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Abstract reasoning is a key ability for an intelligent system. Large language models achieve above-
chance performance on abstract reasoning tasks, but exhibit many imperfections. However, human
abstract reasoning is also imperfect, and depends on our knowledge and beliefs about the content of
the reasoning problem. For example, humans reason much more reliably about logical rules that are
grounded in everyday situations than arbitrary rules about abstract attributes. The training experiences
of language models similarly endow them with prior expectations that reflect human knowledge and
beliefs. We therefore hypothesized that language models would show human-like content effects on
abstract reasoning problems. We explored this hypothesis across three logical reasoning tasks: natu-
ral language inference, judging the logical validity of syllogisms, and the Wason selection task (Wason,
1968). We find that state of the art large language models (with 7 or 70 billion parameters; Hoffmann
et al., 2022) reflect many of the same patterns observed in humans across these tasks — like humans,
models reason more effectively about believable situations than unrealistic or abstract ones. Our find-
ings have implications for understanding both these cognitive effects, and the factors that contribute
to language model performance.

1. Introduction

A hallmark of abstract reasoning is the ability
to systematically perform algebraic operations
over variables that can be bound to any entity
(Newell, 1980; Fodor and Pylyshyn, 1988): the
statement: ‘X is bigger than Y’ logically implies
that ‘Y is smaller than X’, no matter the values
of X and Y. That is, abstract reasoning is ideally
content-independent (Newell, 1980). The capac-
ity for reliable and consistent abstract reasoning
is frequently highlighted as a crucial missing com-
ponent of current AI (Marcus, 2020; Mitchell,
2021; Russin et al., 2020). For example, while
large language models exhibit emergent behav-
iors, including some abstract reasoning perfor-
mance (Brown et al., 2020; Ganguli et al., 2022;
Nye et al., 2021a; Kojima et al., 2022; Wei et al.,
2022a), they have been criticized for inconsisten-
cies in their abstract reasoning (e.g. Rae et al.,
2021; Razeghi et al., 2022; Patel et al., 2021;
Valmeekam et al., 2022).

However, these commentaries often overlook
the fact that humans — our standard for intelli-

gent behavior — are far from perfectly rational
abstract reasoners (Gigerenzer and Gaissmaier,
2011; Kahneman et al., 1982;Marcus, 2009). The
human ability to perform abstract reasoning is
heavily influenced by our knowledge and beliefs
about the content over which we are reasoning
(Johnson-Laird et al., 1972; Wason, 1968; Wa-
son and Johnson-Laird, 1972; Evans, 1989; Evans
et al., 1983; Cohen et al., 2017). Humans reason
more readily and more accurately about famil-
iar, believable situations, compared to unfamiliar
ones where their prior beliefs no longer apply, or
situations that contradict their beliefs.

For example, when presented with a syllogism
like the following:

All students read.
Some people who read also write essays.
Therefore some students write essays.

humans will often classify it as a valid argument.
However, when presented with:

All students read.
Some people who read are professors.
Therefore some students are professors.
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If seas are bigger than puddles, then puddles
are smaller than seas

(a) Natural language inference.

Argument:
All diamonds are gems.
Some gems are transparent things.
Conclusion: Some diamonds are transpar-
ent things.
Answer: This argument is invalid.

(b) Syllogism validity.

A parent needs to check that their children are following the rules. The following
cards represent the children; they each have a current activity on one side and
a homework completion on their other side. The rule is that if the children are
playing games then they must have finished their homework. Which of the cards
would you need to flip over to help them to ensure that the rule is being followed?
card: playing video games
card: eating dinner
card: homework is not done
card: homework is done
Answer: You need to flip over the ones showing “playing video games” and
“homework is not done”

(c) Wason selection task.

Figure 1 | Examples of the three logical reasoning tasks we evaluate: (a) simple single-step natural
language inferences, (b) assessing the validity of logical syllogisms, and (c) the Wason selection task.
In each case, the model must choose the answer (blue and bold) from a set of possible answer choices.

humans are much less likely to say it is valid
(Evans et al., 1983; Evans and Perry, 1995; Klauer
et al., 2000) — despite the fact that the argu-
ments above are logically equivalent (both in-
valid). In short, human judgements of logical va-
lidity are biased by the believability of the con-
clusion.

Similarly, humans struggle to reason about
rules involving abstract attributes (Wason, 1968;
Johnson-Laird, 1999), but reason readily about
logically-equivalent rules grounded in realistic sit-
uations (Cheng and Holyoak, 1985; Cosmides,
1989; Cosmides and Tooby, 1992). This human
tendency also extends to other forms of reasoning
e.g. probabilistic reasoning where humans are
notably worse when problems do not reflect intu-
itive expectations (Cohen et al., 2017). Human
reasoning is therefore not a content-independent,
algebraic computation; instead, our reasoning
is fundamentally entangled with our preexisting
knowledge and beliefs.

Language models also have prior knowledge
— expectations over the likelihood of particular
sequences of tokens — that are shaped by their
training. Indeed, the goal of the “pre-train and
adapt” or the “foundation models” (Bommasani
et al., 2021) paradigm is to endow a model with
broadly accurate prior knowledge that enables
learning a new task rapidly. Thus, language
model predictions often reflect human knowledge
and beliefs about the world (Trinh and Le, 2018;
Petroni et al., 2019; Liu et al., 2021; Jiang et al.,
2021). These predictions can percolate into the
way language models answer a reasoning prob-

lem. We therefore hypothesized that language
models might reflect human content effects on
reasoning. That is, while past work has shown
that large language models exhibit biases and im-
perfections on abstract reasoning tasks (e.g. Rae
et al., 2021; Razeghi et al., 2022; Patel et al.,
2021; Valmeekam et al., 2022), we ask a more
specific question: are these biases similar to those
observed in humans?

To investigate this possibility, we explored how
the content of logical reasoning problems affects
the performance of large language models (with 7
or 70 billion parameters, Hoffmann et al., 2022).
We find that large models reproduce a variety of
human content effects from the cognitive litera-
ture, across three different logical reasoning tasks.
We first explore a simple Natural Language Infer-
ence (NLI) task, and show that model answers to
questions are influenced by both prior knowledge
as well as abstract reasoning. We then examine
the more challenging task of judging whether a
syllogism is a valid argument, and show that mod-
els are biased by the believability of the conclu-
sion. We finally evaluate models on realistic and
abstract/arbitrary versions of the Wason selection
task (Wason, 1968), and show that models per-
form better with a realistic framing. These results
reflect the findings in the cognitive literature.

These results have implications for both cog-
nitive science and machine learning. From the
cognitive perspective, investigating the reason-
ing biases of language models can offer baseline
hypotheses for human reasoning biases. Our re-
sults illustrate that a unitary model can exhibit
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many of the varied, context-sensitive patterns of
human reasoning behavior. Relatedly, an influ-
ential line of work argues that ‘illogical’ human
behavior is actually normative given bounded hu-
man resources (Lieder and Griffiths, 2020; Si-
mon, 1990); but computing the utility to imple-
ment this trade-off can be impractically expensive
(Horvitz et al., 2013). Our findings complement
other recent works that use neural networks to
implement this context-sensitive trade-off (Binz
et al., 2022; Dasgupta et al., 2018). Finally, our
behavioral results complement other research
investigating similarities between transformer-
based language models and humans at the neu-
ral processing level (Schrimpf et al., 2021; Gold-
stein et al., 2022; Kumar et al., 2022), and could
generate exciting hypotheses for further research
on the computational basis of human reasoning.

From the machine-learning perspective, build-
ing reliable AI systems requires understanding the
factors that affect their behaviour. Our findings
highlight the role that content plays in the rea-
soning processes of language models, and help to
determine the situations in which LMs are likely
to reason incorrectly — for example, by reverting
to human-like content biases rather than follow-
ing the rules of abstract logical reasoning. These
reasoning errors may be especially difficult for
humans to detect, because they reflect our own
biases. More broadly, we demonstrate the value
of using established theories and experimental
paradigms from cognitive science to probe the in-
creasingly complex behaviors of machine learning
models (cf. Binz and Schulz, 2022; Ritter et al.,
2017). Our work is therefore of both practical
and theoretical significance to research in artifi-
cial intelligence.

2. Content effects on logical reasoning

2.1. Natural Language Inference

The first task we consider has been studied ex-
tensively in the natural language processing lit-
erature (MacCartney and Manning, 2007). In
the classic natural language inference problem,
a model receives two sentences, a ‘premise’
and a ‘hypothesis’, and has to classify them
based on whether the hypothesis ‘entails’, ‘con-

tradicts’, or ‘is neutral to’ the premise. Tra-
ditional datasets for this task were crowd-
sourced (Bowman et al., 2015) leading to sen-
tence pairs that don’t strictly follow logical def-
initions of entailment and contradiction. To
make this a more strictly logical task, we fol-
low Dasgupta et al. (2018) to generate compar-
isons (e.g. Premise: X is smaller than
Y, Hypothesis: Y is bigger than X is
an entailment).

Content effects are generally more pronounced
in difficult tasks that require extensive logical rea-
soning, and are stronger in children or adults un-
der cognitive load (Evans, 1989; Evans and Perry,
1995). The relatively simple logical reasoning
involved in this task means that adult humans
would likely exhibit high performance. Perhaps
for this reason, content effects on human reason-
ing have not been examined on this task. We
therefore consider two more challenging tasks
where human content effects have directly been
studied.

2.2. Syllogisms

Syllogisms (Smith, 2020) are multi-step reason-
ing problems with a simple argument form in
which two true statements necessarily imply a
third. For example, the statements “All humans
are mortal” and “Socrates is a human” together
imply that “Socrates is mortal”. But human syllo-
gistic reasoning is not purely abstract and logical;
instead it is affected by our prior beliefs about
the contents of the argument (Evans et al., 1983;
Klauer et al., 2000; Tessler et al., 2022).

For example, Evans et al. (1983) showed that
if participants were asked to judge whether a syl-
logism was logically valid or invalid, they were
biased by whether the conclusion was consistent
with their beliefs. Participants were much more
likely (90% of the time) to mistakenly say an in-
valid syllogism was valid if the conclusion was be-
lievable, and thus mostly relied on belief rather
than abstract reasoning. Participants would also
sometimes say that a valid syllogism was invalid
if the conclusion was not believable, but this ef-
fect was somewhat weaker (but cf. Dube et al.,
2010). These “belief-bias” effects have been repli-
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cated and extended in various subsequent studies
(Klauer et al., 2000; Dube et al., 2010; Trippas
et al., 2014; Tessler, 2015).

2.3. The Wason Selection Task

TheWason Selection Task (Wason, 1968) is a logic
problem that can be challenging even for subjects
with substantial education in mathematics or phi-
losophy. Participants are shown four cards, and
told a rule such as: “if a card has a ‘D’ on one side,
then it has a ‘3’ on the other side.” The four cards
respectively show ‘D’, ‘F’, ‘3’, and ‘7’. The partic-
ipants are then asked which cards they need to
flip over to check if the rule is true or false.

The correct answer is to flip over the cards
showing ‘D’ and ‘7’. However, Wason (1968)
showed that while most participants correctly
chose ‘D’, they were much more likely to choose
‘3’ than ‘7’. That is, the participants should check
the contrapositive of the rule (“not 3 implies not
D”, which is logically implied), but instead they
confuse it with the converse (“3 implies D”, which
is not logically implied). This is a classic task in
which reasoning according to the rules of formal
logic does not come naturally for humans, and
thus there is potential for prior beliefs and knowl-
edge to affect reasoning.

Indeed, the difficulty of the Wason task de-
pends substantially on the content of the prob-
lem. If an identical logical structure is instanti-
ated in a common situation, such as a social rule,
participants are much more accurate (Wason and
Shapiro, 1971; Cheng and Holyoak, 1985; Cos-
mides, 1989; Cosmides and Tooby, 1992). For
example, if the cards show ages and beverages,
and the rule is “if they are drinking alcohol, then
they must be 21 or older” and shown cards with
‘beer’, ‘soda’, ‘25’, ‘16’, the vast majority of partic-
ipants correctly choose to check the cards show-
ing ‘beer’ and ‘16’.

These biases are also affected by background
knowledge; education in mathematics appears to
be associated with improved reasoning in abstract
Wason tasks (Inglis and Simpson, 2004; Cress-
well and Speelman, 2020). However, even those
experienced participants were far from perfect
— undergraduate mathematics majors and aca-

demic mathematicians achieved less than 50%
accuracy at the Wason task (ibid). This illustrates
the challenge of abstract logical reasoning, even
for humans who are clearly capable of executing
equivalent reasoning it less abstract contexts.

3. Methods

Creating datasets While many of these tasks
have been extensively studied in cognitive science,
the stimuli used in cognitive experiments are of-
ten online, and thus may be present in the train-
ing data of large language models, which could
compromise results (e.g. Emami et al., 2020;
Dodge et al., 2021). To reduce these concerns,
we generate new datasets, by following the ap-
proaches used in prior work. We briefly outline
this process here; see Appx. A.1 for full details.

For each of the three tasks above, we generate
multiple versions of the task stimuli. Throughout,
the logical structure of the stimuli remains fixed,
we simply manipulate the entities over which this
logic operates (Fig. 2). We generate propositions
that are:
Consistent with human beliefs and knowledge
(e.g. ants are smaller than whales).
Violate beliefs by inverting the consistent state-
ments (e.g. whales are smaller than ants).
Nonsense tasks about which the model should
not have strong beliefs, by swapping the entities
out for nonsense words (e.g. kleegs are smaller
than feps).

For the Wason tasks, we slightly alter our ap-
proach to fit the different character of the tasks.
We generate questions with:
Realistic rules involving plausible relationships
(e.g. “if the passengers are traveling outside the
US, then they must have shown a passport”).
Arbitrary rules (e.g. “if the cards have a plural
word, then they have a positive emotion”).
Nonsense rules relating nonsense words (“if the
cards have more bem, then they have less stope”).
However, there are other ways that a rule can be
unrealistic. The component propositions can be
realistic even if the relationship between them is
not. We therefore generate two control variations
on realistic rules:
Shuffled realistic rules, which combine realistic
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NLI

Syllogisms

Wason

If seas are bigger than puddles,
then puddles are smaller than seas

If puddles are bigger than seas,
then seas are smaller than puddles

If vuffs are bigger than feps, then
feps are smaller than vuffs

All guns are weapons.
All weapons are dangerous things.
All guns are dangerous things.

All dangerous things are weapons.
All weapons are guns.
All dangerous things are guns.

All zoct are spuff.
All spuff are thrund.
All zoct are thrund.

If the clients are going skydiving,
then they must have a parachute.
card: skydiving
card: scuba diving
card: parachute
card: wetsuit

If the cards have plural word, then
they must have a positive emotion.
card: shoes
card: dog
card: happiness
card: anxiety

If the cards have more bem, then
they must have less stope.
card: more bem
card: less bem
card: less stope
card: more stope

Consistent Violate Nonsense

Realistic Arbitrary Nonsense

Figure 2 | Manipulating content within fixed logical structures. In each of our three datasets (rows), we
instantiate different versions of the logical problems (columns). Different versions of a problem have the
same logical structure, but instantiated with different entities or relationships between those entities.

components in nonsensical ways (e.g. “if the pas-
sengers are traveling outside the US, then they
must have received an MD”).
Violate realistic rules, which directly violate the
expected relationship (e.g. “if the passengers are
flying outside the US, then they must have shown
a drivers license [not a passport]”).

Models & evaluation We evaluate one lan-
guage model — Chinchilla (Hoffmann et al.,
2022) — across all datasets and conditions. This
largemodel (with 70 billion parameters) has been
previously demonstrated to achieve some non-
trivial performance across various logical reason-
ing tasks, and is therefore a natural candidate
for investigating how reasoning is affected by be-
liefs in a large model; by contrast, smaller mod-
els would likely perform poorly across all condi-
tions. However, for the NLI task, which is substan-
tially easier, we also consider the performance of
a model an order of magnitude smaller — the 7
billion parameter version of the same model. This
comparison allows us to evaluate how scale inter-
acts with content to affect performance.

For each task, we assess the model by evalu-
ating the likelihood of completing the question
with each of a set of possible answers. These an-
swers are evaluated independently; the model
does not see all answers at once when choos-
ing. We apply the DC-PMI correction proposed
by Holtzman et al. (2021) — i.e., we measure the
change in likelihood of each answer in the con-

text of the question relative to a baseline context,
and choosing the answer that has the largest in-
crease in likelihood in context. This scoring ap-
proach is intended to reduce the possibility that
the model would simply phrase the answer dif-
ferently than the available choices; for example,
answering “this is not a valid argument” rather
than “this argument is invalid”. For the NLI task,
however, the direct answer format means that the
DC-PMI correction would control for the very bias
we are trying to measure. We therefore choose
the answer that receives the maximum likelihood
among the set of possible answers, but report the
DC-PMI results in Appx. B.2. We also report syl-
logism and Wason results with maximum likeli-
hood scoring in Appx. B.7; the model reproduces
the qualitative effects with either scoring method.

When we present a few-shot prompt of exam-
ples of the task to the model, the examples are
presented with correct answers, and each exam-
ple (as well as the final probe) is separated from
the previous example by a single blank line.

4. Results

In presenting the results, we analyze performance
using hierarchical logistic regressions that ac-
count for the dependency structure of the data;
see Appx. C for full regression specifications and
results.
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7B Chinchilla
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Figure 3 | NLI results zero-shot, for a smaller
(7B) and larger (Chinchilla) language model.
Both models exhibits a substantial belief bias —
their accuracy is significantly higher for conclu-
sions that are consistent with their expectations.
(Throughout, errorbars are bootstrap 95%-CIs,
and dashed lines are chance performance.)

4.1. Zero shot performance

We first examine the language models’ ability to
solve logical reasoning tasks zero-shot — that is,
without any solved examples in the prompt.

Natural Language Inference We evaluate two
different language models — Chinchilla and 7B
(Fig. 3). We find that performance is at or below
chance1 for the ‘violate’ or ‘nonsense’ types, but
is significantly higher for ‘consistent’ types than
the other conditions (𝑧 = 5.868, 𝑝 = 4.4 · 10−9).
Only the largest model exhibits above chance per-
formance in any condition, and only on the ‘con-
sistent’ condition. This indicates a strong content
bias: the models prefer to complete the sentence
in a way consistent with prior expectations rather
than in a way consistent with the rules of logic.
We find similar results from a continuous analysis,
where we combined the consistent and violate cat-
egories, and instead estimated “consistency” di-
rectly from the model’s unconditional likelihood
of the hypothesis (App B.1). Following findings
from past literature (Kojima et al., 2022, e.g.), we
also examine the effect of different prompt type
that might elicit more logical reasoning. We find
that some prompts can in fact significantly boost

1LMs naive preference towards repeating words in the
prompt may contribute to this effect.
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Violate
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Figure 4 | Syllogism validity judgements zero-shot
(for Chinchilla). The model exhibits substantial
belief bias — it is strongly biased towards saying
an argument is valid if the conclusion is consis-
tent with expectations or the argument contains
nonsense words, but strongly biased towards say-
ing the argument is invalid if the conclusion vio-
lates expectations. (Note that this figure plots the
proportion of the time the model answers ‘valid’
rather than raw accuracy, to more clearly illus-
trate the bias. To see accuracy, simply reverse the
vertical axis for the invalid arguments.)

performance in the ‘violate’ condition (see Appx.
B.3), although performance on the ‘consistent’
condition remains better. Further, the language
model always perform poorly on the nonsense ver-
sions of the task, indicating clear content effects.

As noted above, in this task prior expectations
are embedded in the actual answers. Are LMs
‘reasoning’ per se, or are these effects driven solely
by the probability of the hypotheses? We run two
controls to disentangle these possibilities. First,
we apply the DC-PMI correction with respect to
a mismatched control (details in Appendix B.2).
We find significantly greater than chance perfor-
mance across conditions even with the correction,
indicating that the model is sensitive to logical
validity. Second, we evaluate a more standard
NLI format, where both the premise and hypoth-
esis are provided and the model simply has to say
whether the inference is valid or invalid. In this
case, the model should not have a strong prior
over the responses (and we also apply a DC-PMI
correction). We find the same pattern of effects in
this setting, where performance in the consistent
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condition is higher than in the nonsense and vio-
late conditions (Appx. B.2). Thus, language mod-
els can be sensitive to the logical structure of nat-
ural language inferences, as well as the content.

While human belief bias has not been investi-
gated in this particular task, this pattern of be-
havior is qualitatively similar to humans’ belief
bias effects observed in other tasks, such as the
syllogisms task which we investigate next.

Syllogisms For syllogisms, belief bias drives al-
most all zero-shot decisions (Fig. 4). In particu-
lar, the model responds that an argument is valid
in most cases where the conclusion is consistent
with reality, or if the argument uses novel (non-
sense) words. However, if the conclusion is incon-
sistent with reality, the model is strongly biased
toward saying the argument is invalid, regardless
of its actual logical validity. The model does con-
sider both consistency and validity to some ex-
tent — there is a significant effect of both belief-
consistency (𝑧 = −8.6, 𝑝 < 2 · 10−16) and logical
validity (𝑧 = −3.3, 𝑝 = 8.5 · 10−4). (These effects
are not substantially affected by different task in-
structions, see Appx. B.3.)

These results closely reflect the pattern of hu-
man results observed by Evans et al. (1983). Hu-
man subjects endorsed arguments with a believ-
able conclusion around 90% of the time, regard-
less of their actual validity, as does the model.
Humans generally rejected arguments with an
unbelievable conclusion, but were more sensitive
to logical validity in this case; the model shows
a qualitatively similar pattern (although the in-
teraction does not rise to statistical significance).
Like humans, the model’s responses seem to be
determined primarily by believability, with sec-
ondary effects of logical validity.

The above results should not be interpreted to
mean that the model is unable to perform syllogis-
tic reasoning zero-shot. Above, we focus on the
paradigm that has generally been used in cogni-
tive work on content effects — presenting a com-
plete syllogism and asking whether that syllogism
is valid. However, if we instead ask the model
to complete a syllogism by choosing a valid con-
clusion to an argument, from among all possible
conclusions (like the NLI tasks above), the model
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Figure 5 | Wason selection task results zero-shot
(for Chinchilla). While the model performs poorly
on arbitrary or nonsense rules, it performs sub-
stantially above chance for realistic rules. For
shuffled realistic rules, it exhibits performance
above chance, but lower than that for realistic
rules. (Chance is a random choice of two cards
among the four shown.)

achieves 70-80% accuracy (chance is 8%) across
conditions, with only minimal differences in ac-
curacy depending on whether the conclusions
are consistent with reality (Appx. B.6). Intrigu-
ingly, humans are also much less biased when
comparing arguments and deciding which is valid
than when making forced-choice assessments of
whether a single syllogism is valid (Trippas et al.,
2014; but cf. Johnson-Laird, 1999). Thus, the
particular instantiation of the problem can sub-
stantially alter the accuracy and biases of models,
just as it can for humans.

Wason For Wason tasks (Fig. 5), the model ex-
hibits chance-level accuracy on arbitrary and non-
sense rules zero-shot, but fairly high accuracy on
realistic ones (𝑧 = 3.3, 𝑝 = 1.0 · 10−3). This re-
flects findings in the human literature: humans
are much more accurate at answering the Wason
task when it is framed in terms of realistic situa-
tions than arbitrary rules about abstract attributes.
To verify that these effects are due to familiarity
with the rule, and not due to the difficulty of eval-
uating their component propositions, we compute
forced choice evaluation of the base propositions
(Appx. B.4) and found no significant differences.

As noted above, the Wason task rules can be
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realistic or unrealistic in multiple ways. We there-
fore also compared shuffled realistic rules and
violate realistic rules. For shuffled rules, results
are well above chance, but lower than realistic
rules. For violate rules, by contrast, performance
is at chance. It appears that the model reasons
more accurately about rules formed from realis-
tic propositions, particularly if the relationships
between propositions in the rule are also realistic,
but even to some degree if they are shuffled in
nonsensical ways that do not directly violate ex-
pectations. However, if the rules strongly violate
beliefs, performance is low.

4.2. Few-shot training on the logic task

Logical reasoning is non-trivial and previous work
has shown significant improvement from few-shot
prompting (Brown et al., 2020), to help themodel
understand the logic task at hand. In this sec-
tion, we first examine the effect of communicating
the logic task explicitly using nonsense examples,
over which the model should not have prior be-
liefs. We evaluate on probe task performance with
objects over which the model does have prior be-
liefs. We then explore whether models learn more
from different types of examples in the prompt.

Natural language inference Few-shot training
on the purely logical task with nonsense entities
improves performance in all cases, even on tasks
with entities that are consistent with or violate ex-
pectations. All conditions reach comparable per-
formance with five shots. Directly communicat-
ing the logical task with nonsense examples can
wash out the content effect on the probe task (at
least for the larger model), by encouraging the
LM to focus on the logical structure rather than
prior expectations. We did not find substantial
differences if we used other entity types in the
few-shot prompts (Appx. B.8).

Syllogisms Few-shot examples somewhat im-
prove the performance of the model on the syllo-
gisms task (Fig. 7).2 With examples, the models
are somewhat better calibrated than zero-shot
(number of shots by validity interaction 𝑧 = −2.9,

2Note that we use 2-shot evaluation for these tasks rather
than 1-shot, to avoid biasing the models’ answers strongly
towards repeating the same answer to the next question.
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Figure 6 | NLI with 0, 1, or 5 prompt examples
using nonsense entities. With one nonsense ex-
ample in the prompt, performance for all entity
types go up significantly for the larger model, and
belief bias effects reduce for both models. With
five examples, only the smaller model shows a sig-
nificant content effect, and performance for the
larger model is near ceiling.
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Figure 7 | Syllogism results few-shot, with non-
sense prompt examples. With examples, re-
sponses are slightly better calibrated, and exhibit
reduced — but still substantial — belief bias ef-
fects.

𝑝 = 3.5 · 10−3) — responding “valid” more fre-
quently to valid than invalid syllogisms in every
condition — but still exhibit notable belief bias
effects. Again, we observed similar benefits with
other types of entities in the prompt (Appx. B.8).

Wason While we used nonsense examples for
the previous two tasks, we find that few-shot
prompting with nonsense examples results in
only weak improvements on the Wason tasks
(Fig. 8). Instead, we find that the realistic ex-
amples were the most effective at conveying the
task across conditions (all 𝑧 ∈ [−4.1,−2.2], 𝑝 ∈[
4.8 · 10−5, 0.026

]
); qualitatively, while other

types of prompt examples result in comparable
performance with certain types of probes, each
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Figure 8 | Wason results 5-shot, with different
types of prompt examples. Realistic prompt ex-
amples appear to be most beneficial overall — es-
pecially for realistic and shuffled realistic probes.
Other types of prompts are generally helpful in a
more limited set of conditions; there may be an
overall benefit to prompts matching probes.

other condition is worse than realistic examples
in some probe conditions. (Fig. 8). Examples
that are realistic might be easier to understand,
and thereby make the problem more accessible;
similar arguments have been used in favor of be-
ginning with concrete examples when teaching
abstract mathematical concepts to humans (Fyfe
et al., 2014). Investigating similar strategies with
language models could be an exciting future di-
rection.

However, regardless of example type, perfor-
mance on the arbitrary and nonsense probes re-
mains low. Similarly, Wason (1968) found that
it was hard to improve human response patterns
on the abstract task, even after explicitly show-
ing them which examples can falsify a rule. Like-
wise, as noted above, even mathematics under-
graduates can struggle with the abstract task (In-
glis and Simpson, 2004; Cresswell and Speelman,
2020). Language models reflect human failures
on the abstract selection task.

4.3. Details of Wason response patterns

Because each answer to the Wason problems se-
lects a pair of cards, we further analyzed the in-
dividual cards chosen. The card choices in each
problem are designed so that two cards respec-
tively match and violate the antecedent, and sim-
ilarly for the consequent. In Fig. 9 we show the

proportion of choices the model is making of each
card type. The correct answer is to choose the
card that matches the antecedent, and the card
that violates the consequent.

While the model produces substantially fewer
errors 5-shot — especially in the realistic condi-
tion — the patterns of errors are similar 0-shot
and 5-shot. The model matches most humans
Wason (1968) in consistently choosing one an-
tecedent and one consequent card most of the
time, across conditions (Appx. B.5). However, the
humans and the model both make errors in their
choices within each category. For humans, most
errors correspond to choosing the card which
matches the consequent. However, the model’s
errors are relatively more evenly distributed be-
tween the antecedent and consequent in most
conditions. Thus, the model appears less likely
than humans to prefer superficial matching to the
rule (although human error patterns depend on
education; Inglis and Simpson, 2004; Cresswell
and Speelman, 2020).

The violate realistic condition results in a
unique pattern of errors: few errors in the an-
tecedent, but frequent errors in the consequent.
This pattern corresponds to the correct answers
for the more-believable, realistic rule — the vi-
olate rules reverse which consequent answer is
correct, but the model appears to be giving simi-
lar consequent answers to realistic or violate con-
ditions. These results suggest that the model is
ignoring the subtle change to the rule. It would
be interesting in future work to evaluate whether
humans exhibit similar answers to violate rules —
e.g., because they read quickly and assume the
rule will fit prior expectations, or because they
assume the change is a typo or mistake.

5. Discussion

Humans are imperfect reasoners. We reason most
effectively about entities and situations that are
consistent with our understanding of the world.
Our experiments show that language models mir-
ror these patterns of behavior. Language models
perform imperfectly on logical reasoning tasks,
but this performance depends on content and con-
text. Most notably, such models often fail in situa-
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Figure 9 | Answer patterns for the Wason tasks, broken down by answer component. Correct choices
are antecedent true and consequent false. Model errors are distributed relatively equally between
choosing the antecedent-false instance and choosing the consequent-true instance in most cases.
However, the violate realistic rules have a high error rate for the consequent — i.e., the model is
effectively ignoring the belief violations and answering as though the more realistic form of the rule
held. The error pattern is similar 0-shot and 5-shot, although 5-shot has substantially fewer errors,
especially for realistic rules. (Answer percentages sum to 200% because all answers include two
instances; 5-shot results use examples of the same rule type as the probe.)

tions where humans fail — when stimuli become
too abstract or conflict with prior understanding
of the world.

Beyond these parallels, we also observed rea-
soning effects in language models that to our
knowledge have not been previously investigated
in the human literature. For example, the pat-
terns of errors on the ‘violate realistic’ rules, or
the relative ease of ‘shuffled realistic’ rules in the
Wason tasks. Likewise, language model perfor-
mance on the Wason tasks increases most when
they are demonstrated with realistic examples;
benefits of concrete examples have been found
in cognitive and educational contexts (Sweller
et al., 1998; Fyfe et al., 2014), but remain to be
explored in the Wason problems. Investigating
whether humans show similar effects is a promis-
ing direction for future research.

Prior research on language model reasoning.
Since Brown et al. (2020) showed that large lan-
guage models could perform moderately well on
some reasoning tasks, there has been a grow-
ing interest in language model reasoning (Binz
and Schulz, 2022). Typical methods focus on
prompting for sequential reasoning (Nye et al.,
2021a; Wei et al., 2022b; Kojima et al., 2022),

altering task framing (Khashabi et al., 2022;
Lampinen et al., 2022) or iteratively sampling an-
swers (Wang et al., 2022).

In response, some researchers have questioned
whether these language model abilities qualify
as “reasoning”. The fact that language mod-
els sometimes rely on “simple heuristics” (Patel
et al., 2021), or reason more accurately about
frequently-occurring numbers (Razeghi et al.,
2022), have been cited to “rais[e] questions on
the extent to which these models are actually
reasoning” (ibid, emphasis ours). The implicit
assumption in these critiques is that reasoning
should be a purely algebraic, syntactic computa-
tions over symbols from which “all meaning had
been purged” (Newell, 1980; cf. Marcus, 2003).
In this work, we emphasize how both humans and
language models rely on content when reason-
ing — using simple heuristics in some contexts,
and reasoning more accurately about frequently-
occurring situations (Mercier and Sperber, 2017;
Dasgupta et al., 2020). Thus, abstract reasoning
may be a graded, content-sensitive capacity in
both humans and models.

Dual systems? The idea that humans possess
dual reasoning systems — an implicit, intuitive
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system “system 1”, and an explicit reasoning “sys-
tem 2’—wasmotivated in large part by belief bias
and Wason task effects (Evans, 1984, 2003; Oaks-
ford and Chater, 2003). The dual system idea has
more recently become popular (Kahneman, 2011;
Evans and Over, 2013), including in machine
learning (e.g. Bengio, 2017). It is often claimed
that current ML (including large language mod-
els) behave like system 1, and that we need to
augment this with a classically-symbolic process
to get system 2 behaviour (e.g. Nye et al., 2021b).

Our results show that a unitary system — a
large transformer language model — can mir-
ror this dual behavior in humans, demonstrating
both biased and consistent reasoning depending
on the context. In the NLI tasks, a few exam-
ples takes Chinchilla from highly content-biased
performance to near ceiling performance, and
even a simple instructional prompt can substan-
tially reduce bias. These findings integrate with
prior works showing that language models can
be prompted to exhibit sequential reasoning, and
thereby improve their performance in domains
like mathematics (Nye et al., 2021a; Wei et al.,
2022b; Kojima et al., 2022).

These observations suggest a unitary model
of reasoning in language models, where a sin-
gle system deploys a context-dependent attention
mechanism to arbitrate between conflicting re-
sponses. Such models have been developed in
the literature on human cognitive control (Cohen
et al., 1990; Botvinick and Cohen, 2014), and
have been suggested as central processes under-
lying the variations in human reasoning (Duncan
et al., 2020; Li and McClelland, 2022). An ex-
citing future direction is examining whether the
internal computations of LMs on these tasks can
be captured by such models. Further, from the
unitary perspective, augmenting language mod-
els with a second system might not be necessary.
Instead, like humans, these models could be fur-
ther developed towards abstract reasoning by al-
tering context and training, as we discuss below.

Neural mechanisms of human reasoning.
Deep learning models are increasingly used as
models of neural processing in biological systems
(e.g. Yamins et al., 2014; Yamins and DiCarlo,
2016), as they often develop similar patterns of

representation. These findings have led to propos-
als that deep learning models capture mechanis-
tic details of neural processing at an appropriate
level of description (Cao and Yamins, 2021a,b),
despite the fact that aspects of their information
processing clearly differ from biological systems.
More recently, large language models have been
similarly shown to accurately predict neural rep-
resentations in the human language system —
large language models “predict nearly 100% of
the explainable variance in neural responses to
sentences” (Schrimpf et al., 2021; see also Kumar
et al., 2022; Goldstein et al., 2022). Language
models also predict low-level behavioral phenom-
ena; e.g. surprisal predicts reading time (Wilcox
et al., 2020). In the context of these works, our
observation of behavioral similarities in reason-
ing patterns between humans and language mod-
els raise important questions about possible simi-
larities of the underlying reasoning processes be-
tween humans and language models, and the ex-
tent of overlap between neural mechanisms for
language and reasoning in humans.

Towards a normative account of content ef-
fects? Various accounts of human cognitive bi-
ases frame them as ‘normative’ according to some
objective. Some explain biases as the application
of processes — such as information gathering or
pragmatics — that are broadly rational under a
different model of the world (e.g. Oaksford and
Chater, 2003; Tessler et al., 2022). Others in-
terpret them as a rational adaptation to reason-
ing under constraints such as limited memory or
time (e.g. Lieder and Griffiths, 2020; Gershman
et al., 2015; Simon, 1990) — where content ef-
fects actually support fast and effective reason-
ing in commonly encountered tasks (Mercier and
Sperber, 2017; Dasgupta et al., 2020). Our re-
sults show that content effects can emerge from
simply training a large transformer to imitate lan-
guage produced by human culture, without in-
corporating these human-specific internal mech-
anisms. In other words, language models and hu-
mans both arrive at these content biases — but
from seemingly very different architectures, ex-
periences, and training objectives. A promising
direction for future enquiry would be to causally
manipulate features of the training objective and
experience, to explore which features contribute
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to the emergence of content biases in language
models, and investigate whether these features
could offer insight into the origins of human pat-
terns of reasoning.

Why might model reasoning patterns differ
from human ones? The language model rea-
soning patterns do not perfectly match all aspects
of the human data. For example, the error pat-
terns on the Wason tasks are somewhat different
than those observed in humans (although human
errors depend on education; Inglis and Simpson,
2004; Cresswell and Speelman, 2020). Similarly,
the model does not show the significant interac-
tion between believability and validity on the syl-
logism tasks that humans do (Evans et al., 1983),
although the pattern is qualitatively in the same
direction (and this interaction may be an artifact;
Dube et al., 2010). Various factors could con-
tribute to differences between model and human
behaviors.

First, it is difficult to know how to prompt a
language model in order to evaluate a particular
task. Language model training blends many tasks
into a homogeneous soup, which makes control-
ling the model difficult. For example, presenting
task instructions might not actually lead to bet-
ter performance (cf. Webson and Pavlick, 2021);
indeed, instructions did not substantially affect
performance on the harder syllogisms task (Appx.
B.3). Similarly, presenting negative examples can
help humans learn, but is generally detrimental
to model performance (e.g. Mishra et al., 2021) —
presumably because the model infers that the task
is to sometimes output wrong answers. It is pos-
sible that idiosyncratic details of our task framing
may have caused the model to infer the task incor-
rectly. However, where we varied these details we
generally did not observe substantial differences.

More fundamentally, language models do not
directly experience the situations to which lan-
guage refers (McClelland et al., 2020); grounded
experience (for instance the capacity to simulate
the physical turning of cards on a table) presum-
ably underpins some human beliefs and reason-
ing. Furthermore, humans sometimes use physi-
cal or motor processes such as gesture to support
logical reasoning (Alibali et al., 2014; Nathan
et al., 2020). Finally, language models experience

language passively, while humans experience lan-
guage as an active, conventional system for social
communication (e.g. Clark, 1996); active partic-
ipation may be key to understanding meaning
as humans do (Santoro et al., 2021; Schlangen,
2022). Some differences between language mod-
els and humans may therefore stem from differ-
ences between the rich, grounded, interactive ex-
perience of humans and the impoverished experi-
ence of the models.

How can we achieve more abstract, context-
independent reasoning? If language models
exhibit some of the same reasoning biases as hu-
mansm could some of the factors that reduce con-
tent dependency in human reasoning be applied
to make these models less content-dependent? In
humans, formal education is associated with an
improved ability to reason logically and consis-
tently (Luria, 1971; Lehman and Nisbett, 1990;
Attridge et al., 2016; Inglis and Simpson, 2004;
Cresswell and Speelman, 2020; Nam and McClel-
land, 2021).3 Could language models learn to
reason more reliably with targeted formal educa-
tion?

Several recent results indicate that this may
not be as far-fetched as it sounds. Pretraining
on synthetic logical reasoning tasks can improve
model performance on reasoning and mathemat-
ics (Clark et al., 2020; Wu et al., 2021). More
broadly, language models can be trained or tuned
to better follow instructions (Wei et al., 2021;
Ouyang et al., 2022; Gupta et al., 2022). In some
cases language models can either be prompted or
can learn to verify, correct, or debias their own
outputs (Schick et al., 2021; Cobbe et al., 2021;
Saunders et al., 2022; Kadavath et al., 2022).
Finally, language model reasoning can be boot-
strapped through iterated fine-tuning on success-
ful instances (Zelikman et al., 2022). These re-
sults suggest the possibility that a model trained
with instructions to perform logical reasoning,
and to check and correct the results of its work,
might move closer to the logical reasoning capa-
bilities of formally-educated humans. Perhaps
logical reasoning is a graded competency that is
supported by a range of different environmen-

3Causal evidence is scarce, because years of education
are difficult to experimentally manipulate.
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tal and educational factors (Santoro et al., 2021;
Wang, 2021), rather than a core ability that must
be built in to an intelligent system.
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In Appendix A we provide more details of the methods and datasets, in Appendix B we provide
supplemental analyses, and in Appendix C we provide full results of statistical models for the main
results.

A. Supplemental methods

A.1. Datasets

As noted in the main text, we generated new datasets for each task to avoid problems with training
data contamination. In this section we present further details of dataset generation.

A.1.1. NLI task generation

In the absence of existing cognitive literature on generating belief-aligned stimuli for this task, we
used a larger language model (Gopher, 280B parameters, from Rae et al., 2021) to generate 100
comparison statements automatically, by prompting it with 6 comparisons that are true in the real
world. The exact prompt used was:
The following are 100 examples of comparisons:

1. mountains are bigger than hills

2. adults are bigger than children

3. grandparents are older than babies

4. volcanoes are more dangerous than cities

5. cats are softer than lizards

We prompted the LLM multiple times, until we had generated 100 comparisons that fulfilled the
desired criteria. The prompt completions were generated using nucleus sampling (Holtzman et al.,
2019) with a probability mass of 0.8 and a temperature of 1. We filtered out comparisons that were
not of the form “[entity] is/are [comparison] than [other entity]”. We then filtered these comparisons
manually to remove false and subjective ones, so the comparisons all respect real-world facts. An
example of the generated comparisons includes “puddles are smaller than seas”.

We generated a natural inference task derived from these comparison sentences as follows. We
began with the consistent version, by taking the the raw output from the LM, “puddles are smaller
than seas” as the hypothesis and formulating a premise “seas are bigger than puddles” such that the
generated hypothesis is logically valid. We then combine the premise and hypothesis into a prompt
and continuations. For example:
If seas are bigger than puddles, then puddles are
A. smaller than seas
B. bigger than seas

where the logically correct (A) response matches real-world beliefs (that ‘puddles are smaller than
seas’). Similarly, we can also generate a violate version of the task where the logical response violates
these beliefs. For example,
If seas are smaller than puddles, then puddles are
A. smaller than seas
B. bigger than seas

here the correct answer, (B), violates the LM’s prior beliefs. Finally, to generate a nonsense version of
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No flowers are animals.
All reptiles are animals.
Conclusion: No flowers are reptiles.

(a) Valid, consistent

No flowers are animals.
All reptiles are flowers.
Conclusion: No reptiles are animals.

(b) Valid, violate

No flowers are reptiles.
All reptiles are animals.
Conclusion: No flowers are animals.

(c) Invalid, consistent

No flowers are animals.
All flowers are reptiles.
Conclusion: No reptiles are animals.

(d) Invalid, violate

Figure 10 | Example syllogism cluster, showing 2 × 2 design of valid (top row), invalid (bottom row),
and consistent (left column) and violate (right column) arguments.

the task, we simply replace the nouns (‘seas’ and ‘puddles’) with nonsense words. For example:
If vuffs are smaller than feps, then feps are
A. smaller than vuffs
B. bigger than vuffs

Here the logical conclusion is B. For each of these task variations, we evaluate the log probability the
language model places on the two options and choose higher likelihood one as its prediction.

As detailed in B.2, we also generated a version of the task where the model did not have to actually
produce a sentence that is either consistent or inconsistent with real-world beliefs, for example:
Premise: seas are bigger than puddles.
Hypothesis: puddles are smaller than seas.
This hypothesis is:
A. valid
B. invalid

To generate logically invalid queries, we keep the hypothesis the same, and alter the premise as
follows:
Premise: seas are smaller than puddles.
Hypothesis: puddles are smaller than seas.
This hypothesis is:
A. valid
B. invalid

A.1.2. Syllogisms data generation

We generated a new set of problems for syllogistic reasoning. Following the approach of Evans et al.
(1983), in which the syllogisms were written based on the researchers intuitions of believability, we
hand-authored these problems based on beliefs that seemed plausible to the authors. See Fig. 1b
for an example problem. We built the dataset from clusters of 4 arguments that use the same three
entities, in a 2 × 2 combination of valid/invalid, and belief-consistent/violate. For example, in Fig. 10
we present a full cluster of arguments about reptiles, animals, and flowers.

By creating the arguments in this way, we ensure that the low-level properties (such as the particular
entities referred to in an argument) are approximately balanced across the relevant conditions. In
total there are twelve clusters. We avoided using the particular negative form (“some X are not Y”) to
avoid substantial negation, which complicates behavior both for language models and humans (cf.
Hosseini et al., 2021; Evans et al., 1996). We then sampled an identical set of nonsense arguments by
simply replacing the entities in realistic arguments with nonsense words.

20



Language models show human-like content effects on reasoning

Some librarians are happy people
All happy people are healthy people
Conclusion: Some librarians are healthy people

All guns are weapons
All weapons are dangerous things
Conclusion: All guns are dangerous things

Some electronics are computers
All computers are expensive things
Conclusion: Some electronics are expensive things

All trees are plants
Some trees are tall things
Conclusion: Some plants are tall things

No flowers are animals
All reptiles are animals
Conclusion: No flowers are reptiles

All diamonds are gems
Some diamonds are transparent things
Conclusion: Some gems are transparent things

All dragons are mythical creatures
No mythical creatures are things that exist
Conclusion: No dragons are things that exist

Some politicians are dishonest people
All dishonest people are people who lie
Conclusion: Some politicians are people who lie

All whales are mammals
Some whales are big things
Conclusion: Some mammals are big things

All vegetables are foods
Some vegetables are healthy things
Conclusion: Some foods are healthy things

All famous actors are wealthy people
Some famous actors are old people
Conclusion: Some old people are wealthy people

All vehicles are things that move
No buildings are things that move
Conclusion: No buildings are vehicles

Figure 11 | One argument (valid, consistent) from each of the 12 argument clusters we used for the
syllogisms tasks, showing the entities and argument forms covered.

We present the arguments to themodel, and give a forced choice between “The argument is valid.” or
“The argument is invalid.” Where example shots are used, they are sampled from distinct clusters, and
are separated by a blank line. We prompt the model before any examples with either instructions about
evaluating logical arguments, answering logic problems, or with no prompt, but we aggregate across
these in themain analyses as effects are similar (Appx. B.3; cf. Webson and Pavlick 2021). We also tried
some minor variations as follow-up experiments (such as prefixing the conclusion with “Therefore:” or
omitting the prefix before the conclusion), but observed qualitatively similar results so we omit them.

A.1.3. Wason data generation

As above, we generated a new dataset of Wason problems to avoid potential for dataset contamination
(see Fig. 1c for an example). The final response in a Wason task does not involve a declarative
statement (unlike completing a comparison as in NLI), so answers do not directly ‘violate’ beliefs.
Rather, in the cognitive science literature, the key factor affecting human performance is whether the
entities are ‘realistic’ and follow ‘realistic’ rules (such as people following social norms) or consist of
arbitrary relationships between abstract entities such as letters and numbers. We therefore study the
effect of realistic and arbitrary scenarios in the language models.

We created 12 realistic rules and 12 arbitrary rules. Each rule appears with four instances, respec-
tively matching and violating the antecedent and consequent. Each realistic rule is augmented with
one sentence of context for the rule, and the cards are explained to represent the entities in the con-
text. The model is presented with the context, the rule, and is asked which of the following instances
it needs to flip over, then the instances. The model is then given a forced choice between sentences of
the form “You need to flip over the ones showing “X” and “Y”.” for all subsets of two items from the
instances. There are two choices offered for each pair, in both of the possible orders, to eliminate pos-
sible biases if the model prefers one ordering or another. (Recall that the model scores each answer
choice independently; it does not see all answers at once.)

See Figs. 12 and 13 for the realistic and arbitrary rules and instances used — but note that
problems were presented to the model with more context and structure, see Fig. 1c for an example.
We demonstrate in Appx. B.4 that the difficulty of basic inferences about the propositions involved in
each rule type is similar across conditions.

We also created 12 rules using nonsense words. Incorporating nonsense words is less straightforward
in the Wason case than in the other tasks, as the model needs to be able to reason about whether
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An airline worker in Chicago needs to check passenger documents. The rule is that if the passengers are traveling outside the US then
they must have showed a passport.↩→

Buenos Aires / San Francisco / passport / drivers license

A chef needs to check the ingredients for dinner. The rule is that if the ingredients are meat then they must not be expired.
beef / flour / expires tomorrow / expired yesterday

A lawyer for the Innocence Project needs to examine convictions. The rule is that if the people are in prison then they must be
guilty.↩→

imprisoned / free / committed murder / did not commit a crime

A medical inspector needs to check hospital worker qualifications. The rule is that if the workers work as a doctor then they must
have received an MD.↩→

surgeon / janitor / received an MD / received a GED

A museum curator is examining the collection. The rule is that if the artworks are in the museum then they must be genuine.
displayed in the museum / not in the museum / genuine / forgery

An adventure trip organizer needs to ensure their clients have the appropriate gear. The rule is that if the clients are going
skydiving then they must have a parachute.↩→

skydiving / mountain biking / parachute / wetsuit

A parent needs to check that their children are following the rules. The rule is that if the children are playing games then they must
have finished their homework.↩→

playing video games / eating dinner / homework is done / homework is not done

A priest needs to check if people are ready for marriage. The rule is that if the people are engaged then they must be adults.
engaged / single / 25 years old / 7 years old

A traffic enforcement officer needs to check that people are following the law. The rule is that if the people in vehicles are driving
then they must have a driver license.↩→

driver / passenger / has a license / does not have a license

A gardener needs to take care of their plants. The rule is that if the plants are flowers then they must be fertilized.
rose / oak / fertilized / not fertilized

A farmer is getting equipment ready for the day. The rule is that if the pieces of equipment have an engine then they must have fuel.
tractor / shovel / has gasoline / does not have gasoline

A person is cleaning out and organizing his closet. The rule is that if the clothes are going to the thrift store then they must be
old.↩→

thrift store / keep / worn out / brand new

An employer needs to check that their business is following health regulations. The rule is that if the employees are working then
they must not be sick.↩→

working / on vacation / healthy / has a cold

Figure 12 | Realistic Wason rules and instances used.

instances match the antecedent and consequent of the rule. We therefore use nonsense rules of the
form “If the cards have less gluff, then they have more caft” with instances being more/less gluff/caft.
The more/less framing makes the instances roughly the same length regardless of rule type, and
avoids using negation which might confound results (Hosseini et al., 2021).

Finally, we created two types of control rules based on the realistic rules. First, we created shuffled
realistic rules by combining the antecedents and consequents of different realistic rules, while ensuring
that there is no obvious rationale for the rule. We then created violate-realistic rules by taking each
realistic rule and reversing its consequent. For example, the realistic rule “If the clients are skydiving,
then they must have a parachute” is transformed to “If the clients are skydiving, then they must have a
wetsuit”, but “parachute” is still included among the cards. The violate condition is designed to make
the rule especially implausible in context of the examples, while the rule in the shuffled condition is
somewhat more arbitrary/belief neutral.

To rule out a possible specific effect of cards (which were used in the original tasks) we also sampled
versions of each problem with sheets of paper or coins, but results are similar so we collapse across
these conditions in the main analyses.

A.2. Evaluation

DC-PMI correction: We use the DC-PMI correction (Holtzman et al., 2021) for the syllogisms and
Wason tasks; i.e., we choose an answer from the set of possible answers (A) as follows:

argmax𝑎∈A 𝑝(𝑎 | question) − 𝑝(𝑎 | baseline prompt)
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The rule is that if the cards have a plural word then they must have a positive emotion.
crises / dog / happiness / anxiety

The rule is that if the cards have a soft texture then they must have a polygon.
soft / rough / hexagon / circle

The rule is that if the cards have a French word then they must have a positive number.
chapeau / sombrero / 4 / -1

The rule is that if the cards have a prime number then they must have a secondary color.
11 / 12 / purple / red

The rule is that if the cards have a European country then they must have something hot.
Germany / Brazil / furnace / ice cube

The rule is that if the cards have the name of a famous book then they must have the name of an elementary particle.
Moby Dick / Citizen Kane / neutrino / atom

The rule is that if the cards have a type of plant then they must have the name of a philosopher.
cactus / horse / Socrates / Napoleon

The rule is that if the cards have the name of a web browser then they must have a type of pants.
Internet Explorer / Microsoft Word / jeans / sweatshirt

The rule is that if the cards have a beverage containing caffeine then they must have a material that conducts electricity.
coffee / orange juice / copper / wood

The rule is that if the cards have something electronic then they must have a hairy animal.
flashlight / crescent wrench / bear / swan

The rule is that if the cards have a verb then they must have a Fibonacci number.
walking / slowly / 13 / 4

The rule is that if the cards have a text file extension then they must have a time in the morning.
.txt / .exe / 11:00 AM / 8:00 PM

Figure 13 | Arbitrary Wason rules and instances used.

Where the baseline prompt is “Answer:” and 𝑝(𝑥 | 𝑦) denotes the model’s evaluated likelihood of
continuation 𝑥 after prompt 𝑦.

B. Supplemental analyses

B.1. Directly estimating model beliefs via log likelihood, in the NLI task

In the natural language inference (NLI) analyses of 3, we found the models had strong content bias
towards NLI completions that are consistent with the models’ prior expectations. We inferred which
completions were consistent with the model’s beliefs by using comparisons generated by the model.
In these analyses, we use a more graded measure of the models’ beliefs.

Here, instead of using the consistent/violate categories we assumed, we pool together the compari-
son statements that were generated by the model (taken to be "belief consistent" in other analyses;
e.g. “ants are smaller than whales”) and the inverted versions (taken to be “belief violating”; e.g.
“whales are smaller than ants”). We then directly estimate the model’s beliefs about the plausibility of
a comparison statement by computing the model’s average per-token log likelihood on the statements
standing alone (not conditioned on any prior input).

For each NLI problem, we took the difference between [the unconditioned model log likelihood for
the correct conclusion] and [the unconditioned model log likelihood for the incorrect conclusion].
This difference, along with a bias term, was used as the input to a logistic regression against whether
the model answered the NLI problem correctly. We see in Fig 14 that model accuracy on zero-shot
NLI problems is highly positively related with its pre-existing, unconditioned log likelihood on the
conclusion. This is consistent with our previous NLI results (3). The positive relationship is maintained
but diminishes for 1-shot and 5-shot problems, echoing our other results showing that few-shot
examples mitigate belief bias in NLI (4.2).

These analyses were performed using the larger model (Chinchilla).
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Figure 14 | Logistic regression of Chinchilla accuracy on NLI vs. likelihoods. Histograms at top
and bottom respectively show the distributions of correct and incorrect answers; curves are logistic
regression fits.
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Figure 15 | NLI results zero-shot, for a smaller (7B)and larger (Chinchilla) language model, where
the models have to classify validity of natural language inferences rather than completing the valid
hypothesis. The smaller model is unable to do this task at all and shows no belief bias. The larger
model does show a belief bias, details in main text.

B.2. Classifying natural language inferences as valid or invalid produces a belief-bias effect.

We evaluate whether the language model can classify provided premise and hypothesis pairs as a
valid or invalid inference (Figure 15). We find that the smaller model is unable to perform the task
above chance accuracy, and shows no effects of belief bias. The larger model does show a belief bias
effect: accuracy on this task is highest when the hypothesis is consistent with beliefs. We find lower
performance in the violate condition where the hypothesis is inconsistent with beliefs but the entities
are still realistic. We find the lowest performance on the nonsense entities, over which the model has
no prior beliefs.

Note that the ‘consistent’ and ‘violate’ condition in this setting are slightly confounded by the
requirement to include ‘invalid’ logical inference. For an invalid logical inference, if we want the
hypothesis to violate real world beliefs, the premise must be consistent with real world belief, and vice
versa. This might explain the attenuated difference between violate and consistent in this condition.
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Figure 16 | Above chance performance on NLI with DC-PMI correction implies that the model is
accounting for the premise in its responses.

As discussed in the main text, we also applied the DC-PMI correction to the original framing of
the NLI queries to verify that the the language models are in fact accounting for the premise in their
responses. We do this with a control condition where the hypotheses-premise pairs are mismatched
such that the hypothesis is no longer logically implied by the premise – but the hypotheses themselves
are still consistent with or violate prior expectations. Normalizing for performance in this condition
checks that the model is and not just classifying on the basis of strong beliefs about the hypothesis
irrespective of the premise. We found significantly above chance performance after DC-PMI with a
mismatched premise, indicating that the premise is playing a role in performance in both consistent
and violate conditions (Figure 16). We didn’t run this control for nonsense examples because the
model doesn’t have strong a priori beliefs about these hypotheses.

B.3. The effects of different initial instruction prompts

One common strategy for improving language model zero-shot performance is to prompt the model
with a task instruction. To investigate whether instructions would affect results, we evaluated three
different task instructions on the NLI and syllogism tasks.

B.3.1. NLI

For the NLI task, we tried the following prompts:

INITIAL_PROMPTS = {
" none " : " I f { seas are smal le r than puddles } , then {puddles are } " ,
" evaluate_arguments " : " Ca r e fu l l y eva lua te these l o g i c a l arguments . I f { seas are smal l e r

than puddles } , then {puddles are } " ,
" pretend " : " Let ' s pretend tha t { seas are smal l e r than puddles } , then {puddles are } " ,
}

The explicit instruction to evaluate arguments strongly improves performance on the violate
condition. This mirrors previous findings (Kojima et al., 2022) that explicit instructions can make
language models more logical. Both models however still struggle with the abstract ‘nonsense’ version
of the task, and performance is still best on the ‘consistent’ condition. The ‘pretend’ prompt gives
very similar findings. These results illustrate that the belief bias effects we find are not overfit to the
specific prompt we use; these effects show up across other prompts as well.
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Figure 17 | Performance on NLI with different prompt types.

B.3.2. Syllogism

For the Syllogism task, we tried the following prompts:
INITIAL_PROMPTS = {
" none " : " " ,
" evaluate_arguments " : " Ca r e fu l l y eva lua te these l o g i c a l arguments , and determine

whether each i s v a l i d or i n v a l i d . \ n\n " ,
" log ic_prob lems " : " Answer these l o g i c problems ca r e f u l l y , by determining whether each

argument i s v a l i d or i n v a l i d . \ n\n "
}

In Fig. 18 we show the results. While the instructions do slightly change model behavior — in
particular, shifting the overall response tendency across conditions — the patterns of bias remain
similar; we therefore collapse across the prompts in other figures (and include them as a random
effect in regressions).
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Figure 18 | Syllogism 0-shot performance with different initial instruction prompts; the belief-bias
effects are similar across conditions.

B.4. The Wason rule propositions have similar difficulty across conditions

One possible confounding explanation for our Wason results would be that the base propositions
that form the antecedents and consequents of the rules have different difficulty across conditions—
this could potentially explain why the realistic rules and shuffled realistic rules are both easier than
abstract or nonsesnse ones. To investigate this possibility, we tested the difficulty of identifying which
of the options on the cards matched the corresponding proposition. Specifically, for the antecedent
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Figure 19 | The component propositions (antecedents and consequents) of the Wason rules have
similar difficulty across conditions. This plot shows model accuracy on forced choices of which
instance matches a proposition, across conditions. (Note that the shuffled realistic rules use the same
component propositions as the realistic rules.)

of the rule “if the workers work as a doctor then they must have received an MD” we prompted the
language model with a question like:

Which choice better matches "work as a doctor"?
choice: surgeon
choice: janitor
Answer:

And then gave a two-alternative forced choice between ‘surgeon’ and ‘janitor’. We repeated this
process for both possible answer choice orderings in the prompt, and then aggregated likelihoods
across these and chose the highest-likelihood answer.

By this metric, we find that there are no substantial differences in difficulty across the rule types
(Fig. 19)—in fact, arbitrary rule premises are numerically slightly easier, though the differences are
not significant. Thus, the effects we observed are not likely to be explained by the base difficulty of
verifying the component propositions.

B.5. The model consistently chooses one antecedent card and one consequent card on the
Wason task

In Fig. 20 we show that the language model is consistently choosing one antecedent and one
consequent card. Thus, the model is matching the majority of experimental participants in Wason
(1968) in testing both parts of the rule. However, like the humans, it is not always making the correct
choice within each category, as the main analyses show.

B.6. Models can identify the valid conclusion of a syllogism from among all possible conclu-
sions with high accuracy

In Fig. 21 we show the accuracy of the model when choosing from among all possible predicates
containing one of the quantifiers used and two of the entities appearing in the premises of the
syllogism. The model exhibits high accuracy across conditions, and relatively little bias (though
bias increases few shot). This observation is reminiscent of the finding of Trippas et al. (2014) that
humans exhibit less bias when making a forced choice among two possible arguments (one valid and

27



Language models show human-like content effects on reasoning

0−shot 5−shot

Realistic Arbitrary Nonsense Shuffled
realistic

Violate
realistic

Realistic Arbitrary Nonsense Shuffled
realistic

Violate
realistic

0

25

50

75

100

Rule type

A
ns

w
er

 p
ro

po
rt

io
n 

(%
)

Instance type
Antecedent x 2
One of each
Consequent x 2

Figure 20 | On the Wason tasks, the model correctly chooses one antecedent card and one consequent
card the vast majority of the time, across experimental conditions—by chance, it would only do so
50% of the time.

one invalid) rather than deciding if a single syllogism is valid or invalid.

Note that in this case scoring with the Domain-Conditional PMI (Holtzman et al., 2021)—which
we used for the main Syllogisms and Wason results—produces much lower accuracy than the raw
likelihoods, and minor differences in bias. The patterns are qualitatively similar with or without the
correction, but accuracy is lower without (around 35-40%) regardless of belief consistency.
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(b) Raw log-likelihood scoring

Figure 21 | Zero-shot accuracy at identifying the correct conclusion to a syllogism among all possible
conclusions. The model exhibits far above chance performance (especially when scoring with raw
log-likelihoods), and relatively weaker bias with this task design.

‘

B.7. Using raw likelihoods rather than Domain-Conditional PMI on the Syllogisms and Wason
tasks

In the main results for the Syllogisms and Wason tasks, we scored the model using the Domain-
Conditional PMI (Holtzman et al., 2021). However, the above syllogisms conclusion results raise the
possibility that raw likelihoods would result in better performance. In Fig. 22 we show that comparing
the raw likelihoods of the answers instead of DC-PMI results in much worse zero-shot performance
on both tasks, and greater bias toward answering ‘invalid’ on the Syllogisms tasks. Thus, the DC-PMI
correction is consistently beneficial for both of the more complex reasoning tasks zero-shot.

For Syllogisms, we find similar results few-shot (Fig. 23a)—raw-likelihood scoring results in more
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bias towards answering ‘invalid’, though this bias decreases somewhat with 5 example shots. However,
the belief bias towards responding ‘valid’ more for consistent statements than inconsistent ones is
present in all conditions, and becomes larger as the ‘invalid’ bias reduces with more examples.

For the Wason tasks (Fig. 23b), the effects are somewhat more complicated. For the realistic
rules, using the raw-likelihood scoring results in worse performance than DC-PMI (compare to
Fig. ??). For the arbitrary and nonsense rules, using the raw-likelihood scoring actually improves
performance relative to DC-PMI—however, this performance is still substantially worse than realistic
rule performance by either metric. For the shuffled realistic rules, raw-likelihood scoring slightly
increases performance (at least 5-shot), which, together with the decrease in realistic performance
using this metric, makes the realistic and shuffled realistic rules competitive. However, scoring each
rule type by the most favorable metric for that type would still result in the realistic rules performing
substantially better than the shuffled realistic rules. In summary, while the numerical Wason results
are somewhat altered by the raw-likelihood metrics, the pattern of advantage for realistic rules over
arbitrary or nonsense ones is preserved.
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Figure 22 | Scoring using the raw answer likelihoods—rather than the Domain-Conditional PMI—
results in poor zero-shot performance on the Syllogisms and Wason tasks, with low accuracy and high
bias. (Compare to Figs. 4 and 5, respectively, which use DC-PMI scoring.))
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Figure 24 | NLI evaluated on nonsense probes, with 0, 1, or 5 example shots of different types.
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Figure 23 | Scoring using the raw answer likelihoods—rather than the Domain-Conditional PMI—for
the Syllogisms and Wason tasks few-shot. (a) On the syllogisms tasks, using raw likelihoods results in
poorer performance, with high bias towards answering ‘invalid’. However, belief bias is still present,
and performance does not improve as much with few-shot examples (in fact, it deteriorates on invalid
arguments). (b) On the Wason tasks (using matched examples), the realistic rules score worse with
raw likelihood scoring, but intriguingly the other rule types score better, especially 5-shot. However,
the advantage for realistic over arbitrary or nonsense rules remains. Compare to Figs. 7 and 26b,
respectively, which use DC-PMI scoring.))

B.8. Varying few-shot examples

For the NLI tasks, there are not substantial effects of the prompt example type on probe performance
(Fig. 24), all kinds of prompts give close to ceiling performance with five shots. Similarly, for the
syllogism tasks, there are not substantial effects of the prompt example type on probe performance
(Fig. 25)—overall, different types of prompts offer similar probe performance in most cases.

For the Wason tasks, there is limited benefit from nonsense examples (Fig. 26a). There appears
to be a benefit to having realistic examples in the prompt for either realistic or shuffled-realistic
probes (Fig. 26b). However, for arbitrary and nonsense rules, realistic examples do not appear
substantially beneficial. Instead, arbitrary and nonsense rules generally benefit more from matching
prompt examples. We therefore use matching examples in other follow-up experiments on the Wason
tasks, such as the error analysis.
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Figure 25 | Syllogism results few-shot, with different types of prompt examples. The “Realistic: mixed”
condition includes realistic examples from both the consistent and violate subsets.
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Figure 26 | Wason selection task results in different probe conditions, after a few-shot prompt with (a)
nonsense or (b) realistic example shots. Realistic examples result in much more benefit than nonsense
examples, at least for realistic or shuffled realistic tasks. In all conditions the overall human pattern
of an advantage of realistic probes remains.
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C. Statistical analyses

In this section, we present the full output of statistical models for the main results we report. We
analyze all results using hierarchical (multilevel) logistic regressions that account for the statistical
dependency structure of the data (e.g. Gelman and Hill, 2006); such analytic methods are broadly used
in the behavioral sciences because they allow drawing generalizable inferences from data (Yarkoni,
2022), and they are similarly useful tools for analyzing the behaviors of large language models
(Lampinen et al., 2022).

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial ( logit )
Formula: multiple_choice_grade ~ noun_type_factor * model_name + (1 |

hypothesis)
Data: nli_df %>% filter(n_prepended_shots %in% c(0))

AIC BIC logLik deviance df.resid
1030.4 1064.1 -508.2 1016.4 903

Scaled residuals:
Min 1Q Median 3Q Max

-2.3340 -0.5622 -0.2448 0.5579 3.5608

Random effects:
Groups Name Variance Std.Dev.
hypothesis (Intercept) 2.715 1.648

Number of obs: 910, groups: hypothesis, 443

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.4172 0.5823 -5.868 4.40e-09 ***
noun_type_factorconsistent 3.8310 0.6940 5.520 3.39e-08 ***
noun_type_factornonsense 1.4804 0.5666 2.613 0.00898 **
model_nameprod_chinchilla 2.9612 0.6012 4.926 8.40e-07 ***
noun_type_factorconsistent:model_nameprod_chinchilla -0.9536 0.7347 -1.298 0.19427
noun_type_factornonsense:model_nameprod_chinchilla -1.1564 0.6107 -1.894 0.05829 .

(Intercept)
noun_type_factorconsistent
noun_type_factornonsense
model_nameprod_chinchilla
noun_type_factorconsistent:model_nameprod_chinchilla
noun_type_factornonsense:model_nameprod_chinchilla
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 1 | NLI zero-shot regression results.

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial ( logit )
Formula:
answer_with_valid_prior_corrected ~ consistent_plottable + valid_factor +

(1 | initial_prompt) + (1 | syllogism_name)
Data: syl_df %>% filter(num_shots %in% c(0))

AIC BIC logLik deviance df.resid
512.4 538.5 -250.2 500.4 565

Scaled residuals:
Min 1Q Median 3Q Max

-3.6454 -0.3729 0.2145 0.3970 3.2771

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 2.1165 1.4548
initial_prompt (Intercept) 0.7366 0.8582

Number of obs: 571, groups: syllogism_name, 60; initial_prompt, 3

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.5530 0.7755 4.581 4.62e-06 ***
consistent_plottableviolate_vs_consistent -3.8417 0.4458 -8.617 < 2e-16 ***
consistent_plottablenonsense_vs_consistent -1.2874 0.6070 -2.121 0.03395 *
valid_invalid -1.0184 0.3053 -3.336 0.00085 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 2 | Syllogisms zero-shot regression results.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial ( logit )
Formula:
answer_with_valid_prior_corrected ~ consistent_plottable * valid_factor +

(1 | initial_prompt) + (1 | syllogism_name)
Data: syl_df %>% filter(num_shots %in% c(0))

AIC BIC logLik deviance df.resid
514.5 549.3 -249.3 498.5 563

Scaled residuals:
Min 1Q Median 3Q Max

-4.1789 -0.3592 0.2127 0.4282 3.0836

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 2.1504 1.4664
initial_prompt (Intercept) 0.7455 0.8634

Number of obs: 571, groups: syllogism_name, 60; initial_prompt, 3

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.1487 0.8206 3.837 0.000125 ***
consistent_plottableviolate_vs_consistent -3.2822 0.5767 -5.691 1.26e-08 ***
consistent_plottablenonsense_vs_consistent -0.8723 0.7586 -1.150 0.250167
valid_invalid -0.3202 0.6097 -0.525 0.599517
consistent_plottableviolate_vs_consistent:valid_invalid -1.0401 0.7538 -1.380 0.167624
consistent_plottablenonsense_vs_consistent:valid_invalid -0.7076 0.8304 -0.852 0.394154
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3 | Syllogisms zero-shot regression results with an interaction term—note that this model is
reported only for comparison, since the information criteria (AIC and BIC) suggest that the simpler
model without an interaction is preferable.

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial ( logit )
Formula:
prior_corrected_multiple_choice_grade ~ probe_type_factor + card_type_factor +

(1 | wason_name)
Data: wason_df %>% filter(num_shots %in% c(0))

AIC BIC logLik deviance df.resid
330.0 361.4 -157.0 314.0 363

Scaled residuals:
Min 1Q Median 3Q Max

-4.5011 -0.3332 -0.1604 0.3255 3.1830

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 4.715 2.171

Number of obs: 371, groups: wason_name, 50

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.5013 0.9416 -3.719 0.00020 ***
probe_type_factorrealistic 3.7535 1.1465 3.274 0.00106 **
probe_type_factornonsense 0.3959 1.1846 0.334 0.73826
probe_type_factorshuffledreal 2.5229 1.1465 2.201 0.02777 *
probe_type_factorviolatereal 0.8755 1.1499 0.761 0.44642
card_type_factorcoins -0.2652 0.2318 -1.144 0.25251
card_type_factorsheets_of_paper 0.1657 0.2248 0.737 0.46111
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4 | Wason zero-shot regression results.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial ( logit )
Formula:
multiple_choice_grade ~ (noun_type_factor + model_name) * num_shots_regressable +

(1 | hypothesis)
Data: nli_df %>% filter(n_prepended_shots %in% c(0, 1, 5), shots_type %in%
c("nonsense", "None"))

Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))

AIC BIC logLik deviance df.resid
2264.9 2341.8 -1119.4 2238.9 2717

Scaled residuals:
Min 1Q Median 3Q Max

-14.3350 -0.2842 0.1174 0.2986 4.6978

Random effects:
Groups Name Variance Std.Dev.
hypothesis (Intercept) 3.576 1.891

Number of obs: 2730, groups: hypothesis, 443

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.02624 0.28042 -0.094 0.9255
noun_type_factorconsistent 2.56592 0.45903 5.590 2.27e-08 ***
noun_type_factornonsense 0.31384 0.30673 1.023 0.3062
model_nameprod_chinchilla 1.88943 0.15361 12.300 < 2e-16 ***
num_shots_regressableany_shots 2.84223 0.26137 10.874 < 2e-16 ***
num_shots_regressableone_or_five 1.50063 0.22817 6.577 4.80e-11 ***
noun_type_factorconsistent:num_shots_regressableany_shots -0.77785 0.38116 -2.041 0.0413 *
noun_type_factornonsense:num_shots_regressableany_shots -0.39870 0.25541 -1.561 0.1185
noun_type_factorconsistent:num_shots_regressableone_or_five -0.06510 0.43184 -0.151 0.8802
noun_type_factornonsense:num_shots_regressableone_or_five -0.11444 0.23900 -0.479 0.6321
model_nameprod_chinchilla:num_shots_regressableany_shots -0.17412 0.17924 -0.971 0.3313
model_nameprod_chinchilla:num_shots_regressableone_or_five -0.45226 0.18825 -2.402 0.0163 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 5 | NLI 0, 1, or 5 nonsense shot regression results.

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial ( logit )
Formula:
answer_with_valid_prior_corrected ~ (consistent_plottable + valid_factor) *

scale(num_shots, scale = F) + (1 | initial_prompt) + (1 |
syllogism_name)

Data: syl_df %>% filter(num_shots %in% c(0, 2, 5), prompt_condition %in%
c("nonsense", "zero_shot"))

Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))

AIC BIC logLik deviance df.resid
1536.8 1591.3 -758.4 1516.8 1711

Scaled residuals:
Min 1Q Median 3Q Max

-9.6556 -0.4020 0.2882 0.4668 2.8407

Random effects:
Groups Name Variance Std.Dev.
syllogism_name (Intercept) 0.8831 0.9397
initial_prompt (Intercept) 0.1970 0.4439

Number of obs: 1721, groups: syllogism_name, 60; initial_prompt, 3

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.221998 0.431995 7.458 8.76e-14 ***
consistent_plottableviolate_vs_consistent -2.960377 0.218646 -13.540 < 2e-16 ***
consistent_plottablenonsense_vs_consistent -0.896209 0.366319 -2.447 0.0144 *
valid_invalid -1.211116 0.166914 -7.256 3.99e-13 ***
scale(num_shots, scale = F) 0.214230 0.095510 2.243 0.0249 *
consistent_plottableviolate_vs_consistent:scale(num_shots, scale = F) -0.001357 0.099954 -0.014 0.9892
consistent_plottablenonsense_vs_consistent:scale(num_shots, scale = F) -0.065002 0.094666 -0.687 0.4923
valid_invalid:scale(num_shots, scale = F) -0.196119 0.067163 -2.920 0.0035 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 6 | Syllogisms few-shot regression results.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial ( logit )
Formula:
multiple_choice_grade ~ model_name * shots_type_factor * num_shots_nonsense +

(1 | hypothesis)
Data: nli_df %>% filter(n_prepended_shots %in% c(1, 5), noun_type ==
"nonsense")

Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))

AIC BIC logLik deviance df.resid
3901.9 3986.3 -1938.0 3875.9 4871

Scaled residuals:
Min 1Q Median 3Q Max

-12.0392 0.0401 0.1859 0.3609 7.4393

Random effects:
Groups Name Variance Std.Dev.
hypothesis (Intercept) 3.248 1.802

Number of obs: 4884, groups: hypothesis, 393

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.7285 0.1716 15.899 < 2e-16 ***
model_name7b -2.4164 0.1689 -14.305 < 2e-16 ***
shots_type_factorViolate 0.6090 0.2034 2.994 0.00276 **
shots_type_factorNonsense 0.4678 0.2001 2.338 0.01937 *
num_shots_nonsenseone_or_five 0.9525 0.1359 7.010 2.38e-12 ***
model_name7b:shots_type_factorViolate 0.2242 0.2431 0.922 0.35642
model_name7b:shots_type_factorNonsense 0.2958 0.2417 1.224 0.22088
model_name7b:num_shots_nonsenseone_or_five -0.1420 0.1624 -0.875 0.38174
shots_type_factorViolate:num_shots_nonsenseone_or_five -0.2093 0.2030 -1.031 0.30244
shots_type_factorNonsense:num_shots_nonsenseone_or_five -0.1313 0.1998 -0.657 0.51117
model_name7b:shots_type_factorViolate:num_shots_nonsenseone_or_five 0.4048 0.2431 1.665 0.09594 .
model_name7b:shots_type_factorNonsense:num_shots_nonsenseone_or_five 0.6201 0.2419 2.563 0.01037 *

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 7 | NLI with different type of example shots, when evaluating on nonsense examples, regression
results.
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Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial ( logit )
Formula:
prior_corrected_multiple_choice_grade ~ probe_type_factor * prompt_condition_plottable +

card_type_factor + (1 | wason_name)
Data: wason_five_shot_df

Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))

AIC BIC logLik deviance df.resid
1555.5 1710.7 -749.7 1499.5 1863

Scaled residuals:
Min 1Q Median 3Q Max

-13.2799 -0.4181 -0.0978 0.4297 5.9983

Random effects:
Groups Name Variance Std.Dev.
wason_name (Intercept) 6.917 2.63

Number of obs: 1891, groups: wason_name, 50

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.44266 0.43153 -1.026 0.30499
probe_type_factorArbitrary -1.77578 0.81098 -2.190 0.02855 *
probe_type_factorNonsense -1.71260 0.78895 -2.171 0.02995 *
probe_type_factorShuffled_real 1.99525 0.79148 2.521 0.01170 *
probe_type_factorViolate_real -1.40470 0.60368 -2.327 0.01997 *
prompt_condition_plottableArbitrary -0.89641 0.22056 -4.064 4.82e-05 ***
prompt_condition_plottableNonsense -0.70453 0.22064 -3.193 0.00141 **
prompt_condition_plottableShuffled_real -0.64101 0.22475 -2.852 0.00434 **
prompt_condition_plottableViolate_real -0.50862 0.22701 -2.241 0.02506 *
card_type_factorcoins 0.11061 0.09481 1.167 0.24333
card_type_factorsheets_of_paper -0.04185 0.09490 -0.441 0.65923
probe_type_factorArbitrary:prompt_condition_plottableArbitrary 0.61708 0.45483 1.357 0.17487
probe_type_factorNonsense:prompt_condition_plottableArbitrary 0.23707 0.42270 0.561 0.57490
probe_type_factorShuffled_real:prompt_condition_plottableArbitrary -0.90202 0.47447 -1.901 0.05729 .
probe_type_factorViolate_real:prompt_condition_plottableArbitrary 0.89641 0.43303 2.070 0.03844 *
probe_type_factorArbitrary:prompt_condition_plottableNonsense -0.16637 0.46736 -0.356 0.72186
probe_type_factorNonsense:prompt_condition_plottableNonsense 1.21030 0.40776 2.968 0.00300 **
probe_type_factorShuffled_real:prompt_condition_plottableNonsense -0.97851 0.47448 -2.062 0.03918 *
probe_type_factorViolate_real:prompt_condition_plottableNonsense 0.70452 0.43307 1.627 0.10378
probe_type_factorArbitrary:prompt_condition_plottableShuffled_real 0.50209 0.45528 1.103 0.27011
probe_type_factorNonsense:prompt_condition_plottableShuffled_real -0.26972 0.43369 -0.622 0.53398
probe_type_factorShuffled_real:prompt_condition_plottableShuffled_real -0.00703 0.48460 -0.015 0.98843
probe_type_factorViolate_real:prompt_condition_plottableShuffled_real 0.39202 0.44688 0.877 0.38036
probe_type_factorArbitrary:prompt_condition_plottableViolate_real -0.52253 0.47560 -1.099 0.27191
probe_type_factorNonsense:prompt_condition_plottableViolate_real -0.15072 0.42614 -0.354 0.72357
probe_type_factorShuffled_real:prompt_condition_plottableViolate_real 0.02127 0.48752 0.044 0.96520
probe_type_factorViolate_real:prompt_condition_plottableViolate_real 0.62147 0.43172 1.440 0.15000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 8 | Wason 5-shot regression results; how performance on probe (target) questions of different
rule types is affected by the type of examples in the prompt. To evaluate the overall effects of prompt
conditions, together with individual interactions, we dummy code prompt condition with Realistic
prompt examples as the reference, while effect code probe type (so that probe type effects are overall
differences from the grand mean)—in this way, the base prompt condition effects represent the “main”
effect of switching from Realistic examples to that other prompt condition across all probe types,
while the interaction terms represent how the effect of a given prompt condition differs for a specific
probe type from the overall effect of that prompt condition. The significant negative effects of each
prompt condition show that overall, using non-realistic examples makes performance worse; the
strong interaction effects for Nonsense examples show that in that specific instances prompt examples
of the same type as the probe may be beneficial, or at least less detrimental; etc.
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