Analyzing Twitter Sentiment
of the 2016 Presidential Candidates

Delenn Chin, Anna Zappone, Jessica Zhao

SECTION 1: TASK DEFINITION

1.1 Introduction

Elections empower citizens to choose their leaders. It gives all an opportunity for equal
voice and representation in our government. Democracy is government for the people,
and by the people, which means government leaders are determined by participation in
elections. As we approach the 2016 November presidential election, the public
sentiment towards candidates will influence the future leader of our country. We are
interested in how the public views the top election candidates, namely Donald Trump,
Hillary Clinton, Ben Carson, and Bernie Sanders. Feelings towards candidates fluctuate
quickly as interviews, debates, responses to global events, and other issues come to
front. To achieve a large, diverse dataset of current public opinions on the candidates,
we decided to use Twitter. Twitter provides us with live access to opinions about the
election across the globe. We are analyzing recent tweets regarding the top candidates in
the 2016 election to predict the public sentiments towards each candidate. Our project
attempts to solve the real-world problem of understanding the current sentiment
towards election candidates based off the public’s live opinions and emotions rather
than off of smaller, localized polls typically done by mainstream media corporations.
Furthermore, we are aiming for a larger, more relevant assessment of sentiments
towards candidates than the media and polls have. We are expanding on simply positive
or negative sentiment towards a candidate by classifying tweets into five emotions -
happy, sad, fear, laughter, and angry.

1.2 Scope

We focused on tweets regarding the presidential election and its candidates. We
assessed the sentiment towards each candidate based off recent tweets. We downloaded
over 300,000 tweets using keywords. Our keywords for the searches were “politics,”
“political candidates,” or the full name of a 2016 presidential candidate. Of the
approximately 300,000 tweets downloaded, we obtained almost 3,000 tweets that

. oo o . . oL L 1) \E_' e @ &3 @ Ca G &3 o'! E—"’__; e 2L £3
contained an emoji in this list: ¥ < % 3 @ : ®=¥
L00PRCHARRLIMOP PR PR



1.3 Input

To get our input data, we downloaded tweets using the Twitter API found from a search
of our key words or the full name of a 2016 presidential candidate. We then used only
the tweets that contain an emoji in the 1.2 list above. For both testing and training input,
we used as input the text of tweets stripped of the emojis. We are using the text of the
tweet stripped of the emojis in 1.2 to avoid overfitting to emojis and to base our
prediction off the text sentiment. Before stripping the emoji, we create a mapping of the
tweet to the class in which the first emoji of the tweet belongs for either training or
assessing classification accuracy.

Training Input
We used 2,000 of our downloaded tweets to train our classifier.

Testing Input
We used the remaining tweets to test our classifier. We ran our classifier on at
least 150 tweets per candidate, with over 900 total tweets tested.

1.4 Output
Training Output
Our output is the sentiment string that the first emoji in the tweet is mapped to.
For example, a tweet “I love Hillary! = = ”would be mapped to ‘Happy’ since

= is the first emoji and an element of the ‘Happy’ list.

Testing Output

Our output is the sentiment string that the tweet most expresses among ‘Happy’,
‘Sad’, ‘Angry’, ‘Laughter’, and ‘Scared’ after fitting our classifier to the training
data.

1.5 Evaluation

To assess our project’s success, we calculate the accuracy of our predicted sentiments by
comparing the outputted classifications for the test tweets with the “correct” sentiments
that we detected by using the emojis.

SECTION 2: INFRASTRUCTURE

As for the infrastructure for our machine learning project, we collected data and
processed it for sentiment classification. We outline our challenges and decisions below.

2



2.1 Data Source:

The first challenge arose in determining our data source. Election sentiments change
quickly, as candidates drop out or gain popularity based on events and debates. We
decided to use Twitter to handle the temporal nature of elections and still be able to
collect relevant data about the candidates. After determining Twitter as our data source,
we still faced challenges with our volume of data. While we ultimately were able to get
almost 3,000 tweets with our chosen emojis for the project, we were shocked at how few
tweets had emojis. Even when we downloaded tweets over days, we would end up with
less than 1/100 of those tweets having emojis in our 1.2 list.

2.2 Classify Sentiment:

We then had to determine how we would extract the sentiment from a tweet. Since
hand-classifying thousands of tweets would be incredibly time-consuming, we decided
to use emojis as our oracle and only consider tweets with emojis. The phenomena in the
data that we are capturing is how Tweet text correlates to emojis. We selected emojis
relevant to feelings about the candidates and then categorized them by creating a
mapping of emojis to sentiments as follows:

1. Happy={@ @ @ @ POOE B0 68 =)
2.85d={00OOHBESEDP OO}

3. Angry={® @ 2 ¥ & }

4.Laughter={2 ® @0 @ @ & }

5.Scared = {2 @9 QB© B OM D L}

2.3 Process Text

Finally, we processed our tweet input text. We found ideas and code examples from
other Twitter sentiments projects, cited below. We converted all of our text to lowercase,
removed hashtags before words, and removed extra spaces in the text. Since Twitter is
very casual, people often include multiples of the same letters in a word, such as “sooooo
funnnyyy.” To handle these cases, we replaced more than two of the same consecutive
letters with just two of that letter. We also ignored all URLs and usernames since URLSs
and usernames don’t typically relate to the emotion expressed in the tweet.
Furthermore, we found a list of common words that do not express sentiment
(Janardhana). The list includes words like “be,” “at,” “the,” etc. All words in a training
tweet found on this list were ignored and not added to the feature vector with a weight.

While using Twitter and only using tweets with emojis bias our results, we felt these
tradeoffs were necessary to pursue such a large-scale, temporal project. Twitter biases



our project towards analyzing feelings of Twitter’s younger, more tech-savvy audience
and opinions that can be expressed using strict word limits. Similarly, only using tweets
with emojis may further bias our projects towards youth and more emotional rather
than serious tweets.

SECTION 3: APPROACH

3.1 Baseline:
As our lower bound, we set our baseline as randomly predicting 1 of the 5 sentiments,
which gives 20% accuracy.

3.2 Oracle:

As our upper bound, we used the correct sentiment classification based on the first
emoji and seeing how well our classifier does predicting the sentiment expressed by the
emoji. This means we define the correct sentiment of the tweet as the first emoji in the
tweet. We calculate how well our classification algorithm performs relative to this
oracle.

3.3 Feature Extraction:

We used the bag-of-words model to create our sparse feature vector. Every distinct word
from our training tweets is added to a feature vector - excluding URLs, usernames, and
words on our list of common words that do not express sentiment as described in 2.3.

3.4 Modelling:

There were many challenges and things to consider in how to best model our task. We
realized that there are many feelings the general public holds towards candidates, so we
wanted to account for more than simply positive or negative sentiments achieved
through binary classification or even a range between positive and negative through
linear regression. Multi-class classification allows us to categorize the tweets into
multiple distinct classes to handle a more specific range of emotions. We modelled the
task as a multi-class classification problem to account for an array of different emotions
that people could realistically feel regarding the election candidates.

We tested three algorithms - Support Vector Machines, Nearest Neighbors, and Naive
Bayes classification. There were many tradeoffs between accuracy and efficiency. The
tradeoffs between accuracy are visible in Figure 1 below.



FIGURE 1

Percentage of Tweets Correctly Classified

Classifier Accuracy

0.54 MNaive Bayes
Support
Vector
Machine

0.51
Mearest
Meighbors

0.48

0.45

0.42

Candidates

Naive Bayes

Naive Bayes performed almost as well as SVM on classifying tweets with 49.02%
accuracy. We chose to use Bernoulli as our event model for the Naive Bayes
classifier because our feature vector is using a bag of words model, where the
values are binary. We considered using the Multinomial event model which
counts word occurrences. However, tweets are such short texts that rarely
contain multiple occurrences of the same word, thus Bernoulli was adequate for
our project. A disadvantage would be that conditional independence often does
not hold in reality for text, yet this model performed fairly well for our project.

Support Vector Machine

We see that SVM was our most accurate classifier. We chose to use an multi-class
SVM with a one-vs-one scheme, which creates one binary classifier for every
different pair of classes, and then uses a voting mechanism to ultimately choose
one class. One drawback of SVM is that if the size of the feature vector is larger
than the number of training samples, it tends to overfit on the training data,
which lowers the accuracy on the testing data. Another drawback of SVM occurs
with ties in voting, which could pose an issue to our project due to the small size
of our dataset. Nonetheless, SVM correctly classified 446 tweets, with about
49.22% accuracy.



Nearest Neighbors

We set our k value to 6, which gave us most accurate results. The k-Nearest
Neighbors model looks at the k closest neighbors to the given sample and uses a
voting mechanism to classify the given sample into the class with the majority of
votes. This is an example of lazy learning, because nothing is done with the
training data until the model tries to classify the test data. While KNN is one of
the simplest machine learning algorithms, it did not perform as well on our
dataset. We think KNN’s lower accuracy of 45.99% could relate to the size of the
dataset and differences between words in our training dataset and testing dataset
resulting in worse plotting. We found that the training tweets we added from
keywords of “politics” and “presidential candidates” used different, more formal
lexicons than that of the tweets from a presidential candidate’s name as the
keyword.

Overall, there were many tradeoffs between the Naive Bayes, Support Vector Machines,
and Nearest Neighbors algorithms. In terms of efficiency, Naive Bayes was the most
efficient in terms of time, while the KNN algorithm was the slowest because it takes
longer to classify each test data point. In terms of accuracy, Support Vector Machines
was most accurate and k-Nearest Neighbors was least accurate.

SECTION 4: LITERATURE REVIEW

We were surprised to find that there has not been much work relating to emojis and
sentiment classification. Most work is centered on the polarity of sentiment rather than
a diversity of sentiments. We found a similar Indonesian study that used hashtags,
emojis, emoticons, and adjectives in tweets for emotion detection of five emotions -
happy, angry, fear, sad, and surprise (Arifin et al.). Since they were classifying multiple
emotions, they saw the same imbalance that we encountered with some emotions
having almost double the number of tweets than others. Our models used similar
algorithms, though they used matrix manipulation before using nearest neighbors. We
found another similar study done in India that does “emotion estimation” using direct
words, emojis, and smileys (Yeole et al.). While the researchers considered using SVM,
they ultimately used a similar approach to SVM of Artificial Neural Networks with
Jaccard similarity. Our project’s modelling and approach seems complementary to the
India emotion research. In their use of emojis to estimate sentiments, our work is
similar to both these existing works. However, Yeole’s study used emojis only in
predicting the emotion and used an existing classified Amazon sentiment dataset for



training whereas we used the first emoji as our oracle to create our own sentiment
dataset for training. Furthermore, we think our project had a more real-world
application as we applied our sentiment classification to the election and only
considered tweets relating to specific candidates. We found an interesting project
relating to using emojis to obtain the emotional state of users to then better predict
music recommendations for the user (Ferwerda, Schedl). While this project also had a
real-world application of their emotional classification, our project is still fairly
orthogonal to their application.

SECTION 5: ERROR ANALYSIS

Our main questions with our system related to language for our feature vector. Since
Tweets use a unique dialect, much of our infrastructure related to processing text and
streamlining tweets for improved classification. We designed our experiments to test
our hypothesis of how tweets should be linguistically processed to maximize
classification accuracy. As our control accuracy, we used Support Vector Machines as we
had achieved our highest classification accuracy with this algorithm.

FIGURE 2
Experiment Analysis
- 0.54 Control
-
= Including
o punctuation
= 0.51758
= S Including
_'1.:5 URLs and
E USETNATNES
[~ 0.405 .
S = Including
:-é 1gnored
] words
= 0.4725
S,
=
=2
= Q.45
2
it
Agpregated Donald Bernie Hillary Ben Carson
Trump Sanders Clinton
Candidates




5.1 Does ignoring punctuation improve our classification?

In our processing, we had trimmed punctuation from tweets because we assumed it was
not very related to sentiment. We found that ignoring punctuation does improve our
classification, but only slightly. For Hillary Clinton, Donald Trump, and Ben Carson,
including punctuation yielded equally effective or better classification. However, it did a
much worse job classifying with punctuation for Bernie Sanders. We were surprised that
keeping or ignoring punctuation does not have a huge impact on our accuracy.

5.2 Does ignoring URLs and usernames improve our classification?
We hypothesized that ignoring URLs and usernames would improve our classification
accuracy as they seem unrelated to sentiment. However, we were surprised to find that
including URLSs and usernames actually improved classification for Donald Trump’s
tweets, though it did not for the other candidates. Overall, our hypothesis was correct
and ignoring URLSs and usernames gave us higher classification accuracy.

5.3 Does ignoring common words unrelated to sentiment improve our
classification?

We used a list of words that are common, but do not directly express or relate to
sentiment from other Twitter sentiment projects. Ignoring these words that didn’t
directly correlate to sentiments very slightly improved our classification, but the
influence was not nearly as large as we expected it to be.

Our main take-away from our experiments was that our processing of what we thought
were extraneous features in the text did not have as large of an impact on our
classification results as we expected.

SECTION 6: DATA ANALYSIS

6.1 Overview

We constructed maps from the sentiments of the tweets we collected, using metadata for
each tweet to find the locations that users inputted into their profile. Twitter’s API does
have an entry for latitude and longitude coordinates. However, it requires the user to
enable this setting, and we found that less than 1% of users had enabled this feature. We
therefore used the user-inputted location. This requires hand-labelling each location to
determine the state the user lived because the user-inputted location was in a variety of
formats. Some people used area codes, university names, and airport abbreviations,
among other things, to describe their location, so we looked up their inputted



information on Google and used the first result. There were, of course, some locations
which we were unable to ascertain the state and some locations that weren’t in the US,
which we ignored. With our hand-labeled data, we made a heat map for each candidate
which shows the concentration of tweets from each state relative to the total number of
tweets we have about that candidate. Lastly, for each state with at least one tweet, we
added the emoji representing the dominant emotion of the tweets from that state.

6.2 Analysis of Maps

We found that for states with high concentrations of tweets, there was always one
emotion that received more than three-quarters of the tweet sentiments. Even for the
light-blue states from which we only got one data point, it is fairly likely that this
emotion would have received majority sentiment if we had gotten more data points for
that state since one emotion typically dominated so strongly. Since we did not scale the
number of tweets by state population, California, Texas, New York, and Florida
consistently have the most tweets. This hinders our ability to compare candidates
popularity between states based on number of tweets, since California will always have
more tweets about any candidate than Idaho which had zero tweets for every candidate.

If we disregard retweets, laughter was the most common emoji from the unique tweets
for every candidate. Interestingly, this is not obvious just from looking at the Appendix
maps because for states where laughter was not the dominant sentiment, there were still
many number of laughter tweets even though they were ultimately outweighed by a
larger number of tweets expressing a different sentiment. Essentially, even if laughter
didn’t dominate a state’s sentiment, its popularity as a sentiment was still relatively
high. In addition, our map counts include retweets, so for many cases, there was one
tweet of a particular sentiment, for example, a sad tweet, that was retweeted many
times. For our maps, we counted each retweet to capture popular sentiment and show
where that same sentiment was felt. This is most apparent when looking at Donald
Trump’s map, which shows a huge majority of the sad sentiment, caused by relatively
few sad tweets that were then retweeted many times. Donald Trump’s map is also an
example of the timeliness of tweets in general, since we collected all his data on the day
of the San Bernardino shootings. We collected some other candidates’ data on this day
also, but did not get nearly as much of an effect. We suspect that Donald Trump did or
said something extremely inappropriate in relation to this event, which caused a few sad
tweets which were then massively retweeted. Another example of timeliness and an
event’s potential impact was visible after Ben Carson mispronounced ‘Hamas’ as
‘hummus’ at a Republican Jewish Coalition forum in D.C. This resulted in a huge spike
in laughter tweets and retweets towards Ben Carson.




APPENDIX

Map Key:
Happy:
Sad: @
Angry: ®
Laughter: =
Scared: @

Ben Carson Sentiment Map

a few

| tweets many tweets!
5 [

10



Hillary Clinton Sentiment Map

a few tweets many tweets!
]

Bernie Sanders Sentiment Map

a few tweets many tweets!
B ]

11



Donald Trump Sentiment Map

oy
=
(5

3
=

a few tweets

Test Data Statistics

many tweets!

Donald Trump
e Keyword queries: “trump”, “donald trump”
e Total tweets collected for testing data = 28902
e Unique tweets out of those collected = 16507
e Total tweets with emojis used for testing = 256
O Accuracy:
B KNN: 0.4453125
B SVM: 0.4453125
e Include punctuation: 0.4453125
e Include username and URLs: 0.453125
e Include all words: 0.453125
B Naive Bayes Bernoulli: 0.44921875
Ben Carson
e Keyword queries: “ben carson”
e Total tweets collected for testing data = 21416
e Unique tweets out of those collected = 13869

12



e Total tweets with emojis used for testing = 152
O Accuracy:
B KNN: 0.473684210526
B SVM: 0.532894736842
e Include punctuation: 0.539473684211
e Include username and URLs: 0.532894736842
e Include all words: 0.532894736842
B Naive Bayes Bernoulli: 0.532894736842
Hillary Clinton
e Keyword queries: “hillary clinton”, “hillary”
e Total tweets collected for testing data = 53974
e Unique tweets out of those collected = 29347
e Total tweets with emojis used for testing = 194
O Accuracy:
B KNN: 0.448453608247
B SVM: 0.505154639175
e Include punctuation: 0.505154639175
e Include username and URLs: .5
e Include all words: 0.494845360825
B Naive Bayes Bernoulli: 0.5
Bernie Sanders
e Keyword queries: “bernie”, “bernie sanders”
e Total tweets collected for testing data = 40797
e Unique tweets out of those collected = 25065
e Total tweets with emojis used for testing = 305
O Accuracy:
B KNN: 0.472131147541
B SVM: 0.485245901639
e Include punctuation: 0.468852459016
e Include username and URLs: 0.468852459016
e Include all words: 0.47868852459
B Naive Bayes Bernoulli: 0.47868852459

13



Works Cited

Aly, Mohamed. "Survey on Multiclass Classification Methods." Cs.utah.edu. N.p., n.d.
Web. 8 Dec. 2015.
Arifin, Agus Z., Yuita A. Sari, Evy K. Ratnasari, and Siti Mutrofin. "Emotion Detection of
Tweets in Indonesian Language Using Non-Negative Matrix Factorization."
International Journal of Intelligent Systems and Applications(IJISA) 6.9
(2014): 54-61. IJISA. MECS Publisher, Aug. 2014. Web. 29 Nov. 2015.
Ferwerda, Bruce, and Markus Schedl. "Enhancing Music Recommender Systems with
Personality Information and Emotional States: A Proposal." (2011): n. pag. JKU
Computational Perception. Johannes Kepler University, 2014. Web. 29 Nov.
2015.
Janardhana, Ravikiran. "How to Build a Twitter Sentiment Analyzer." Ravikiranj.net.
Nikola, 08 May 2012. Web. 06 Dec. 2015.

Kim, Jinho, Byung-soo Kim, and Silvio Savarese. "Comparing Image Classification
Methods: K-Nearest-Neighbor and Support-Vector-Machines." Wseas.us. N.p.,
n.d. Web. 8 Dec. 2015.

Nakhaeizadeh, Gholamreza. Statistical Data Mining. N.p.: n.p., n.d. UlmUni. Ulm
University, 2007. Web. 8 Dec. 2015.

"Properties of Naive Bayes." The Stanford Natural Language Processing Group.

Cambridge University Press, 07 Apr. 2009. Web. 09 Dec. 2015.

14



Tai, Kai S. "CS229 Final Project Sentiment Analysis of Tweets: Baselines and Neural
Network Models." (n.d.): n. pag. Stanford University, 13 Dec. 2013. Web. 12 Nov.
2015.

Yeole, Ashwini V., P. V. Chavan, and M. C. Nikose. "Opinion Mining for Emotions
Determination." Innovations in Information, Embedded and Communication
Systems (ICIIECS) 2015 International Conference (2015): 1-5. IEEE Xplore. 20
Mar. 2015. Web. 29 Nov. 2015.

Zhang, Hao, Alexander C. Berg, Michael Maire, and Jitendra Malik. "SVM-KNN:
Discriminative Nearest Neighbor Classification for Visual Category Recognition

(n.d.): n. pag. Web. 8 Dec. 2015.

Sources and Outside Libraries
e Twitter API

GoogleMaps API

Tweepy

Scikit-learn

AmMap

"

15



