Capitol Losses: The Mediocre Performance of Congressional Stock Portfolios

Andrew C. Eggers
London School of Economics

Jens Hainmueller
Massachusetts Institute of Technology

Given the effects of policy on financial markets, political insiders should be capable of enriching themselves through savvy investing. Consistent with this view, two widely cited studies claim that members of both the House and Senate show uncanny timing in trading stocks, fueling the public perception that corrupt “insider trading” is widespread in Congress. We call this consensus into question. First, we reinterpret existing studies of congressional stock trading between 1985 and 2001 and conduct our own analysis of trades in the 2004–2008 period, concluding that in neither period do members of Congress trade with an information advantage. Second, we conduct the first analysis of members’ portfolio holdings, showing that between 2004 and 2008 the average member of Congress would have earned higher returns in a passive index fund. Our research suggests that, if there is unethical investing behavior in Congress, it is far more limited than previous research implies.

Do members of Congress enrich themselves by picking stocks based on privileged political information?¹ There is substantial anecdotal evidence that they do. A widely discussed book (Schweizer 2011) recounts dozens of examples of members of Congress making profitable trades while in possession of nonpublic information about policies affecting companies in their portfolios.² Senator John Kerry, for example, reportedly profited from well-timed investments in health care companies during periods when his subcommittee in the Senate was weighing health care legislation. Similarly, House Speaker John Boehner reportedly bought stock in health insurance companies just before the “public option” for health insurance was defeated in Congress, driving up the value of those stocks.³ Consistent with such anecdotes, the two existing academic studies on congressional investing (Ziobrowski et al. 2004; Ziobrowski et al. 2011) claim that members of Congress show uncanny timing in their stock trades, with synthetic portfolios built from transactions beating a passive market index by 12% per year in the Senate (1993–98) and 6% in the House (1985–2001). This purported ability to systematically beat the market puts members of Congress in a class of their own as investors, outperforming hedge fund managers (Fung et al. 2008) and even corporate insiders (Jeng, Metrick, and Zeckhauser 2003).

The idea that members of Congress get rich trading stocks resonates with a substantial body of research in political science, economics, and finance that shows that political insiders affect financial markets (Goldman, Rocholl, and So 2009; Jayachandran 2006;

¹Support for this research was provided by Harvard’s Institute for Quantitative Social Science (IQSS). An online appendix for this article is available at http://journals.cambridge.org/jop containing details about data construction and supplemental analyses. Data and supporting materials necessary to reproduce the numerical results in the paper will be made available at http://www.mit.edu/~jhainm/research.htm no later than two months following the publication date.

We revisit this consensus by reinterpreting existing research and carrying out our own analysis of a new dataset of congressional investments in a more recent period. Our analysis makes two main points. First, we argue that, contrary to claims made based on existing published research, there is very little evidence that more than a handful of members of Congress trade stocks at an information advantage, either in the period covered by Ziobrowski et al. (2004) and Ziobrowski et al. (2011) or in the more recent period we examine. We highlight that the published findings in these papers do not, as apparently widely believed, demonstrate widespread insider trading in Congress: On close inspection there is in fact no evidence of informed trading in the House study (Ziobrowski et al. 2011), and the finding of excess returns in the Senate study (Ziobrowski et al. 2004) suggests that any unusually good trading performance is limited to a few members. Consistent with this reinterpretation of previous work, we fail to find any evidence of informed trading in our own analysis of congressional stock transactions in the 2004–2008 period, based on applying the same methods to a newly collected dataset. We conclude from this that, while isolated members of Congress may unethically or even illegally trade based on political information, there is no evidence in any period of widespread “insider trading” in Congress.

Second, we argue that not only do members of Congress not systematically trade stocks at an information advantage, they also fail to choose portfolios that outperform the market benchmark. Previous work did not analyze members’ actual portfolios, but focused only on synthetic portfolios built solely from members’ stock transactions in order to test for unusually good trading acumen. However, since members do not actually hold these synthetic portfolios, the return on them may be quite different from the return that members earned with their actual portfolios. Having carried out that analysis in our dataset of transactions in the 2004–2008 period, we go further by reconstructing members’ stock portfolios from holdings and transactions reported on financial disclosure forms. We thus carry out the first analysis of members’ actual portfolio returns—the best measure of their overall investing gains. We find that, again consistent with the idea that few if any members invest on the basis of information advantages, members’ portfolios generally underperform market indices. The average congressional portfolio underperformed a passive index fund by 2–3% per year (before expenses) during the period we examine; in dollar terms, $100 invested like the average investor in Congress would have yielded $69 by the end of 2008, compared to $80 if the same amount had been invested in a passive index fund. We find underperformance using a variety of specifications and weighting approaches, and not just for Congress as a whole but separately for both the House and the Senate, Democrats and Republicans, members of power committees, members with party and committee leadership positions, and groups of members stratified by wealth, portfolio size, and turnover.

In providing a comprehensive view of one kind of possible legislative corruption, our research speaks to a large literature on political agency and electoral accountability (e.g. Besley 2006; Ferejohn 1999; Ferejohn 1986). Our main findings—that members of Congress neither trade stocks at an information advantage nor choose portfolios that outperform market indices—may seem surprising given extensive research indicating that politicians can affect financial markets and in some cases earn financial returns from serving in office. Of course, the fact that politicians have opportunities to earn unethical profits does not mean that they will choose to do so. We suggest that few if any members of Congress derive investing gains from their political knowledge because the financial benefits of doing so are outweighed by possible costs—including not just congressional ethics sanctions and criminal prosecution but also electoral and reputation losses. We therefore view our findings as suggestive evidence of the success of accountability mechanisms at disciplining incumbent politicians and selecting those who place a relatively high value on public office.
Congressional Investing: Opportunities and Constraints

Recent research in political economy provides ample reason to suspect that members of Congress could be extraordinarily good investors. A growing list of studies show that firm values are very sensitive to political factors. Roberts (1990) finds that the death of the ranking Democrat on the Senate Armed Service Committee resulted in lower stock valuations for firms located in the senator’s state and higher stock valuations for firms located in the state of his successor. Similarly, Jayachandran (2006) finds that the market value of Republican-connected firms dropped when Senator Jeffords unexpectedly departed the Republican Party in 2001, shifting the Senate majority to the Democrats. Goldman, Rocholl and So (2009) show that companies that announce the appointment of a politically-connected director experience a positive abnormal return. Comparable evidence abounds for other countries as well (see for example Fisman 2001 and Faccio 2006). The picture presented by these studies is that financial markets are highly responsive to political events. If politicians know about political events before others do, and if these studies do not greatly overstate the impact of political events on stock prices, then an investment-minded member of Congress may be able to handsomely profit from information arbitrage—buying and selling stocks based on not-yet-public political information. Members of Congress with considerable legislative power may also be able to profit as investors by taking actions that advance the interests of their portfolio companies.

Politicians may also enjoy informational advantages simply by being in close contact with corporate executives and industry lobbyists as part of their legislative and fundraising routines. Recent research in empirical finance suggests that mutual fund managers do better when they invest in companies to which they are connected through personal ties to executives (Cohen, Frazzini, and Malloy 2008). Members of Congress necessarily have large personal networks and frequent contact with corporate executives and lobbyists. Even a member of Congress who does not have or use advance knowledge of legislative events may be able to profit as an investor simply by taking advantage of information gathered through his or her personal networks and political contacts.

While members of Congress likely enjoy considerable information advantages because of their political power, it does not follow that they would invariably choose to capitalize on those advantages. The costs of doing so could be considerable. Despite persistent and popularly influential claims to the contrary,5 the SEC’s insider trading regulations do apply to Congress, meaning that members of Congress who traded on the basis of stock tips or knowledge of a government contract could face criminal charges.6 Ethics rules in the House and Senate also prohibit members from “improperly using their official positions for personal gain” (Code of Conduct 2005).7 Based on the reaction to journalistic exposés of Congressional insider trading (particularly Schweizer 2011), a public allegation of unethical investing behavior clearly damages the target’s reputation and gives ammunition to political opponents. In short, investing on the basis of political “insider information” could face criminal charges.6 Ethics rules in the House and Senate also prohibit members from “improperly using their official positions for personal gain” (Code of Conduct 2005).7 Based on the reaction to journalistic exposés of Congressional insider trading (particularly Schweizer 2011), a public allegation of unethical investing behavior clearly damages the target’s reputation and gives ammunition to political opponents. In short, investing on the basis of political “insider information” could face criminal charges.6 Ethics rules in the House and Senate also prohibit members from “improperly using their official positions for personal gain” (Code of Conduct 2005).7 Based on the reaction to journalistic exposés of Congressional insider trading (particularly Schweizer 2011), a public allegation of unethical investing behavior clearly damages the target’s reputation and gives ammunition to political opponents. In short, investing on the basis of political “insider information” could face criminal charges.6 Ethics rules in the House and Senate also prohibit members from “improperly using their official positions for personal gain” (Code of Conduct 2005).7 Based on the reaction to journalistic exposés of Congressional insider trading (particularly Schweizer 2011), a public allegation of unethical investing behavior clearly damages the target’s reputation and gives ammunition to political opponents. In short, investing on the basis of political “insider information”
could damage one’s political career and possibly lead to criminal charges. For a politician who values serving in office and maintaining a reputation as an ethical public servant, the financial gains available from cashing in on any market-relevant information they happen to acquire may simply not be worth the cost.

Are Members Informed Traders?

If members of Congress use their political positions to profit as investors, they might be expected to make well-timed stock trades. In this section, we review and reinterpret existing evidence on the trading acumen of members of Congress between 1985 and 2001 and extend that evidence base by carrying out our own analysis of congressional trading in a more recent period.

Review and Reinterpretation of Existing Research

The only published studies systematically examining congressional stock trading are Ziobrowski et al. (2004), which considered stock trades by senators during the 1993–1998 period, and Ziobrowski et al. (2011), which examined trades by House members for the odd-numbered years between 1985 and 2001. The main finding in Ziobrowski et al. (2004) is that a trade-weighted hedged portfolio that holds stocks senators buy and sells short the stocks they sell (both for fixed 12-month holding periods) beats the market by 12% annually—a return that greatly exceeds the returns of any other investor group including corporate insiders, hedge fund managers, or mutual fund managers. Such high returns suggest the systematic use of nonpublic material information, leading the authors to conclude that senators took advantage of a “definite informational advantage” over other investors. Ziobrowski et al. (2011) comes to a similar conclusion when looking at members of the House. The main finding in this study is that a portfolio of stocks purchased by House members (held for a fixed 12 months after the transaction) beats the market by 6% annually.

We take the reported results of these papers at face value.\(^8\) In assessing the degree to which members of Congress are informed traders, however, we seek first to point out the disconnect between the published findings of these studies and the interpretation that the authors and, especially, the public appear to have drawn from them. The interpretation of these papers given by the authors in congressional testimony and repeated in voluminous subsequent media coverage is that the stock investments of members of the Senate beat the market by 12% per year and those of members of the House of Representatives beat the market by 6% per year.\(^9\) One issue with this interpretation, to which we return in the next section, is that the analysis in these studies is based not on members’ actual portfolios but rather on synthetic portfolios built solely from their transactions; since no one actually held the portfolios being analyzed, members’ financial gain may be quite different from that implied by the widely cited 12% and 6% figures. But even when properly considered as a measure of trading acumen, these headline figures give an incomplete and in some respects fundamentally misleading picture of what the published results actually suggest about congressional investing. In this section we attempt to remedy this misconception.

We begin by considering the Senate study (Ziobrowski et al. 2004). The findings in the Senate study are based on a standard methodology for measuring trading acumen, known as calendar-time transaction-based analysis (Odean 1999). The approach analyzes two synthetic portfolios built from members’ stock purchases and sales: a “buy” portfolio that mimics members’ stock purchases, buying each stock on the day when the member buys it and selling it 12 months later, and a “sell” portfolio that mirrors members’ stock sales, buying each stock on the day when the member sells it and selling it 12 months later. If an investor has good timing in her transactions, her “buy” portfolio should outperform market indices, indicating that she purchased stocks that subsequently did better than average, and her “sell” portfolio should underperform market indices, indicating that she sold stocks that.

\(^8\)The authors of these studies have refused to share their data with other researchers, making a replication of their analysis a daunting task requiring transcribing and processing thousands of financial disclosure forms.

subsequently did worse than average. The standard quantity of interest in calendar-time transaction-based analysis of this kind is the excess return on the hedged portfolio, which is roughly equivalent to the average monthly difference between the return on the buy portfolio and the return on the sell portfolio. The hedged return captures trading acumen by measuring the degree to which the stocks the investor recently bought outperform the stocks the investor recently sold.

The top panel of Figure 1 depicts the 8-point estimates for the return on the Senate hedged portfolio reported in Ziobrowski et al. (2004, the full estimates from both studies are also displayed in Table A.1 in the online appendix). The numerous point estimates shown indicate different ways of weighting members and their trades in the construction of the hedged portfolio, as well as variation in the regression specification. The first four estimates (labeled “average” member weighting) weight each member of the Senate equally, effectively asking whether the average member’s hedged portfolio outperformed a passive market index. The first two of these (labeled “equal” transaction weighting) weight each transaction equally within members (i.e., ignoring the size of the transaction), while the second two weight transactions by their approximate dollar value. Finally, the study uses two models, the CAPM model and the Fama-French model, to compute the abnormal portfolio returns that are shown in the figure (the estimates are labeled “CAPM” and “FF” respectively). Both models are based on a regression that compares the members’ risk-adjusted portfolio return to the risk-adjusted market return, with the Fama-French model adding two additional market controls.10

The main takeaway from the top panel of Figure 1 is that the widely reported 12% finding does not convey the degree to which the published findings in Ziobrowski et al. (2004) depend on weighting and modeling choices. The excess returns in the Senate study vary considerably across specifications and are only statistically significant for at most three out of eight possible specifications.11 The 12% figure, the largest of the reported estimates, is found when members are weighted by portfolio size and transactions are weighted by dollar value; other weighting approaches yield estimated excess returns about half as large and not statistically different from zero. The sensitivity of the findings to how members are weighted is not surprising because, as noted by the authors, just four senators account for nearly half of the trades, and therefore high performance by a few individuals could explain the aggregate excess returns.12 Taken together, the findings are consistent with the hypothesis that the average member of the Senate, and the average trade in the Senate, enjoyed no informational advantage in the period being examined. The extraordinarily high excess returns found in the aggregate trade-weighted hedged portfolio may be the result of a narrowly held trading acumen or sampling variation, but in light of the full set of results it provides only weak evidence of pervasive “insider trading” in the Senate.

The evidence of trading acumen in the House study (Ziobrowski et al. 2011) is even weaker. Like the Senate study, the House study reports excess return estimates for the “buy” and “sell” portfolios under the aggregate member weighting and conducts CAPM and Fama-French regressions for each. Somewhat surprisingly the House study does not, however, report the return on any hedged portfolio, nor does it report the return on the “sell” portfolio for the average member weighting. We can, however, approximate the hedged portfolio return by comparing the estimated excess return on the aggregate member weighted “buy” and “sell” portfolios; we plot these estimated results in Figure 1.13 Clearly, on the basis of hedged portfolio returns (the central quantity of interest in the Senate study)

10Formally, the Fama-French Three-Factor model (Fama and French 1993) is given by the following time-series regression: \(R_{t} - R_{f} = \alpha + \beta_{1}(R_{M} - R_{f}) + \beta_{2}SMB + \beta_{3}HML + \epsilon_{t} \) where \(R_{t} \) is the return on the transaction-based congressional portfolio in month \(t \), \(R_{M} \) is the return on a market index, \(R_{f} \) is the “risk-free rate” or return on U.S. Treasury Bills, and the other controls are passive portfolios noted in the empirical finance literature for diverging from the overall market. SMB is the return on a hedged portfolio that is long in small companies and short in big companies (“small-minus-big”), and HML is the return on a hedged portfolio that is long in high book-to-market companies and short in low book-to-market companies (“high-minus-low”). The quantity of interest is the intercept \(\alpha \), which captures the average monthly abnormal portfolio return. The CAPM is the same regression, but omits the SMB and HML factors.

11Point estimates on hedged portfolios are annualized from reported alphas; in the case of the House study, where the hedged analysis is not reported, this is estimated where possible as the difference between the buy and sell portfolio. Standard errors are not reported in either paper. We impute standard errors as follows. For estimates reported as statistically significant, we impute a standard error that would result in a \(p \)-value in the middle of the reported range (e.g., a standard error that would result in a \(p \)-value of .075, if the estimate is reported as significant at the .1 level). For other estimates, we impute the maximum possible standard error of the most similar statistically significant estimate, e.g., the same model with a different weighting, or the same weighting with a different model.

12Accordingly, the subgroup analysis in Ziobrowski et al. (2004) yields strikingly different returns for different subsets of the Senate.

13We approximate the corresponding standard errors by slightly inflating the standard errors on the buy portfolios, which would yield approximately the correct standard errors in our own analysis of the later period.
study and other similar studies in empirical finance), Ziobrowski et al. (2011) provides no evidence of trading acumen in the House. The widely reported 6% excess return is based on the excess return on the “buy” portfolio, but (as suggested by the imputed hedged portfolio returns in Figure 1) the full reported results indicate that this excess return is matched by the excess return on the “sell” portfolio. In other words, the stocks that members sold subsequently performed just as well as the stocks they bought, which undermines the claim that members of the House traded at an informational advantage.

The two studies of congressional trading in the years from 1985 to 2001 thus provide little evidence of systematic trading acumen. In analysis of hedged transaction-based portfolios, Ziobrowski et al. (2004) finds excess returns under only one of four possible weightings of members and trades and not for the average member or the average trade in the Senate; Ziobrowski et al. (2011) provides no evidence of trading acumen at all. These conclusions, which are clear only upon a close reading of the two papers, differ sharply from the apparently widespread interpretation of the findings.

In order to provide evidence on trading acumen in Congress over a longer period, we collected transactions data for the years from 2004 to 2008 based on
financial disclosure reports transcribed by the Center for Responsive Politics. Of 650 members of Congress who served in this period and whose reports were available from the Center for Responsive Politics, 422 members reported holding or trading a stock listed on NYSE, NASDAQ, or AMEX at some point, for a total of 48,309 reported transactions of 2,581 different companies. Identifying those stock trades from the financial disclosure reports and matching them to companies required hundreds of hours of pattern matching, checking, and cleaning. The appendix provides details on the data collection (Section B) and summary statistics (Table C.1). As in the period covered by Ziobrowski et al. (2004) and Ziobrowski et al. (2011), the distribution of annual transactions across members is quite right-skewed: the average member buys and sells 18 and 22 stocks per year (respectively), worth about $402,000 and $619,000; the median member buys and sells 2 and 3 stocks worth about $17,000 and $40,000.

To ensure comparability with previous work, we carry out calendar-time transaction-based portfolio analysis by applying as closely as possible the method described in Ziobrowski et al. (2004). In particular, we construct a “buy” portfolio, which holds all stocks purchased by members of Congress for 255 trading days following the purchase date, a “sell” portfolio, which holds all stocks sold by members of Congress for 255 trading days following the sell date, and a hedged portfolio that holds the purchased stocks and sells short the sold stocks (buy-less sell-portfolio). Like Ziobrowski et al. (2004) and Ziobrowski et al. (2011), we assign dollar values to trades using the midpoint of the value band specified on the disclosure report, with a top-code at $250,000 (see appendix for details). We estimate the excess return on each portfolio using the same weighting approaches and models.

The full results for the estimated excess returns are provided in Table 1. The estimated excess returns for the hedged portfolios that combine members’ buys and sells are also depicted in the bottom two panels of Figure 1 for easy comparison with the results of the previous studies. The results provide no evidence of informed trading. In particular, none of the hedged portfolios show positive excess returns at conventional significance levels and the magnitudes are close to zero. Our findings are similar across various weightings and specification.

Examining the “buy” and “sell” portfolios separately, the only cluster of significant excess returns are for senators’ “buy” portfolios, but these perform significantly worse than the market and roughly as poorly as the corresponding “sell” portfolios. To check the robustness of these results we conducted a variety of additional checks. In particular, we replicate the transaction-based analysis using (1) a more accurate imputation method to record transaction values, (2) five different holding periods (one-day, 10-day, 25-day, 140-day, and 255-day), and (3) both the CAPM and the Four-Factor Carhart model, which adds a momentum factor to the Fama-French Three-Factor model. The results are displayed in Table D.1 in the appendix. Regardless of the approach used, we find that the trades of members of Congress are not particularly well-timed. With some combinations of holding period, model, and weights we find evidence of good or bad trading acumen, but the overall results are again consistent with the null hypothesis of zero excess returns.

Overall, our results are consistent with the hypothesis that members of Congress enjoy no information advantage as investors. These findings run counter to the apparently widely held view that members of Congress systematically trade on information advantages, but are consistent with our reinterpretation of the results from Ziobrowski et al. (2004) and Ziobrowski et al. (2011). In short, previous research fails to find evidence of systematic trading acumen in Congress between 1985 and 2001; our research arrives at the same conclusion for the more recent 2004–2008 period.

Do Members Beat the Market?

As noted above, previous research on congressional investing has assessed trading acumen by analyzing the return on synthetic portfolios built from members’ transactions. Having reinterpreted and extended that work in the previous section, we now go beyond previous approaches by analyzing the performance of the actual stock portfolios of members of Congress. This analysis provides the most direct measure of whether members of Congress reap financial gains from their investments.

The fact that we fail to find evidence of trading acumen in Congress suggests that the performance of their actual portfolios may also have been unremarkable: given that these investors do not seem to buy and sell stocks at opportune times, it should not be surprising if the stocks in their portfolio at a given point in time would fail to outperform market indices. Because synthetic portfolios differ in important respects from what investors actually hold, however, the transaction-based analysis carried out to this point offers only limited insight into the economic return members of Congress enjoy from their investments. In particular, to the extent that members of Congress hold stocks for more or less time than the holding period assumed in constructing the synthetic portfolios, the return
on the portfolio will diverge from that on the synthetic "buy" portfolio. Additionally, the hedged portfolio analysis in the previous section effectively assumes a pattern of short selling coinciding with stock sales, which provides a reasonable way to measure good timing but does not correspond to actual investing activity. In order to measure the degree to which members of Congress financially benefit from their investments, then, it is necessary to reproduce and analyze the return on the stock portfolios that they held.

We calculate that the median annual turnover in congressional portfolios, calculated as buys plus sells divided by average holdings, in 2004–2008 is 23% per year, which suggests that most of members’ holdings do not appear in their transactions in a given year, and that members generally hold stocks for a much longer period than the holding periods used in constructing synthetic portfolios for transaction-based portfolio analysis.

Table 1 Annualized Excess Returns (%) on Synthetic (Transaction-Based) Portfolios of Members of the Senate and House (2004–2008), 12-month Holding Period

<table>
<thead>
<tr>
<th>Sample</th>
<th>Model</th>
<th>Buys</th>
<th>Sells</th>
<th>Hedged Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Equal-Weighted</td>
<td>Trade-Weighted</td>
<td>Equal-Weighted</td>
</tr>
<tr>
<td>Congress (2004–2008)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregated</td>
<td>CAPM</td>
<td>-0.16</td>
<td>-1.52</td>
<td>-0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.72)</td>
<td>(1.08)</td>
<td>(0.84)</td>
</tr>
<tr>
<td>Aggregated</td>
<td>Fama French</td>
<td>0.05</td>
<td>-1.37</td>
<td>-0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.48)</td>
<td>(0.96)</td>
<td>(0.84)</td>
</tr>
<tr>
<td>Average Member</td>
<td>CAPM</td>
<td>0.36</td>
<td>0.13</td>
<td>-0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.16)</td>
<td>(2.16)</td>
<td>(1.56)</td>
</tr>
<tr>
<td>Average Member</td>
<td>Fama French</td>
<td>0.02</td>
<td>-0.16</td>
<td>-1.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.16)</td>
<td>(2.28)</td>
<td>(1.56)</td>
</tr>
<tr>
<td>Senate (2004–2008)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregated</td>
<td>CAPM</td>
<td>-2.38**</td>
<td>-2.81*</td>
<td>-1.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.84)</td>
<td>(1.32)</td>
<td>(1.08)</td>
</tr>
<tr>
<td>Aggregated</td>
<td>Fama French</td>
<td>-2.23*</td>
<td>-2.98*</td>
<td>-1.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.96)</td>
<td>(1.44)</td>
<td>(0.96)</td>
</tr>
<tr>
<td>Average Member</td>
<td>CAPM</td>
<td>-2.92†</td>
<td>-3.29†</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.56)</td>
<td>(1.80)</td>
<td>(3.00)</td>
</tr>
<tr>
<td>Average Member</td>
<td>Fama French</td>
<td>-3.00†</td>
<td>-3.29†</td>
<td>-0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.68)</td>
<td>(1.8)</td>
<td>(2.64)</td>
</tr>
<tr>
<td>House (2004–2008)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregated</td>
<td>CAPM</td>
<td>0.26</td>
<td>-1.00</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.84)</td>
<td>(1.44)</td>
<td>(0.96)</td>
</tr>
<tr>
<td>Aggregated</td>
<td>Fama French</td>
<td>0.44</td>
<td>-0.60</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.60)</td>
<td>(0.96)</td>
<td>(0.84)</td>
</tr>
<tr>
<td>Average Member</td>
<td>CAPM</td>
<td>1.45</td>
<td>1.37</td>
<td>-1.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.76)</td>
<td>(2.76)</td>
<td>(1.32)</td>
</tr>
<tr>
<td>Average Member</td>
<td>Fama French</td>
<td>0.97</td>
<td>0.95</td>
<td>-2.45†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.88)</td>
<td>(3.00)</td>
<td>(1.32)</td>
</tr>
</tbody>
</table>

Note: Table shows results from analysis using the monthly returns (in %) of the transaction-based calendar-time portfolios formed by mimicking the trades of members of Congress who report holding common stocks during the 2004-2008 period. Following Ziobrowski et al. (2004) and Ziobrowski et al. (2011) stocks are held in a calendar-time portfolio for a fixed holding period of 255 days and dollar values are imputed using band midpoints or a maximum value of $250,000 in the highest band. Calendar-time portfolios are formed based on stocks bought ("Buys"), and another portfolio based on stocks sold ("Sells"), and a third zero-cost portfolio that holds the portfolio of bought stocks and sells short the portfolio of sold stocks ("Long/Short"). For the trade-weighted portfolios the trades are weighted by dollar value, for the equal-weighted portfolios the trades are weighted equally. The aggregate portfolio mimics the aggregate investments of all members (value-weighted), the average member portfolio mimics the investments of the average member (equal member weighted). CAPM alpha is the result from a time-series regression of the portfolio excess return (i.e. raw return minus risk-free rate) on the market excess return. Fama-French alpha is the result from a time-series regression of the portfolio excess return on the three Fama and French (1993) mimicking portfolios.

†, *, and ** indicate significance at 10%, 5% and 1% level (two-sided tests) for excess returns.
Data

As above, our analysis is based on financial disclosure data transcribed by the Center for Responsive Politics. Members of Congress are required to report not just their stock purchases and sales (used above to assess trading acumen) but also their end-of-year stock holdings. We reconstruct members’ actual portfolios by starting with these year-end holdings, which represent the member’s full portfolio at the end of the year, and using the transactions data to work backward day by day, adjusting the portfolio each day to reflect purchases and sales as well as fluctuations in value due to security price changes. We assign dollar values within each value band using the imputation method introduced above and described in detail in the appendix. Summary statistics for the annual averages of member portfolios for the 2004–2008 period are displayed in Table C.1 in the appendix. Member portfolio sizes range from $501 (for a member who reported a single stock in the lowest value band) to $140 million, the average reported by Jane Harman.15 The distribution of stock holdings is strongly skewed: the median member on average holds stocks worth about $93,000 in 5 companies, while the average member holds about $1.7 million in 19 companies. This skew suggests that conclusions about the performance of Congress as a whole may be sensitive to whether individual-level performances are weighted equally across members or by portfolio size. We therefore conduct our analysis using various different weighting approaches.

Methodology

We compare the stock portfolios to the market benchmark using the standard calendar-time approach of regressing risk-adjusted member returns on a set of controls including the return on a market index. In contrast to the transaction-based analysis above, which focused on the return on a single portfolio aggregated in different ways from members’ investments, here we follow a more recent approach by Hoechle, Schmid, and Zimmermann (2009) and carry out our main analysis via a panel regression that estimates the average monthly excess return across members and time, conditional on the standard controls. In particular, we aggregate each member’s daily portfolio returns to the monthly level and then fit the widely used Carhart Four-Factor model:

\[
R_{it} - R_{f} = \alpha + \beta_1 (R_{mt} - R_{f}) + \beta_2 \text{SMB}_t + \beta_3 \text{HML}_t + \beta_4 \text{MOM}_t + \epsilon_{it},
\]

where \(R_{it}\) is the return on the portfolio of member \(i\) in month \(t\). As before, \(R_{mm}\) is the return on a market index, \(R_{f}\) is the “risk-free rate,” and \(\text{SMB}_t\), \(\text{HML}_t\), and \(\text{MOM}_t\) are the “small-minus-big,” “high-minus-low,” and momentum factor, respectively. The key quantity of interest in this panel regression is the intercept \(\alpha\), which identifies that monthly average abnormal portfolio return across members. We cluster the standard errors by month to account for the cross-sectional correlation in portfolio returns. This approach is our preferred specification, but for robustness and comparability with previous studies we carry out a variety of specifications and weighting schemes and, because the findings from the various specifications are quite similar, we report the full results in the appendix.16

Overall Performance

Before looking at abnormal returns estimated by market models, we display in Figure 2 the cumulative raw returns for the average congressional portfolio over our period of study. The figure depicts the value over time of $100 invested in the CRSP market index (a passive, value-weighted portfolio of stocks on the NYSE, NASDAQ, and AMEX exchanges) and the average (i.e. equal-weighted aggregate) congressional portfolio.17 The average congressional portfolio clearly does considerably worse than the market index: $100

15The performance of Jane Harman’s portfolio was unusually poor, largely due to a $50+ million position in Harman Industries that dropped about 1/3 in value in January of 2008 after the release of negative news (see “Harman Shares Tumble After Forecast,” Reuters, Jan. 14, 2008). Because of the large size of her portfolio and the consequent large downward influence of her performance on aggregate excess returns, we exclude her from subsequent analyses unless otherwise noted. Including Harman not surprisingly has little effect on estimates of the performance of the average member but yields lower estimated performance when we weight by portfolio size.

16We run the panel analysis using the CAPM model, which includes the market index as a single control. We also carry out all analyses with the approach employed by Barber and Odean (2000), Ziobrowski et al. (2004), and Ziobrowski et al. (2011), among others, which involves aggregating individual portfolio returns to a single time series and then running the Carhart Four-Factor or CAPM regression. In these aggregate analyses, we report results employing two approaches for aggregating member portfolio returns—one that weights each member equally and another that weights each member by portfolio size. Hoechle, Schmid, and Zimmermann (2009) show that the panel approach is numerically identical to the equal-weighted aggregate portfolio approach as long as the panel is balanced; when it is not, the weighting implied by the panel regression is more natural.

17For each month, we compute each member’s monthly raw portfolio return and average across members; the figure depicts the compound return on this series of monthly returns.
invested in the market index (solid line) in January of 2004 would be worth about $80 by the end of 2008, whereas invested in the average congressional portfolio (dotted line) it would be worth only around $69. The underperformance is not limited to the period of decline and crash in 2007 and 2008; at the market peak in 2007, the congressional portfolio was already about 10% below the market on a cumulative basis since the start of 2004. Based on this cumulative return and the size of the aggregate congressional portfolio in 2004, we estimate that members of Congress collectively could have avoided about $68 million in losses by exchanging their stock holdings for a passive index fund.

Model 1 of Table 2 provides our main estimate of the abnormal returns for the sample of all members. The result is consistent with the graphical analysis. Model 1 shows that over our study period, members on average underperformed the market by about .23 percentage points per month ($p \leq .02), which annualizes to a yearly abnormal negative return of about -2.8% with a .95 confidence interval of [-4.9%; -5%]. This result is robust across various specifications. For example, the poor performance is very similar when we use a random-effects model with varying intercepts, weight the regression by the number of stock holdings per member-month, or weight the regression by the average value of the stock holdings per member-month. To further check the robustness of this result, Model 1 in Table D.2 in the appendix replicates the same analysis using the CAPM model instead of the Carhart Four-Factor model and the results are very similar. Table D.3 in the appendix replicates the overall portfolio analysis using the aggregated data regression approach. The results are very similar; both the value-weighted and the equal-weighted aggregate congressional portfolio underperform the market in the Carhart and the CAPM model.

Performance in Subgroups

How widespread is this pattern of underperformance? Models 2–26 in Table 2 report the abnormal return estimates for relevant subsets of Congress. The monthly alpha estimates along with their 95% confidence intervals are also visualized in Figure 3. The results indicate that the overall underperformance is very consistent across subgroups. Republicans do slightly better than Democrats (although the difference in intercepts is not quite significant at conventional levels ($p \leq .22$)).

House members do slightly worse than Senators, but again we do not reject the null of no difference. Members on power committees in the House or Senate do slightly better than other members, but the differences are small and statistically insignificant. Members with party or committee leadership positions in the House perform slightly worse than members with leadership positions in the Senate or without leadership positions, but the differences are not significant at conventional levels since the leader samples are fairly small. The estimated excess returns are also similar for the 2004–2006 period, when the market was rising, and the 2007–2008 period, when the market fell and the government began to intervene more heavily in the economy. There are also no consistent differences across the group of members when we stratify the sample by seniority, net worth, portfolio size (using three equal-sized bins for low, medium, and high), or precongressional careers. The best-performing subgroup appears to be members who owned businesses before entering Congress (who we estimate beat the market by about .5% per year), but even this group does not outperform either the market or other investors at conventional levels. The comparable subgroup analyses using the CAPM model (presented in Table D.2 in the appendix) and the aggregated data approach (Table D.4 in the appendix) similarly show consistent underperformance across subgroups.

The consistently negative results across subgroups indicate that our overall findings are not the artifact of a few exceptionally poor investors in Congress but rather reflects a broader underperformance across members. Notably, none of the 88 alpha returns we estimate (22 subgroups, each estimated four ways) is positive and

18To test for the difference we fit a pooled model with a group indicator (Democrat/Republican) and its interactions with all the controls. The main effect of the group indicator identifies the difference in alpha returns (see Hoechle, Schmid, and Zimmermann (2009)).

19We define “power committees” in the House as Rules, Appropriations, Ways and Means, and Commerce; in the Senate they are Appropriations, Finance, and Commerce.

20We define party and committee leaders as follows: Party leaders include leader and whip of the majority and minority in the House and Senate, plus the Speaker of the House and the President Pro Tempore in the Senate. Committee leaders include committee chairmen and ranking members, along with vice-chairs. A member is included if he or she held the position at any time during our sample period.

21The somewhat lower return for House leaders is mostly driven by Representative Steny Hoyer who served as the Democratic whip and leader. He owned only one common stock in our sample, Telkonet Inc, which lost almost all of its value during our sample period and thus his portfolio earned the lowest returns of all members in our data (see Figure 4).

22We are grateful to Nick Carnes for providing us with the data on pre-congressional careers (Congressional Leadership and Social Status (CLASS) Dataset, v. 1.2). A member is coded as belonging to a career category if she spent more than 60% of her pre-congressional career in that category.
significant, and only a handful of point estimates are above zero.

Member-Level Performance

In Figure 4 we display estimated excess returns for each member in our dataset: estimates of alpha from a separate Carhart four-factor regression for each member. (Names are plotted only for members with relatively high or low returns or portfolio values.) Box-and-whiskers plots depict the marginal distributions of members’ alpha returns and portfolio values respectively (the line indicates the median, the edges of the box denote the interquartile range, and the whiskers indicate the 5th and 95th percentiles). The results confirm that poor performance is a robust feature of this data and not driven by a few outlying members. The mean monthly excess return across members (-.24) is very close to the estimated excess return from Model 1 of Table 2 (-.23). Moreover, the marginal distribution of returns is fairly symmetric and clearly centered below zero (the median is at -.17). Last but not least, it is worth emphasizing that some of the members who have been accused of improperly trading on congressional information do not earn unusually high returns. For example, the sizable portfolio reported by Senator John Kerry earns returns that are just about as good as a passive index fund. The portfolios from Nancy Pelosi, James Oberstar, Jeb Bradley, Tom Carter, Richard Durbin, and several other members implicated in Schweizer (2011) perform even worse than a passive index fund.

Taken together, our results from analyzing members’ portfolios suggest that, consistent with the transaction-based analysis above, members of Congress earn relatively poor investment returns. This result is robust across different weighting approaches and subgroups.

Interpretation

In light of previous research on congressional investing and the popular perception of that research as having proven widespread “insider trading” in Congress, our claim that members of Congress do not in fact show superior trading acumen or enjoy above-market investment returns may seem surprising. As noted above, however, a reexamination of previous findings indicates that the evidence for informed trading in Congress was never very strong, which indicates that our own analysis of congressional investing in a more recent period is in fact consistent with earlier studies, properly interpreted: members of Congress do not appear to benefit from information advantages as investors.

We explain the failure of members of Congress to profit as investors in two principal ways: first, by emphasizing the demonstrated difficulty of systematically beating the market even for financial professionals,
Table 2 Monthly Excess Returns (%) on Stock Portfolios of Members of Congress 2004–2008

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Risk-Adjusted Monthly Portfolio Return ((R_{i,t} - R_f,t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.39</td>
</tr>
</tbody>
</table>

Model | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All Members</td>
<td>Dem.</td>
<td>Reps.</td>
<td>House</td>
<td>Senate</td>
<td>House</td>
<td>Senate</td>
<td>None</td>
<td>House</td>
<td>Senate</td>
<td>None</td>
<td>2004–06</td>
<td>2007–08</td>
<td></td>
</tr>
<tr>
<td>(R_{m,t} - R_{f,t})</td>
<td>0.90</td>
<td>0.89</td>
<td>0.91</td>
<td>0.89</td>
<td>0.94</td>
<td>0.85</td>
<td>0.92</td>
<td>0.93</td>
<td>0.87</td>
<td>0.97</td>
<td>0.90</td>
<td>0.97</td>
<td>0.87</td>
</tr>
<tr>
<td>(SMB_t)</td>
<td>0.10</td>
<td>0.15</td>
<td>0.07</td>
<td>0.10</td>
<td>0.14</td>
<td>0.19</td>
<td>0.04</td>
<td>0.06</td>
<td>0.33</td>
<td>0.14</td>
<td>0.06</td>
<td>0.03</td>
<td>-0.14</td>
</tr>
<tr>
<td>(HML_t)</td>
<td>0.21</td>
<td>0.15</td>
<td>0.26</td>
<td>0.23</td>
<td>0.13</td>
<td>0.24</td>
<td>0.12</td>
<td>0.21</td>
<td>0.41</td>
<td>0.03</td>
<td>0.20</td>
<td>0.07</td>
<td>0.29</td>
</tr>
<tr>
<td>(MOM_t)</td>
<td>-0.18</td>
<td>-0.18</td>
<td>-0.19</td>
<td>-0.20</td>
<td>-0.11</td>
<td>-0.26</td>
<td>-0.08</td>
<td>-0.15</td>
<td>-0.31</td>
<td>-0.11</td>
<td>-0.17</td>
<td>-0.05</td>
<td>-0.25</td>
</tr>
<tr>
<td>Alpha</td>
<td>-0.23*</td>
<td>-0.30*</td>
<td>-0.17†</td>
<td>-0.26**</td>
<td>-0.12</td>
<td>-0.26*</td>
<td>-0.10</td>
<td>-0.24**</td>
<td>-0.51**</td>
<td>-0.19</td>
<td>-0.19*</td>
<td>-0.12</td>
<td>-0.28*</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.12)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.11)</td>
<td>(0.13)</td>
<td>(0.13)</td>
<td>(0.09)</td>
<td>(0.17)</td>
<td>(0.12)</td>
<td>(0.09)</td>
<td>(0.11)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>Obs</td>
<td>18,388</td>
<td>8,621</td>
<td>9,754</td>
<td>14,475</td>
<td>3,808</td>
<td>6,847</td>
<td>2,637</td>
<td>8,904</td>
<td>2,266</td>
<td>2,062</td>
<td>14,060</td>
<td>11,818</td>
<td>6,570</td>
</tr>
</tbody>
</table>

Annualized Alpha | -2.76* | -3.6* | -2.04† | -3.12** | -1.44 | -3.12** | -1.2 | -2.88** | -6.12** | -2.28 | -2.28* | -1.44 | -3.36* |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seniority</td>
<td>Portfolio Size</td>
<td>Net Worth</td>
<td>Pre-Congressional Career</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>Business</td>
<td>Lawyer</td>
<td>Politician</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>Rm,t</td>
<td>(0.06)</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.87</td>
<td>0.94</td>
<td>0.88</td>
<td>0.93</td>
<td>0.89</td>
<td>0.96</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rf,t</td>
<td>0.89</td>
<td>(0.02)</td>
<td>0.94</td>
<td>0.89</td>
<td>0.89</td>
<td>0.93</td>
<td>0.89</td>
<td>0.96</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMBt</td>
<td>0.08</td>
<td>(0.05)</td>
<td>0.09</td>
<td>0.13</td>
<td>0.13</td>
<td>0.17</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HMLt</td>
<td>0.09</td>
<td>(0.06)</td>
<td>0.09</td>
<td>0.23</td>
<td>0.28</td>
<td>0.20</td>
<td>0.19</td>
<td>0.19</td>
<td>0.36</td>
<td>0.17</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOMt</td>
<td>-0.16</td>
<td>(0.04)</td>
<td>-0.24</td>
<td>-0.21</td>
<td>-0.23</td>
<td>-0.11</td>
<td>-0.18</td>
<td>-0.23</td>
<td>-0.23</td>
<td>-0.23</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alpha</td>
<td>-0.27*</td>
<td>(0.11)</td>
<td>-0.19*</td>
<td>-0.15</td>
<td>-0.29*</td>
<td>-0.24**</td>
<td>-0.32*</td>
<td>-0.34*</td>
<td>-0.21</td>
<td>-0.23*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.12)</td>
<td>(0.09)</td>
<td>(0.15)</td>
<td>(0.12)</td>
<td>(0.09)</td>
<td>(0.15)</td>
<td>(0.12)</td>
<td>(0.09)</td>
<td>(0.15)</td>
<td>(0.17)</td>
<td>(0.09)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obs</td>
<td>5,602</td>
<td>7,171</td>
<td>5,615</td>
<td>5,422</td>
<td>6,388</td>
<td>6,578</td>
<td>5,422</td>
<td>6,483</td>
<td>6,470</td>
<td>1,131</td>
<td>2,650</td>
<td>3,407</td>
</tr>
<tr>
<td></td>
<td>Annualized Alpha</td>
<td>-3.24*</td>
<td>-2.64*</td>
<td>-2.28*</td>
<td>-1.8</td>
<td>-3.48*</td>
<td>-2.88**</td>
<td>-3.84*</td>
<td>-1.56</td>
<td>-3.12**</td>
<td>0.48</td>
<td>-4.08*</td>
<td>-2.76*</td>
</tr>
</tbody>
</table>

Note: Table shows results from analysis using the monthly returns (in %) of the holdings-based calendar-time portfolios of all members of Congress that report holding common stocks during the 2004-2008 period. The dependent variable is the monthly risk-adjusted return of a member’s holdings \(R_{i,t} = R_{i,t} - R_{f,t} \) (where \(R_{f,t} \) is the risk-free return from Ken French’s website). Portfolios are based on information reported in end-of-year financial disclosure reports (see text for details). Controls are the Fama and French (1993) mimicking portfolios (the market excess return \(R_{m,t} - R_{f,t} \), a zero-investment size portfolio \(SMB_t \), a zero-investment book-to-market portfolio \(HML_t \)) and the Carhart (1997) momentum factor \(MOM_t \). Rogers standard errors (clustered by month) are provided in parenthesis. Model 1 presents the regression for the sample of all members. Models 2-26 report regression results for selected subgroups of members. Power committees in the House are defined as Rules, Appropriations, Ways and Means, and Commerce; in the Senate as Appropriations, Finance, and Commerce. Party leaders include leader and whip of the majority and minority in the House and Senate, plus the Speaker of the House and the President Pro Tempore in the Senate. Committee leaders include committee chairmen and ranking members, along with vice-chair. A member is included if he or she held the position at any time during our sample period. Stratifications for seniority, portfolio size, and net worth are based on equally sized bins. Pre-congressional careers are classified into Business Owners, Lawyers, State or Local Politicians, and Other careers. A member is classified as belonging to an occupational category if he spent more than 60% of his pre-congressional career in that category. †, *, and ** indicate significance at 10%, 5% and 1% level (two-sided tests) for excess returns.
and second, by suggesting that, for elected politicians, refraining from unethical “insider trading” is reasonable given the high political risk.

The poor investing performance of members of Congress is entirely consistent with a long line of empirical work documenting that even supposed investment experts do not reliably outperform market indices. In the 1930s, Cowles (1933) found that stock market forecasts and recommendations made by financial service firms, fire insurance companies, and the editor of the *Wall Street Journal* tended to perform no better than what would result from random chance. More recent research on professional money managers similarly finds limited evidence of systematic excess returns (see for example Carhart 1997; Fung et al. 2008). A particularly robust finding in empirical finance is that individuals tend to perform below market indices (see, for example, Barber et al. 2009; Barber and Odean 2000; Hoechle, Schmid, and Zimmermann 2009; Odean 1999). This underperformance has been linked to overconfidence, naïve heuristics like trend chasing, and a variety of related biases in judgment, and has provided the basis for the widely-accepted opinion that individual investors should invest in passive index funds rather than try to pick stocks to outsmart the market (for reviews, see, e.g., Barberis and Thaler 2003). Viewed in light of the voluminous research on investment performance by individual investors and money managers, then, the poor performance of members of Congress does not seem out of place.

What separates members of Congress from other individual investors and even professional money managers, of course, is their political position. As we emphasized above, these political positions entail both opportunities and constraints. Some members of Congress may have access to market-relevant, nonpublic political information, and corporate insiders with similar information advantages have been shown to have impressive trading acumen (Jeng, Metrick, and Zeckhauser 2003). On the other hand, unlike money managers or corporate insiders, members of Congress operate under ethical restrictions that forbid them from financially gaining from their positions. Perhaps more importantly, their chances for political advancement, financial opportunities outside of politics, and “legacy” may all be heavily dependent on maintaining a reputation for probity and selflessness, which could be irreparably damaged by accusations of “insider trading” based on their publicly disclosed investments. In short, members of Congress who find themselves in possession of potentially lucrative information can choose to invest based on that information or refrain from doing so; the fact that they do not appear to perform well as investors suggests that few of them choose to pursue the profits. This may be because public scrutiny and

Figure 3 Annualized Excess Returns (%) of Stock Portfolios in Congress, 2004–2008

Note: Figure depicts the estimated annualized alpha return (with .95 confidence intervals) of stock portfolios in Congress, 2004-2008 (derived from the models in Table 2).
electoral sanctions are effective deterrents against this type of unethical behavior, or because elections are effective at selecting politicians who place a relatively high value on public service compared to financial rents (Besley 2006; Fearon 1999).

Another possibility we have considered is that members of Congress perform poorly as investors because they actively use their investments to pursue political ends. Perhaps politicians invest in local companies in order to demonstrate their commitment to the district, for example, or in companies from which they seek campaign contributions in order to make their policy promises more credible. To the extent that members make these investments to achieve political (rather than financial) aims, it might help to explain the underperformance of their portfolios. Consistent with this idea, in a companion paper we show that members of Congress disproportionately invest in both local companies and campaign contributors; not consistent with this idea, however, we find that these connected investments do not underperform their other investments, and in the case of their local investments they tend to do better (see Eggers and Hainmueller 2012 for details).

Our interpretation of the mediocrity of congressional investment performance is thus that political constraints discourage them from aggressively investing on the basis of privileged information they may possess; without the use of insider information, it is not surprising that members of Congress perform no better than other individual investors, who have been shown to fall short of market indices.

Figure 4 Members’ Monthly Excess Returns (%) and Average Portfolio Size 2004–2008

Note: Monthly alpha return (in %) is Carhart 4-factor alpha obtained from a calendar time portfolio regression of each member’s excess return on the Fama and French (1993) mimicking portfolios and the Carhart (1997) momentum factor. Members with large/small returns or large/small portfolios are highlighted with labels. Box plots on the right and on top show the marginal distribution of alpha returns and portfolio sizes across members: the thick line indicates the median, the edges of the box denote the interquartile range, and the whiskers indicate the 5th and 95th percentiles.
Conclusion

Our study indicates that members of Congress enjoy no special advantage as investors. Neither in the 2004–2008 period on which we focus nor in the earlier period covered by prior studies do we see evidence of systematic trading acumen. Further, our analysis of the performance of members’ actual portfolios (the first of its kind) indicates that members of Congress would in recent years have fared better if they had liquidated their common stock holdings and put the money into a passive index fund. Given voluminous research showing that neither individual investors nor financial professionals systematically outperform the market, the finding that members of Congress are mediocre investors is only surprising because, first, previous research appears to have convinced much of the public otherwise, and second, some members of Congress presumably have access to information (about upcoming legislation, for example) that they could use to reap investing profits.

As we have shown here, existing research makes a weaker case for trading acumen in Congress than has been previously appreciated, and on closer examination that research is quite consistent with our own empirical findings indicating that members of Congress do not on average profit from information advantages. The mediocre investment performance, despite the opportunities many members presumably face to cash in on political “inside information,” suggests that elections and other accountability mechanisms in Congress have been generally effective in constraining unethical financial behavior.

In light of political agency models (e.g., Besley 2006; Fearon 1999), our findings suggest a rethinking of recently-passed and proposed reforms in Congress. Restrictions on congressional investing can be seen as attempts to decrease the illegitimate financial rewards of serving in Congress; in a model of political agency with moral hazard and adverse selection like the one found in Besley (2006), reducing opportunities for graft tends to both discipline incumbent politicians and discourage “bad” politicians from seeking office. Given our evidence that illegitimate investing gains in Congress are already low, it seems unlikely that additional restrictions will improve the quality of policy-making in Congress by reducing those gains further. Reforms may be justified on other grounds, though. The public perception that members of Congress enjoy illegitimate financial gains may be unfounded, but the persistence of this perception has reduced the legitimate nonfinancial rewards of serving in Congress, i.e., the reputational benefits or ego rents. In most political agency models, reducing the legitimate gains of office diminishes the quality of policy by undermining electoral incentives and attracting less able politicians (e.g., Besley 2004; Caselli and Morelli 2004; Ferejohn 1986).

The main benefit of additional restrictions on congressional insider trading may therefore be to marginally increase the legitimate rewards to serving in office by reducing the public perception that politicians are corrupt. Further reforms that increase the transparency of congressional investments or require members to divest themselves of common stocks may not be necessary to curb insider trading in Congress, but these reforms may still benefit the public by making service in Congress more rewarding for honest politicians.

Acknowledgments

We thank Alberto Abadie, Adam Berinsky, Ryan Bubb, Justin Grimmer, Michael Hiscox, Saumitra Jha, Gary King, Gabe Lenz, Jim Snyder, Alberto Tomba, seminar participants at Harvard, MIT, Princeton, Stanford, Yale, and the London School of Economics, the editors, and three anonymous reviewers for helpful comments. For excellent research assistance we thank Thi Theu Dinh and Seth Dickinson. We would especially like to thank the Center for Responsive Politics for sharing data. Earlier versions of this paper were posted and presented as “Political Investing: The Common Stock Investments of Members of Congress 2004–2007” (first version April 9, 2009) and “Political Capital: The (Mostly) Mediocre Performance of Congressional Stock Portfolios, 2004-2008” (June 15, 2011). The usual disclaimer applies.

References

Andrew C. Eggers is a Lecturer at the London School of Economics and Political Science, London, U.K., WC2A 2AE.

Jens Hainmueller is an Associate Professor at the Massachusetts Institute of Technology, Cambridge, MA 02139.