1. Reed–Simon II.4. (Hint for part (b): define an “inner product” by the polarization identity and check that it has the desired properties. Additivity, i.e. \(\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle \), can be proven using the parallelogram law. For \(\langle x, \lambda y \rangle = \lambda \langle x, y \rangle \), first show it for \(\lambda \) rational.)

2. Reed–Simon II.8.

4. Reed–Simon II.15.

5. Construct an example of an inner product space \((V, \langle \cdot, \cdot \rangle)\) and a closed subspace \(M \subset V\) such that \(V \neq M \oplus M^\perp\). (Hint: One construction is as follows. Let \(V \subset \ell^2\) be
\[
V = \{(a_1, a_2, \ldots) : \exists N \text{ such that } a_n = 0, \forall n \geq N\}.
\]
Choose \(x \in \ell^2\) appropriately and let \(M = \{v \in V : \langle v, x \rangle = 0\}\). Show that \(V\) and \(M\) have the desired properties.)