We try to explain how the mixing rule of the second virial coefficients is obtained by analyzing the properties of binary mixtures statistically. The partition function in a grand canonical ensemble of binary gaseous mixtures reads

$$
\Xi=1+\left(\lambda_{1}+\lambda_{2}\right) V+\frac{1}{2}\left(\lambda_{1}^{2} \tilde{B}_{11}+2 \lambda_{1} \lambda_{2} \tilde{B}_{12}+\lambda_{2}^{2} \tilde{B}_{22}\right) V+\cdots
$$

where $\lambda_{1} \equiv e^{\mu_{1} /\left(k_{\mathrm{B}} T\right)} / \Lambda_{1}^{3}, \lambda_{2} \equiv e^{\mu_{2} /\left(k_{\mathrm{B}} T\right)} / \Lambda_{2}^{3}$, and

$$
\begin{aligned}
\tilde{B}_{i j} & \equiv \int \mathrm{~d} \mathbf{r} e^{-u_{i j}(|\mathbf{r}|) /\left(k_{\mathrm{B}} T\right)}, \quad(i, j=1,2) \\
& =\int \mathrm{d} \mathbf{r}\left(e^{-u_{i j}(|\mathbf{r}|) /\left(k_{\mathrm{B}} T\right)}-1+1\right)=-\int \mathrm{d} \mathbf{r}\left(1-e^{-u_{i j}(|\mathbf{r}|) /\left(k_{\mathrm{B}} T\right)}\right)+V \\
& =V-2 B_{i j} \\
B_{i j} & \equiv \frac{1}{2} \int \mathrm{~d} \mathbf{r}\left(1-e^{-u_{i j}(|\mathbf{r}|) /\left(k_{\mathrm{B}} T\right)}\right)=2 \pi \int_{0}^{\infty} \mathrm{d} r r^{2}\left(1-e^{-u_{i j}(r) /\left(k_{\mathrm{B}} T\right)}\right)
\end{aligned}
$$

Here μ_{i} is the chemical potential of i-th component and Λ_{i} is the thermal de Broglie wavelength of the i-th component. For an ideal gas, the chemical potential is given by $\mu_{i}=k_{\mathrm{B}} T \ln \left(\rho_{i} \Lambda_{i}\right)$, so λ_{i} reduces to the density $\rho_{i}=N_{i} / V$. For non-ideal gas we are interestedin, λ_{i} play the role similar to ρ_{i} and are treated as small, because the virial expansion is most useful only when the density is low.

Then we can take the Taylor expansion for $\ln \Xi$, in λ_{i}, and keep the terms up to the quadratic order, which leads us to

$$
\ln \Xi=1+\left(\lambda_{1}+\lambda_{2}\right) V++\frac{1}{2}\left(\lambda_{1}^{2} \tilde{B}_{11}+2 \lambda_{1} \lambda_{2} \tilde{B}_{12}+\lambda_{2}^{2} \tilde{B}_{22}\right) V-\frac{1}{2}\left(\lambda_{2}+\lambda_{2}\right)^{2} V^{2}+\cdots
$$

Note that the costants V in $\tilde{B}_{i j}$ cancel the last term, we get

$$
\ln \Xi=\left(\lambda_{1}+\lambda_{2}\right) V-\left(\lambda_{1}^{2} B_{11}+2 \lambda_{1} \lambda_{2} B_{12}+\lambda_{2}^{2} B_{22}\right) V
$$

Since the pressure relates to the partition function through $P V=k_{\mathrm{B}} T \ln \Xi$, we then get

$$
\frac{p}{k_{\mathrm{B}} T}=\left(\lambda_{1}+\lambda_{2}\right)-\left(\lambda_{1}^{2} B_{11}+2 \lambda_{1} \lambda_{2} B_{12}+\lambda_{2}^{2} B_{22}\right)
$$

In order to get the virial expansion, we need to relate λ_{i} to density ρ_{i}, to the same order. For the component- 1 , we get

$$
\begin{aligned}
& \rho_{1}=\frac{N_{1}}{V}=\frac{1}{V} \frac{\partial \ln \Xi}{\partial \mu_{1}}=\frac{\lambda_{1}}{V} \frac{\partial \ln \Xi}{\partial \lambda_{1}}=\lambda_{1}\left[1-2\left(\lambda_{1} B_{11}+\lambda_{2} B_{12}\right)\right] \\
& \rho_{2}=\lambda_{2}\left[1-2\left(\lambda_{2} B_{22}+\lambda_{1} B_{12}\right)\right]
\end{aligned}
$$

and equivalently (up to the same order)

$$
\begin{aligned}
& \lambda_{1}=\rho_{1}+2 \rho_{1}\left(\rho_{1} B_{11}+\rho_{2} B_{12}\right) \\
& \lambda_{2}=\rho_{2}+2 \rho_{2}\left(\rho_{2} B_{22}+\rho_{1} B_{12}\right)
\end{aligned}
$$

Substituting the above expressions into that for the pressure, we get (up to the same order of magnitude)

$$
\frac{p}{k_{\mathrm{B}} T}=\left(\rho_{1}+\rho_{2}\right)+\left(\rho_{1}^{2} B_{11}+2 \rho_{1} \rho_{2} B_{12}+\rho_{2}^{2} B_{22}\right)
$$

Noticing that the total density is $\rho=\rho_{1}+\rho_{2}$, we furthre have

$$
\frac{p}{k_{\mathrm{B}} T}=\rho+\left(y_{1}^{2} B_{11}+2 y_{1} y_{2} B_{12}+y_{2}^{2} B_{22}\right) \rho^{2}=\rho+B \rho^{2},
$$

in which $y_{i} \equiv N_{i} /\left(N_{1}+N_{2}\right)=\rho_{1} / \rho$, and the mixing rule for the second virial coefficient is found to be

$$
B=y_{1}^{2} B_{11}+2 y_{1} y_{2} B_{12}+y_{2}^{2} B_{22}
$$

This is the desired result, which is exact even when many-body interactions are present.

