We try to explain how the mixing rule of the second virial coefficients is obtained by analyzing the properties
of binary mixtures statistically. The partition function in a grand canonical ensemble of binary gaseous
mixtures reads
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Here p; is the chemical potential of i-th component and A; is the thermal de Broglie wavelength of the i-th
component. For an ideal gas, the chemical potential is given by u; = kT In(p;A;), so A; reduces to the
density p; = N;/V. For non-ideal gas we are interestedin, \; play the role similar to p; and are treated as
small, because the virial expansion is most useful only when the density is low.

Then we can take the Taylor expansion for In=, in \;, and keep the terms up to the quadratic order,
which leads us to
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Note that the costants V in Bij cancel the last term, we get
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Since the pressure relates to the partition function through PV = kgT In =, we then get
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In order to get the virial expansion, we need to relate A; to density p;, to the same order. For the component-1,

we get
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and equivalently (up to the same order)
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A1 = p1+2p1(p1B11 + p2B12)
A2 = pa + 2p2(p2Baa + p1B12)
Substituting the above expressions into that for the pressure, we get (up to the same order of magnitude)
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Noticing that the total density is p = p1 + p2, we furthre have
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in which y; = N; /(N1 + N2) = p1/p, and the mixing rule for the second virial coefficient is found to be
B = y%Bn + 2y1y2B12 + y%B22~

This is the desired result, which is exact even when many-body interactions are present.



