve
minimize

x∈X
f(x)

where f is potentially non-smooth and non-convex (but assume it is
continuous and a.e. differentiable) [Burke, Lewis, Overton 2005]

At each iteration t,

◮ Draw Z1, . . . , Zm i.i.d. ‖Zi‖ ≤ 1

◮ Set git = ∇f(xt + uZi)

◮ Set gradient gt as

gt = argming{
‖g‖2

2
:

g =
∑

i λig
i
t

λ ≥ 0,
∑

i λi = 1

}

◮ Update xt+1 = xt − αgt, where
α > 0 chosen by line search

u



Instance I: Gradient Sampling Algorithm

Problem: Solve
minimize

x∈X
f(x)

where f is potentially non-smooth and non-convex (but assume it is
continuous and a.e. differentiable) [Burke, Lewis, Overton 2005]
Define the set

Gu(x) := Conv
{
∇f(x′) :

∥∥x′ − x
∥∥
2
≤ u, ∇f(x′) exists

}

Proposition (Burke, Lewis, Overton):
There exist cluster points x̄ of the sequence xt, and for any such
cluster point,

0 ∈ Gu(x̄)



Instance II: Zero Order Optimization

Problem: We want to solve

minimize
x∈X

f(x) = E[F (x; ξ)]

but we are only allowed to observe function values f(x) (or F (x; ξ))



Instance II: Zero Order Optimization

Problem: We want to solve

minimize
x∈X

f(x) = E[F (x; ξ)]

but we are only allowed to observe function values f(x) (or F (x; ξ))
Idea: Approximate gradient
by function differences

f ′(y) ≈ gu :=
f(y + u)− f(y)

u
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, x − y〉
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Instance II: Zero Order Optimization

Problem: We want to solve

minimize
x∈X

f(x) = E[F (x; ξ)]

but we are only allowed to observe function values f(x) (or F (x; ξ))
Idea: Approximate gradient
by function differences

f ′(y) ≈ gu :=
f(y + u)− f(y)

u

◮ Long history in
optimization:
Kiefer-Wolfowitz, Spall,
Robbins-Monroe

◮ Can randomized
perturbations give
insights?

f (x)

f (y)

f (y) + 〈gu0
, x − y〉

f (y) + 〈gu1
, x − y〉

u1 ≪ u0
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Algorithm: At iteration t

◮ Choose random ξ, set
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◮ Update

xt+1 = xt − αgt
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Algorithm: At iteration t

◮ Choose random ξ, set

gt = ∇F (xt; ξi)

◮ Update

xt+1 = xt − αgt

Theorem (Russians): Let x̂T = 1

T

∑T
t=1

xt and assume R ≥
‖x∗ − x1‖2, G2 ≥ E[‖gt‖22]. Then

E[f(x̂T )− f(x∗)] ≤ RG
1√
T



Stochastic Gradient Descent

Algorithm: At iteration t

◮ Choose random ξ, set

gt = ∇F (xt; ξi)

◮ Update

xt+1 = xt − αgt

Theorem (Russians): Let x̂T = 1

T

∑T
t=1

xt and assume R ≥
‖x∗ − x1‖2, G2 ≥ E[‖gt‖22]. Then

E[f(x̂T )− f(x∗)] ≤ RG
1√
T

Note: Dependence on G important



Derivative-free gradient descent

E[f(x̂T )− f(x∗)] ≤ RG
1√
T

Question: How well can we estimate gradient ∇f using only function
differences? And how small is the norm of this estimate?



Derivative-free gradient descent

E[f(x̂T )− f(x∗)] ≤ RG
1√
T

Question: How well can we estimate gradient ∇f using only function
differences? And how small is the norm of this estimate?

First idea gradient estimator:

◮ Sample Z ∼ µ satisfying Eµ[ZZ⊤] = Id×d

◮ Gradient estimator at x:

g =
f(x+ uZ)− f(x)

u
Z

Perform gradient descent using these g



Two-point gradient estimates

◮ At any point x and any direction z, for small u > 0

f(x+ uz)− f(x)

u
≈ f ′(x, z) := lim

h↓0

f(x+ hz)− f(x)

h

◮ If ∇f(x) exists, f ′(x, z) = 〈∇f(x), z〉
◮ If E[ZZ⊤] = I, then E[f ′(x, Z)Z] = E[ZZ⊤∇f(x)] = ∇f(x)



Two-point gradient estimates

◮ At any point x and any direction z, for small u > 0

f(x+ uz)− f(x)

u
≈ f ′(x, z) := lim

h↓0

f(x+ hz)− f(x)

h

◮ If ∇f(x) exists, f ′(x, z) = 〈∇f(x), z〉
◮ If E[ZZ⊤] = I, then E[f ′(x, Z)Z] = E[ZZ⊤∇f(x)] = ∇f(x)

Random estimates Average ≈ ∇f



Two-point stochastic gradient: differentiable functions

To solve d-dimensional problem

minimize
x∈X⊂Rd

f(x) := E[F (x; ξ)]

Algorithm: Iterate

◮ Draw ξ according to distribution, draw Z ∼ µ with Cov(Z) = I

◮ Set ut = u/t and

gt =
F (xt + utZ; ξ)− F (xt; ξ)

ut
Z

◮ Update xt+1 = xt − αgt



Two-point stochastic gradient: differentiable functions

To solve d-dimensional problem

minimize
x∈X⊂Rd

f(x) := E[F (x; ξ)]

Algorithm: Iterate

◮ Draw ξ according to distribution, draw Z ∼ µ with Cov(Z) = I

◮ Set ut = u/t and

gt =
F (xt + utZ; ξ)− F (xt; ξ)

ut
Z

◮ Update xt+1 = xt − αgt

Theorem (D., Jordan, Wainwright, Wibisono): With appropriate α,
if R ≥ ‖x∗ − x1‖2 and E[‖∇F (x; ξ)‖2

2
] ≤ G2 for all x, then

E[f(x̂T )− f(x∗)] ≤ RG ·
√
d√
T

+O

(
u2

log T

T

)
.
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Problem: If f is non-differentiable, “kinks” make estimates too large

Example: Let f(x) = ‖x‖
2
. Then if E[ZZ⊤] = Id×d, at x = 0

E[‖(f(uZ)− 0)Z/u‖2
2
] = E[‖Z‖2
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2
] ≥ d2



Two-point stochastic gradient: non-differentiable functions

Problem: If f is non-differentiable, “kinks” make estimates too large

Example: Let f(x) = ‖x‖
2
. Then if E[ZZ⊤] = Id×d, at x = 0

E[‖(f(uZ)− 0)Z/u‖2
2
] = E[‖Z‖2

2
‖Z‖2

2
] ≥ d2

Idea: More randomization!

u1

u2



Two-point stochastic gradient: non-differentiable functions

Problem: If f is non-differentiable, “kinks” make estimates too large

Proposition (D., Jordan, Wainwright, Wibisono): If Z1, Z2 are
N(0, Id×d) or uniform on ‖z‖

2
≤

√
d, then

g :=
f(x+ u1Z1 + u2Z2)− f(x+ u1Z1)

u2
Z2

satisfies

E[g] = ∇fu1
(x)+O(u2/u1) and E[‖g‖2

2
] ≤ d

(√
u2
u1

d+ log(2d)

)
.



Two-point stochastic gradient: non-differentiable functions

Problem: If f is non-differentiable, “kinks” make estimates too large

Proposition (D., Jordan, Wainwright, Wibisono): If Z1, Z2 are
N(0, Id×d) or uniform on ‖z‖

2
≤

√
d, then

g :=
f(x+ u1Z1 + u2Z2)− f(x+ u1Z1)

u2
Z2

satisfies

E[g] = ∇fu1
(x)+O(u2/u1) and E[‖g‖2

2
] ≤ d

(√
u2
u1

d+ log(2d)

)
.

Note: If u2/u1 → 0, scaling linear in d



Two-point sub-gradient: non-differentiable functions

To solve d-dimensional problem

minimize f(x) subject to x ∈ X ⊂ R
d

Algorithm: Iterate

◮ Draw Z1 ∼ µ and Z2 ∼ µ with Cov(Z) = I

◮ Set ut,1 = u/t, ut,2 = u/t2, and

gt =
f(xt + ut,1Z1 + ut,2Z2)− F (xt + ut,1Z1)

ut
Z2

◮ Update xt+1 = xt − αgt



Two-point sub-gradient: non-differentiable functions

To solve d-dimensional problem

minimize f(x) subject to x ∈ X ⊂ R
d

Algorithm: Iterate

◮ Draw Z1 ∼ µ and Z2 ∼ µ with Cov(Z) = I

◮ Set ut,1 = u/t, ut,2 = u/t2, and

gt =
f(xt + ut,1Z1 + ut,2Z2)− F (xt + ut,1Z1)

ut
Z2

◮ Update xt+1 = xt − αgt

Theorem (D., Jordan, Wainwright, Wibisono): With appropriate α,
if R ≥ ‖x∗ − x1‖2 and ‖∂f(x)‖2

2
≤ G2 for all x, then

E[f(x̂T )− f(x∗)] ≤ RG ·
√
d log d√
T

+O

(
u
log T

T

)
.



Two-point sub-gradient: non-differentiable functions

To solve d-dimensional problem

minimize
x∈X⊂Rd

f(x) := E[F (x; ξ)]

Algorithm: Iterate

◮ Draw ξ according to distribution, draw Z1 ∼ µ and Z2 ∼ µ with
Cov(Z) = I

◮ Set ut,1 = u/t, ut,2 = u/t2, and

gt =
F (xt + ut,1Z1 + ut,2Z2; ξ)− F (xt + ut,1; ξ)

ut
Z2

◮ Update xt+1 = xt − αgt



Two-point sub-gradient: non-differentiable functions

To solve d-dimensional problem

minimize
x∈X⊂Rd

f(x) := E[F (x; ξ)]

Algorithm: Iterate

◮ Draw ξ according to distribution, draw Z1 ∼ µ and Z2 ∼ µ with
Cov(Z) = I

◮ Set ut,1 = u/t, ut,2 = u/t2, and

gt =
F (xt + ut,1Z1 + ut,2Z2; ξ)− F (xt + ut,1; ξ)

ut
Z2

◮ Update xt+1 = xt − αgt

Corollary (D., Jordan, Wainwright, Wibisono): With appropriate α,
if R ≥ ‖x∗ − x1‖2 and E[‖∇F (x; ξ)‖2

2
] ≤ G2 for all x, then

E[f(x̂T )− f(x∗)] ≤ RG ·
√
d log d√
T

+O

(
u
log T

T

)
.



Wrapping up zero-order gradient methods

◮ If gradients available, convergence rates of
√
1/T

◮ If only zero order information available, in smooth and non-smooth
case, convergence rates of

√
d/T

◮ Time to ǫ-accuracy: 1/ǫ2 7→ d/ǫ2
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Wrapping up zero-order gradient methods

◮ If gradients available, convergence rates of
√
1/T

◮ If only zero order information available, in smooth and non-smooth
case, convergence rates of

√
d/T

◮ Time to ǫ-accuracy: 1/ǫ2 7→ d/ǫ2

◮ Sharpness: In stochastic case, no algorithms exist that can do better
than those we have provided. That is, lower bound for all zero-order
algorithms of

RG

√
d√
T
.

◮ Open question: Non-stochastic lower bounds? (Sebastian Pokutta,
next week.)



Instance III: Parallelization and fast algorithms

Goal: solve the following problem

minimize f(x)

subject to x ∈ X

where

f(x) :=
1

n

n∑

i=1

F (x; ξi) or f(x) := E[F (x; ξ)]



Stochastic Gradient Descent

Problem: Tough to compute

f(x) =
1

n

n∑

i=1

F (x; ξi).

Instead: At iteration t

◮ Choose random ξi, set

gt = ∇F (xt; ξi)

◮ Update

xt+1 = xt − αgt
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Instead: At iteration t

◮ Choose random ξi, set

gt = ∇F (xt; ξi)

◮ Update

xt+1 = xt − αgt



What everyone “knows” we should do

Obviously: get a lower-variance estimate of the gradient.

Sample gj,t with E[gj,t] = ∇f(xt) and use gt =
1

m

m∑

j=1

gj,t
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What everyone “knows” we should do

Obviously: get a lower-variance estimate of the gradient.

Sample gj,t with E[gj,t] = ∇f(xt) and use gt =
1

m

m∑

j=1

gj,t



Problem: only works for smooth functions.



Non-smooth problems we care about:

◮ Classification

F (x; ξ) = F (x; (a, b)) =
[
1− bx⊤a

]
+

◮ Robust regression

F (x; (a, b)) =
∣∣∣b− x⊤a

∣∣∣



Non-smooth problems we care about:

◮ Classification

F (x; ξ) = F (x; (a, b)) =
[
1− bx⊤a

]
+

◮ Robust regression

F (x; (a, b)) =
∣∣∣b− x⊤a

∣∣∣

◮ Structured prediction (ranking, parsing, learning matchings)

F (x; {ξ, ν}) = max
ν̂∈V

[
L(ν, ν̂) + x⊤Φ(ξ, ν̂)− x⊤Φ(ξ, ν)

]



Difficulties of non-smooth

Intuition: Gradient is poor indicator of global structure



Better global estimators

Idea: Ask for subgradients from multiple points
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The algorithm

Normal approach: sample ξ at
random,

gj,t ∈ ∂F (xt; ξ).

Our approach: add noise to x

gj,t ∈ ∂F (xt + utZj ; ξ)

Decrease magnitude ut over time

xt
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Generalization of accelerated gradient methods (Nesterov 1983, Tseng
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I. Get query point and gradients:

yt = (1− θt)xt + θtzt

Sample ξj,t and Zj,t, compute gradient approximation

gt =
1

m

m∑

j=1

gj,t, gj,t ∈ ∂F (yt + utZj,t; ξj,t)



Algorithm

Generalization of accelerated gradient methods (Nesterov 1983, Tseng
2008, Lan 2010). Have query point and exploration point

I. Get query point and gradients:

yt = (1− θt)xt + θtzt

Sample ξj,t and Zj,t, compute gradient approximation

gt =
1

m

m∑

j=1

gj,t, gj,t ∈ ∂F (yt + utZj,t; ξj,t)

II. Solve for exploration point

zt+1 = argmin
x∈X

{ t∑

τ=0

1

θτ

[
〈gτ , x〉

]

︸ ︷︷ ︸
Approximate f

+
1

2αt
‖x‖2

2

︸ ︷︷ ︸
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Algorithm

Generalization of accelerated gradient methods (Nesterov 1983, Tseng
2008, Lan 2010). Have query point and exploration point

I. Get query point and gradients:

yt = (1− θt)xt + θtzt

Sample ξj,t and Zj,t, compute gradient approximation

gt =
1

m

m∑

j=1

gj,t, gj,t ∈ ∂F (yt + utZj,t; ξj,t)

II. Solve for exploration point

zt+1 = argmin
x∈X

{ t∑

τ=0

1

θτ

[
〈gτ , x〉

]

︸ ︷︷ ︸
Approximate f

+
1

2αt
‖x‖2

2

︸ ︷︷ ︸
Regularize

}

III. Interpolate
xt+1 = (1− θt)xt + θtzt+1
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Objective:
minimize

x∈X
f(x) where f(x) = E[F (x; ξ)]

using m gradient samples for stochastic gradients.

Non-strongly convex objectives:

f(xT )− f(x∗) = O
(
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λ-strongly convex objectives:

f(xT )− f(x∗) = O
(

C

T 2
+

1

λTm

)



A few remarks on distributing

Convergence rate:
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+

1√
Tm

)

◮ If communication is expensive, use
larger batch sizes m:

(a) Communication cost is c
(b) n computers with batch size m
(c) S total update steps

Backsolve: after T = S(m+ c) units of
time, error is

O
(
m+ c

T
+

1√
Tn

·
√

m+ c

m
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Experimental results



Iteration complexity simulations

Define T (ǫ,m) = min {t ∈ N | f(xt)− f(x∗) ≤ ǫ}, solve robust regression
problem

f(x) =
1

n

n∑
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∣∣∣a⊤i x− bi

∣∣∣ = 1

n
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Robustness to stepsize and smoothing

◮ Two parameters: smoothing parameter u, stepsize η
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Plot: optimality gap after 2000 iterations on synthetic SVM problem
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Text Classification

Reuter’s RCV1 dataset, time to ǫ-optimal solution for
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Text Classification

Reuter’s RCV1 dataset, optimization speed for minimizing
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Parsing

Penn Treebank dataset, learning weights for a hypergraph parser (here x is
a sentence, y ∈ V is a parse tree)
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Is smoothing necessary?

Solve multiple-median problem

f(x) =
1

n

n∑

i=1

‖x− ξi‖1 ,

ξi ∈ {−1, 1}d. Compare standard stochastic gradient:
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