Ideal Fermion \& Boson
Jian Qin
January 7, 2017

1.1 Equation of state for ideal Fermion and Boson.

The energy dispersion relation for the ideal gas is

$$
\epsilon_{\mathbf{k}}=\frac{\hbar^{2} \mathbf{k}^{2}}{2 m}
$$

The energy level occupation function is

$$
f\left(\epsilon_{\mathbf{k}}\right)=\frac{1}{\exp \left(\frac{\epsilon_{\mathbf{k}}-\mu}{k_{\mathrm{B}} T}\right) \pm 1}
$$

Summation over all energy levels gives the equation of state

$$
n=\frac{N}{V}=\frac{g}{(2 \pi)^{3}} \int \mathrm{~d} \mathbf{k} f\left(\epsilon_{\mathbf{k}}\right)=\frac{g}{2 \pi^{2}} \int_{0}^{\infty} \mathrm{d} k k^{2} f\left(\epsilon_{k}\right)
$$

where g is the degeneracy. For electron with spin-degeneracy, $g=2$. Setting $f\left(\epsilon_{k}\right)=1$ and introducing an upper cutoff k_{F} gives

$$
k_{\mathrm{F}}=\left(\frac{6 \pi^{2} n}{g}\right)^{1 / 3}
$$

Chaning k to ϵ, and normalizing $\epsilon, k_{\mathrm{B}} T \& \mu$ by the Fermi level $\epsilon_{\mathrm{F}} \equiv \hbar^{2} k_{\mathrm{F}}^{2} /(2 m)$ gives

$$
\frac{2}{3}=\left(\frac{k_{\mathrm{B}} T}{\epsilon_{\mathrm{F}}}\right)^{3 / 2} \int_{0}^{\infty} \mathrm{d} z \frac{z^{1 / 2}}{\mathrm{e}^{z} \exp \left(-\frac{\mu}{k_{\mathrm{B}} T}\right) \pm 1}=\mp \frac{\sqrt{\pi}}{2}\left(\frac{k_{\mathrm{B}} T}{\epsilon_{\mathrm{F}}}\right)^{3 / 2} \mathrm{Li}_{3 / 2}\left(\mp \mathrm{e}^{\mu /\left(k_{\mathrm{B}} T\right)}\right)
$$

Here $\mathrm{Li}_{3 / 2}$ is the polylog function of order $3 / 2$. Introducing the shorthand notation $t \equiv k_{\mathrm{B}} T / \epsilon_{\mathrm{F}}$ and $m \equiv \mu /\left(k_{\mathrm{B}} T\right)$, the above can be written

$$
\frac{4}{3 \sqrt{\pi}} t^{-3 / 2}=\mp \mathrm{Li}_{3 / 2}\left(\mp \mathrm{e}^{m}\right)
$$

Temperature t can be solved for arbitrary values of m, which relates chemical potential to temperature. The - sign works for Fermion and the + sign works for Boson.

The classical limit is achieved for $m \simeq-\frac{3}{2} \ln (T) \rightarrow-\infty$. The polylog function behaves as $\operatorname{Li}_{s}(z)=z$ for z in the neighborhood of 0 , which gives

$$
\frac{4}{3 \sqrt{\pi}} t^{-3 / 2}=\mathrm{e}^{\mu /\left(k_{\mathrm{B}} T\right)} \rightarrow \mu=-k_{\mathrm{B}} T \ln \left[\frac{3 \sqrt{\pi}}{4}\left(\frac{k_{\mathrm{B}} T}{\epsilon_{\mathrm{F}}}\right)^{3 / 2}\right]
$$

(November 10, 2016)

1.2 Classical partition function in occupation number representation.

Classical partition function for indistinguishable particles is given by

$$
Q_{\mathrm{C}}(N, V, T)=\frac{1}{N!}\{\text { partition function for distinguishable particles }\}
$$

This allows one to follow the energy state of each particle separately. For ideal gas, we can write $Q_{\mathrm{C}}=q^{N} / N!$, here the single particle partition function is calculated in the energy representation

$$
q=\sum_{\epsilon} \exp \left(-\frac{\epsilon}{k_{\mathrm{B}} T}\right)
$$

But to derive the Boson and Fermion distribution, we used the occupation number representation, and used

$$
Q_{\mathrm{F}, \mathrm{~B}}(N, V, T)=\overbrace{\sum_{n_{1}} \sum_{n_{2}} \cdots}^{n_{1}+n_{2}+\cdots=N} \exp \left(-\frac{n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\cdots}{k_{\mathrm{B}} T}\right) .
$$

The range of n_{1}, n_{2}, etc. is $\{0,1\}$ for Fermsion and is $\{0,1,2, \cdots\}$ for Boson. What about Q_{C} ? The range of n_{1}, n_{2} is $\{0,1,2, \cdots\}$, the same as for Boson. But to correct for the effects of particle distinguishability, we have

$$
Q_{\mathrm{C}}(N, V, T)=\frac{1}{N!} \overbrace{\sum_{n_{1}} \sum_{n_{2}} \cdots}^{n_{1}+n_{2}+\cdots=N} \frac{N!}{n_{1}!n_{2}!\cdots} \exp \left(-\frac{n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\cdots}{k_{\mathrm{B}} T}\right)
$$

The combinatorial factor accounts for the number of ways of distributing particles. So finally,

$$
Q_{\mathrm{C}}(N, V, T)=\overbrace{\sum_{n_{1}} \sum_{n_{2}} \cdots}^{n_{1}+n_{2}+\cdots=N} \frac{1}{n_{1}!n_{2}!\cdots} \exp \left(-\frac{n_{1} \epsilon_{1}+n_{2} \epsilon_{2}+\cdots}{k_{\mathrm{B}} T}\right)
$$

The distinction from the cases of Fermion and Boson vanishes when $n_{\alpha}=0$ or 1 at high temperature, or when the level is either occupied or empty.

The grand canonical partition function is not constrained by the total particle number.

$$
\begin{align*}
\Xi_{\mathrm{C}}(\mu, V, T) & =\sum_{n_{1}} \sum_{n_{2}} \cdots \frac{1}{n_{1}!n_{2}!\cdots} \exp \left(-\frac{n_{1}\left(\epsilon_{1}-\mu\right)+n_{2}\left(\epsilon_{2}-\mu\right)+\cdots}{k_{\mathrm{B}} T}\right) \tag{1}\\
& =\exp \left[\exp \left(-\frac{\epsilon_{1}-\mu}{k_{\mathrm{B}} T}\right)+\exp \left(-\frac{\epsilon_{2}-\mu}{k_{\mathrm{B}} T}\right) \cdots\right]
\end{align*}
$$

This is identical to the result obtained directly from the particle representation

$$
\Xi_{\mathrm{C}}(\mu, V, T)=\sum_{N} \frac{q^{N} \mathrm{e}^{\mu N /\left(k_{\mathrm{B}} T\right)}}{N!}=\exp \left[q \mathrm{e}^{\mu /\left(k_{\mathrm{B}} T\right)}\right]
$$

The pressure thus is given by $p V=k_{\mathrm{B}} T \ln \Xi_{\mathrm{C}}(\mu, V, T)$, leaving

$$
p V_{\mathrm{C}}=k_{\mathrm{B}} T \sum_{\alpha} \exp \left(-\frac{\epsilon_{\alpha}-\mu}{k_{\mathrm{B}} T}\right)
$$

This can be compared to the correponsinng expression for Fermion and Boson,

$$
\begin{equation*}
p V_{\mathrm{F}, \mathrm{~B}}= \pm k_{\mathrm{B}} T \sum_{\alpha} \ln \left[1 \pm \exp \left(-\frac{\epsilon_{\alpha}-\mu}{k_{\mathrm{B}} T}\right)\right] \tag{2}
\end{equation*}
$$

The average number of particle in a given level at high temperature is $\left\langle n_{\alpha}\right\rangle=\exp \left(-\frac{\epsilon_{\alpha}-\mu}{k_{\mathrm{B}} T}\right)$.
(November 11, 2016)

1.3 The level occupation representation is meaningful only for ideal gas.

From the derivation, it is clear that the occupation numbers

$$
f_{\mathrm{F}, \mathrm{~B}}(\epsilon)=\frac{1}{\exp \left(\frac{\epsilon-\mu}{k_{\mathrm{B}} T}\right) \pm 1}
$$

as well as the classical limit

$$
f_{\mathrm{C}}(\epsilon)=\exp \left(-\frac{\epsilon-\mu}{k_{\mathrm{B}} T}\right)
$$

only applies to ideal (non-interacting) particles. Specifically, the partition function for the non-interacting particles reads

$$
\Xi_{\mathrm{C}}(\mu, V, T)=\sum_{N=0}^{\infty} \frac{Q(N, V, T)}{N!} \exp \left(\mu N /\left(k_{\mathrm{B}} T\right)\right)
$$

The particle number then is given by

$$
\begin{aligned}
\langle N\rangle & =\frac{1}{\Xi_{\mathrm{C}}} \sum_{N=1}^{\infty} \frac{Q(N, V, T)}{(N-1)!} \exp \left(\mu N /\left(k_{\mathrm{B}} T\right)\right) \\
& =\frac{\exp \left(\mu /\left(k_{\mathrm{B}} T\right)\right)}{\Xi_{\mathrm{C}}} \sum_{N=0}^{\infty} \frac{Q(N+1, V, T)}{N!} \exp \left(\mu N /\left(k_{\mathrm{B}} T\right)\right)
\end{aligned}
$$

For ideal gases, we have

$$
Q(N, V, T)=q(V, T)^{N}=\left(\sum_{i} \exp \left(-\epsilon_{i} /\left(k_{\mathrm{B}} T\right)\right)^{N}=Q(N+1, V, T) / q(V, T)\right.
$$

So the occupation number can be simply written as

$$
\begin{aligned}
\langle N\rangle & =\frac{\exp \left(\mu /\left(k_{\mathrm{B}} T\right)\right) q(V, T)}{\Xi_{\mathrm{C}}} \sum_{N=0}^{\infty} \frac{Q(N, V, T)}{N!} \exp \left(\mu N /\left(k_{\mathrm{B}} T\right)\right) \\
& =\exp \left(\mu /\left(k_{\mathrm{B}} T\right)\right) q(V, T) \\
& =\sum_{i} \exp \left(-\frac{\epsilon_{i}-\mu}{k_{\mathrm{B}} T}\right)
\end{aligned}
$$

In retrospect, this is natural since the abover representation used the fact that the single particle state is well-defined. The latter is meaningful only for non-interacting particles.
(November 16, 2016)

