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1.1 Le Chatelier’s principle.

Maximizing entropy for constant U and all other extensive variables is equivalent to minimizing energy for
constant S and all other extensive variables. Denote the extensive variables Xi, which includes entropy S,
and their intensive driving force ξi. The first law reads

δU =
n∑
i

ξi δXi

where n is the number of extensive variables. The second law demands that δU vanishes at equilibrium,
which sets the equilibrium condition. Choose the convention such as ξi = 0 at equilibrium.

The second law for local stability further demands

δ2U =
1

2

n∑
i,j

(
∂ξi
∂Xj

)
Xk=1,2,···n;k ̸=j

δXiδXj =
1

2

n∑
i,j

Uij δXiδXj > 0

for all possible δXi. So the Jacobian or Hessian Uij needs to positive-definite. The stability against an
unimodal fluctuation, i.e., δXj = 0 for all j ̸= i, leads to the requirement that

Uii =

(
∂ξi
∂Xi

)
Xj=1,2,···,n;j ̸=i

> 0 for all i.

These are the familiar results, heat capacity CV > 0, isothermal compressibility κT > 0, and ∂µ/∂N > 0.

The stability against a bi-modal fluctuation, i.e., δXj = 0 for all j ̸= i and j ̸= k, leads to the requirement

UiiUkk − U2
ik > 0

for all pairs i and k. The extension to greater numbers of fluctuation modes is given by the Sylvester
criterion, treated later.

Within this notation, Le Chatelier’s principle amounts to saying that

Uii =

(
∂ξi
∂Xi

)
Xj=1,2,···n;j ̸=i

>

(
∂ξi
∂Xi

)
ξk,k ̸=i,Xj=1,2,···,n;j ̸=i,j ̸=k

> 0.

The key distinction being whether the extensive Xj or the intensive ξj are fixed. To demonstrate the above
result, consider a more general differential (the subscript indices for Xj=1,2,···,n;j ̸=m,j ̸=k implicitly assumed)(

∂ξi
∂Xm

)
ξk

=
∂ (ξi, ξk)

∂ (Xm, ξk)
=

∂ (ξi, ξk) /∂ (Xm, Xk)

∂ (Xm, ξk) /∂ (Xm, Xk)
= Uim − UikUkm

Ukk
.

Setting m = i gives the Le Chatelier’s principle(
∂ξi
∂Xm

)
ξk

= Uii −
UikUki

Ukk
= Uii −

U2
ik

Ukk
< Uii.

The last step invokes the stability condition Ukk > 0. The sign
(

∂ξi
∂Xm

)
ξk

> 0 is fixed by the stability

requirement against bi-modal fluctuations, UiiUkk − U2
ik > 0. Physically, an external interaction which

disturb the equilibrium bring about processes in the body which tend to reduce the effects of this interaction.

When ξi and Xi are set to T and S, the principle leads to a known result, 0 < 1
Cp

< 1
CV

.
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1.2 Stability criteria.

The sign of Jacobian Uij can be tested by using the Sylvester’s criterion. A Hermitian matrix M is
positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1
corner of M , the upper left 2-by-2 corner of M , · · ·, M itself. In other words, all of the leading principal
minors must be positive.

The first condition leads to U11 > 0. The second condition leads to

∂ (ξ1, ξ2)

∂ (X1, X2)
=

∂ (ξ1, ξ2) /∂ (ξ1, X2)

∂ (X1, X2) /∂ (ξ1, X2)
=

(∂ξ2/∂X2)ξ1
1/U11

> 0 ⇒
(

∂ξ2
∂X2

)
ξ1

> 0.

Note that, since the ordering is arbitrary, the index ‘2’ may refer to any degree of freedom other than ‘1’.
Likewise, the first condition implies that Uii > 0 for all i. The third condition leads to a similar result

∂ (ξ1, ξ2, ξ3)

∂ (X1, X2, X3)
=

∂ (ξ1, ξ2, ξ3) /∂ (ξ1, ξ2, X3)

∂ (X1, X2, X3) /∂ (ξ1, ξ2, X3)
=

(
∂ξ3
∂X3

)
ξ1,ξ2

∂ (ξ1, ξ2)

∂ (X1, X2)
> 0 ⇒

(
∂ξ3
∂X3

)
ξ1,ξ2

> 0.

The higher order conditions lead to(
∂ξk
∂Xk

)
ξ1,ξ2,···,ξk−1,Xk+1,···,Xn

> 0, for k = 1, 2, · · · , n− 1.

The last condition at k = n gives (
∂ξn
∂Xn

)
ξ1,ξ2,···,ξn−1

,

which vanishes because of the Gibbs-Duhem relation—this is the only physical condition used so far; every-
thing else applies generally to a Hermitian matrix. An example is given in the one-component systems for
which (∂µ/∂N)T,P = 0. Physically, this means when all the independent n−1 intensive variables e.g., T and
P , are fixed. Growing the remaining extensive N leads to the overall growth of system size, such that the
other extensive variables V and S grows in proportion, which results in no change in the conjugate intensive
variable. An alternative path can be taken and leads to

∂ (ξ1, ξ2)

∂ (X1, X2)
=

∂ (ξ1, ξ2) /∂ (X1, ξ2)

∂ (X1, X2) /∂ (X1, ξ2)
=

(
∂ξ1
∂X1

)
ξ2

U22 > 0 ⇒
(

∂ξ1
∂X1

)
ξ2

> 0,

∂ (ξ1, ξ2, ξ3)

∂ (X1, X2, X3)
=

∂ (ξ1, ξ2, ξ3) /∂ (X1, X2, ξ3)

∂ (X1, X2, X3) /∂ (X1, X2, ξ3)
=

(
∂(ξ1, ξ2)

∂(X1, X2)

)
ξ3

U33 > 0 ⇒
(

∂(ξ1, ξ2)

∂(X1, X2)

)
ξ3

> 0.

The pattern clearly can be generalized. And many alternative conditions may be constructed.

Since indexing is arbitrary, the thermodynamic stability implies(
∂ξi
∂Xi

)
Xk,k ̸=i,(ξ or X)j;j ̸=i,j ̸=k

> 0,

where i is any degree of freedom of interest, k is a needed extensive constraint, and j are all remaining
degrees of freedom which may be intensive or extensive. The number of such inequalities is n

(
2n−1 − 1

)
: n

represents the stability mode, i; 2n−1 counts the number of intensive or extensive choices for k and j modes;
‘−1’ eliminates the choice of all intensive parameters.
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1.3 Stability limit.

The system loses stability when one of the n
(
2n−1 − 1

)
inequalities is violated. The stability limit is reached

when, starting from within the stability window, the first such inequality becomes 0.

(a) The differentials with n− 2 intensive constraints are more susceptible.

This is a consequence of the Le Chatelier’s principle. The response (∂ξi/∂Xi)j is smaller when the
constraint on the j-th mode is changed from extensive to intensive, i.e., (∂ξi/∂Xi)ξj < (∂ξi/∂Xi)Xj . Con-
secutive extension to greater number of j modes results in the following chain of inequalities.(

∂ξn−1

∂Xn−1

)
X1,···,Xn−1,Xn

>

(
∂ξn−1

∂Xn−1

)
X1,···,Xn−2,ξn−2,Xn

>

(
∂ξn−1

∂Xn−1

)
X1,···,Xn−4,ξn−3,ξn−2,Xn

> · · ·

>

(
∂ξn−1

∂Xn−1

)
ξ1,···,ξn−2,Xn

> 0.

Thus, to analyze the limit of stability, only the differential involving the greatest (n−2) number of intensive
constraints need to considered. The stability conditions is reduced to the set of inequalities(

∂ξn−1

∂Xn−1

)
ξ1,···,ξn−2,Xn

> 0 (susceptible modes).

Since the ordering of indices is arbitrary, there are n(n− 1) such conditions, or “susceptible” modes.

(b) The n(n− 1) susceptible modes vanish simultaneously at the stability limit.

The previous section analyzed the sign of Jacobian by using the Sylvester’s criterion. For each particular
ordering of degrees of freedom, the criterion for positive-definiteness leads to a set of n− 1 conditions,(

∂ξ1
∂X1

)
> 0,

(
∂ξ2
∂X2

)
ξ1

> 0,

(
∂ξ3
∂X3

)
ξ1,ξ2

> 0, · · · ,
(

∂ξn−1

∂Xn−1

)
ξ1,ξ2,···,ξn−2

> 0.

For notational simplicity, the extensive constraints are not specified explicitly. Reordering indices results in
different, yet equivalent, sets of conditions. And there are obviously n(n− 1) such sets.

The stability limit is defined when, moving along any path within—this is essential—the stability win-
dow, the Jacobian loses stability by violating any such constraint. But the Le Chatelier’s principle implies
that the constraints with n − 2 intensives are more susceptible. Therefore, right at the stability limit, it is
only possible that certain “susceptible” mode vanishes. Since each of the n(n−1) sets of conditions obtained
can be used, since each of them contains one “susceptible” mode, and since they are equivalent criteria for
the sign of Jacobian, the only possible scenario is that all the susceptble modes vanish simultaneously.

Therefore, the stability condition can be equivalently stated and stability limit equivalently constructed by
referring to any of the n(n− 1) condition(

∂ξn−1

∂Xn−1

)
ξ1,···,ξn−2,Xn

> 0.

For one-component system, this could be any of the following six conditions:
(
∂T
∂S

)
p,N

> 0,
(
∂T
∂S

)
V,µ

> 0,(
∂p
∂V

)
T,N

> 0,
(

∂p
∂V

)
S,µ

> 0,
(

∂µ
∂N

)
T,V

> 0, and
(

∂µ
∂N

)
S,p

> 0.
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1.4 Example: single-component substance.

Two convenient differentials to use are thermal and mechanical responses.(
∂T

∂S

)
p,N

=
T

Cp
, Cp = CV +

V Tα2
p

κT
;

−
(

∂p

∂V

)
T,N

=
1

V κT
, κT = κS +

V Tα2
p

Cp
.

Inside the stable window, the following inequalities are satisfied:

0 <
T

Cp
<

T

CV
, 0 <

1

V κT
<

1

V κS
.

The stability limit is found by demanding either T/Cp → 0 or 1/(V κT ) → 0; or, alternatively, Cp → ∞ or
κT → ∞. Eliminating the dependence on V Tα2

p leads to

(Cp − CV )κT = (κT − κS)Cp ⇒ κT

κS
=

Cp

CV
.

The first 2-by-2 entries of the Jacobian reads

J =

 ∂2U
∂S2

∂2U
∂S∂V

∂2U
∂V ∂S

∂2U
∂V 2

 =

 T
CV

−αp
κT

T
CV

−αp
κT

T
CV

Cp

CV

1
V κT

 =

 T
CV

−αp
κT

T
CV

−αp
κT

T
CV

1
V κS


which has a determinant (the last step used the identity κTCV = κSCp)

det(J) =
TCp

V κTC
2
V

− α2T 2

κ2
TC

2
V

⇒ det(J) =
T

V

1

CV κT
=

T

V

1

CpκS
.

The stability condition may be one of the following two.

(1) J11 > 0 & det(J) > 0:

CV > 0 & CV κT > 0 =⇒ CV > 0 & κT > 0.

(2) J22 > 0 & det(J) > 0:

κS > 0 & CpκS > 0 =⇒ Cp > 0 & κS > 0.

Condition (1) implies condition (2) in that Cp > CV and

κS = κT
CV κT

CV κT + V Tα2
p

=
κT

1 + α2
p V

2 det(J)
.

Condition (2) implies condition (1) in that κT > κS and

CV = Cp
CpκS

CpκS + V Tα2
p

=
Cp

1 + α2
p V

2 det(J)
.

Thus the two sets of conditions are equivalent. Given that Cp > CV and κT > κS , the stability limit is
equivalently given by κT = ∞ or Cp = ∞.

Exactly what happens in the vicinity of the stability limit? Since condition set (1) and (2) are equivalent,
we focus on set (1). Obviously, κT → ∞ and Cp → ∞ is expected. A finite CV would have led to a finite

Cp for finite (true for vdW) αp, so CV diverges as well. The divergence rate is CV

Cp
= κS

κp
= 1− V Tα2

p

CpκT
.
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