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1.1 Equation of state for ideal Fermion and Boson.

The energy dispersion relation for the ideal gas is

ϵk =
h̄2k2

2m
.

The energy level occupation function is

f(ϵk) =
1

exp

(
ϵk − µ

kBT

)
± 1

.

Summation over all energy levels gives the equation of state

n =
N

V
=

g

(2π)3

∫
dk f(ϵk) =

g

2π2

∫ ∞

0

dk k2f(ϵk)

where g is the degeneracy. For electron with spin-degeneracy, g = 2. Setting f(ϵk) = 1 and introducing an
upper cutoff kF gives

kF =

(
6π2n

g

)1/3

.

Chaning k to ϵ, and normalizing ϵ, kBT & µ by the Fermi level ϵF ≡ h̄2k2F/(2m) gives

2

3
=

(
kBT

ϵF

)3/2 ∫ ∞

0

dz
z1/2

ez exp
(
− µ

kBT

)
± 1

= ∓
√
π

2

(
kBT

ϵF

)3/2

Li3/2
(
∓ eµ/(kBT )

)
.

Here Li3/2 is the polylog function of order 3/2. Introducing the shorthand notation t ≡ kBT/ϵF and
m ≡ µ/(kBT ), the above can be written

4

3
√
π
t−3/2 = ∓Li3/2

(
∓ em

)
.

Temperature t can be solved for arbitrary values of m, which relates chemical potential to temperature. The
− sign works for Fermion and the + sign works for Boson.

The classical limit is achieved for m ≃ − 3
2 ln(T ) → −∞. The polylog function behaves as Lis(z) = z

for z in the neighborhood of 0, which gives

4

3
√
π
t−3/2 = eµ/(kBT ) → µ = −kBT ln

[
3
√
π

4

(
kBT

ϵF

)3/2
]
.
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1.2 Classical partition function in occupation number representation.

Classical partition function for indistinguishable particles is given by

QC(N,V, T ) =
1

N !
{partition function for distinguishable particles}.

This allows one to follow the energy state of each particle separately. For ideal gas, we can write QC = qN/N !,
here the single particle partition function is calculated in the energy representation

q =
∑
ϵ

exp

(
− ϵ

kBT

)
.

But to derive the Boson and Fermion distribution, we used the occupation number representation, and used

QF,B(N,V, T ) =

n1+n2+···=N︷ ︸︸ ︷∑
n1

∑
n2

· · · exp

(
−n1ϵ1 + n2ϵ2 + · · ·

kBT

)
.

The range of n1, n2, etc. is {0, 1} for Fermsion and is {0, 1, 2, · · ·} for Boson. What about QC? The range
of n1, n2 is {0, 1, 2, · · ·}, the same as for Boson. But to correct for the effects of particle distinguishability,
we have

QC(N,V, T ) =
1

N !

n1+n2+···=N︷ ︸︸ ︷∑
n1

∑
n2

· · · N !

n1!n2! · · ·
exp

(
−n1ϵ1 + n2ϵ2 + · · ·

kBT

)
.

The combinatorial factor accounts for the number of ways of distributing particles. So finally,

QC(N,V, T ) =

n1+n2+···=N︷ ︸︸ ︷∑
n1

∑
n2

· · · 1

n1!n2! · · ·
exp

(
−n1ϵ1 + n2ϵ2 + · · ·

kBT

)
.

The distinction from the cases of Fermion and Boson vanishes when nα = 0 or 1 at high temperature, or
when the level is either occupied or empty.

The grand canonical partition function is not constrained by the total particle number.

ΞC(µ, V, T ) =
∑
n1

∑
n2

· · · 1

n1!n2! · · ·
exp

(
−n1(ϵ1 − µ) + n2(ϵ2 − µ) + · · ·

kBT

)
= exp

[
exp

(
−ϵ1 − µ

kBT

)
+ exp

(
−ϵ2 − µ

kBT

)
· · ·

]
.

(1)

This is identical to the result obtained directly from the particle representation

ΞC(µ, V, T ) =
∑
N

qNeµN/(kBT )

N !
= exp

[
q eµ/(kBT )

]
.

The pressure thus is given by pV = kBT ln ΞC(µ, V, T ), leaving

pVC = kBT
∑
α

exp

(
−ϵα − µ

kBT

)
.

This can be compared to the correponsinng expression for Fermion and Boson,

pVF,B = ±kBT
∑
α

ln

[
1± exp

(
−ϵα − µ

kBT

)]
. (2)

The average number of particle in a given level at high temperature is ⟨nα⟩ = exp
(
− ϵα−µ

kBT

)
.
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1.3 The level occupation representation is meaningful only for ideal gas.

From the derivation, it is clear that the occupation numbers

fF,B(ϵ) =
1

exp

(
ϵ− µ

kBT

)
± 1

as well as the classical limit

fC(ϵ) = exp

(
− ϵ− µ

kBT

)
only applies to ideal (non-interacting) particles. Specifically, the partition function for the non-interacting
particles reads

ΞC(µ, V, T ) =
∞∑

N=0

Q(N,V, T )

N !
exp

(
µN/(kBT )

)
.

The particle number then is given by

⟨N⟩ = 1

ΞC

∞∑
N=1

Q(N,V, T )

(N − 1)!
exp

(
µN/(kBT )

)
=

exp
(
µ/(kBT )

)
ΞC

∞∑
N=0

Q(N + 1, V, T )

N !
exp

(
µN/(kBT )

)
.

For ideal gases, we have

Q(N,V, T ) = q(V, T )N =

(∑
i

exp
(
−ϵi/(kBT )

)N

= Q(N + 1, V, T )/q(V, T ).

So the occupation number can be simply written as

⟨N⟩ =
exp

(
µ/(kBT )

)
q(V, T )

ΞC

∞∑
N=0

Q(N,V, T )

N !
exp

(
µN/(kBT )

)
= exp

(
µ/(kBT )

)
q(V, T )

=
∑
i

exp

(
−ϵi − µ

kBT

)
.

In retrospect, this is natural since the abover representation used the fact that the single particle state is
well-defined. The latter is meaningful only for non-interacting particles.
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