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1.1 Equation of state for ideal Fermion and Boson.

The energy dispersion relation for the ideal gas is

The energy level occupation function is
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Summation over all energy levels gives the equation of state
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where g is the degeneracy. For electron with spin-degeneracy, g = 2. Setting f(ex) = 1 and introducing an

upper cutoff kp gives
kp = (6”2”)1/3.
g

Chaning k to ¢, and normalizing €, kgT & p by the Fermi level ep = h2k%/(2m) gives
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Here Lig/, is the polylog function of order 3/2. Introducing the shorthand notation ¢t = kpT/er and
m = p/(kgT), the above can be written
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Temperature ¢ can be solved for arbitrary values of m, which relates chemical potential to temperature. The

— sign works for Fermion and the + sign works for Boson.

The classical limit is achieved for m ~ —32 In(T) — —oco. The polylog function behaves as Liy(z) = z
for z in the neighborhood of 0, which gives
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1.2 Classical partition function in occupation number representation.

Classical partition function for indistinguishable particles is given by
1
Qc(N,V,T) = ﬁ{partition function for distinguishable particles}.

This allows one to follow the energy state of each particle separately. For ideal gas, we can write Q¢ = ¢¥ /N,
here the single particle partition function is calculated in the energy representation
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But to derive the Boson and Fermion distribution, we used the occupation number representation, and used
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The range of n1, ng, ete. is {0,1} for Fermsion and is {0, 1,2, -} for Boson. What about Q¢? The range
of ny, ng is {0,1,2,---}, the same as for Boson. But to correct for the effects of particle distinguishability,
we have
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The combinatorial factor accounts for the number of ways of distributing particles. So finally,
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The distinction from the cases of Fermion and Boson vanishes when n, = 0 or 1 at high temperature, or
when the level is either occupied or empty.

The grand canonical partition function is not constrained by the total particle number.
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= exp {exp (— EZB_TH> + exp <_623_Tu) } .

This is identical to the result obtained directly from the particle representation
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The pressure thus is given by pV = kT InZc(u, V, T'), leaving
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This can be compared to the correponsinng expression for Fermion and Boson,

PVeg = ikBTZIn [1 + exp ( ekB_T’“”)] 2)

= exp [q e“/(kBT)} .

The average number of particle in a given level at high temperature is (n,) = exp (— EgB_T”).
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1.3 The level occupation representation is meaningful only for ideal gas.

From the derivation, it is clear that the occupation numbers

1
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as well as the classical limit

fe(e) = exp (— ek;;)

only applies to ideal (non-interacting) particles. Specifically, the partition function for the non-interacting
particles reads

c(u, V,T) Z QN V exp(,uN/(kBT)).

The particle number then is given by
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For ideal gases, we have
N
QN V.T) = g(V, 7)™ (2 exp(-/(T)) = QUN +LV.T)/a(V. ).

So the occupation number can be simply written as
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In retrospect, this is natural since the abover representation used the fact that the single particle state is
well-defined. The latter is meaningful only for non-interacting particles.
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