1. Reed–Simon IV.19

2. Reed–Simon IV.20

3. Suppose that (X, d) is a metric space.
 (a) Suppose that $f : [0, \infty) \to [0, \infty)$ satisfies $f(0) = 0$, $f(x) > 0$ if $x > 0$, f is increasing (i.e. $x \geq y$ implies $f(x) \geq f(y)$) and f is subadditive: $f(x + y) \leq f(x) + f(y)$ for all x, y. Show that $f \circ d : X \times X \to [0, \infty)$ is a metric on X.
 (b) Suppose that $f : [0, \infty) \to [0, \infty)$ is C^1 (continuously differentiable), $f(0) = 0$, $f'(0) > 0$, $f'(x) \geq 0$ for all x, and f' is decreasing (i.e. $x \leq y$ implies $f'(x) \geq f'(y)$). Show that f is subadditive.
 (c) Suppose d and d' are metrics on X. Show that the topology generated by d' is weaker than the topology generated by d (i.e. every open set in (X, d') is open in (X, d)) if and only if given $\epsilon > 0$ and $x \in X$ there is $\delta > 0$ such that
 \[d(x, y) < \delta \implies d'(x, y) < \epsilon. \]
 Use this to show that with f as in part (b), d and $f \circ d$ generate the same topology. (Such metrics are called equivalent.)
 (d) Conclude that if d is a metric on X, then so are $d' = \frac{d}{1+d}$ and $d'' = \min\{d, 1\}$, and these metrics generate the same topology. (Note that $d'(x, y) < 1$ for all $x, y \in X$, and $d''(x, y) \leq 1$ for all $x, y \in X$.)

4. A pseudometric ρ on a set X is a map $\rho : X \times X \to [0, \infty]$ that is symmetric, satisfies the triangle inequality and $\rho(x, x) = 0$ for all $x \in X$. (So if ρ is a pseudometric and $\rho(x, y) = 0$ implies $x = y$ then ρ is a metric.) Let ρ_1, ρ_2, \ldots, be pseudometrics on X with $\rho_j \leq 1$. Let
 \[d(x, y) = \sum_{j=1}^{\infty} 2^{-j} \rho_j(x, y). \]
 (1)

 (a) Show that d is a pseudometric on X.
 (b) Show that if $x \neq y$ implies that $\rho_j(x, y) \neq 0$ for some j then d is a metric on X, and a sequence $\{x_n\}_{n=1}^{\infty}$ converges to some $x \in X$ with respect to d if and only if given $\epsilon > 0$ there is N such that $n \geq N$ implies $\rho_j(x_n, x) < \epsilon$. Thus, if the ρ_j are metrics, then a sequence converges with respect to d if and only if it converges with respect to ρ_j for every j.
 (c) Show that the topology generated by d is the weak topology generated by $\{\rho_n(x, \cdot) : x \in X, n \in \mathbb{N}\}$, i.e. the weakest topology in which these functions are all continuous.
5. Suppose that \(X \) is a vector space and each \(d_j \) is a translation invariant metric, i.e. \(d_j(x + z, y + z) = d_j(x, y) \) for all \(x, y, z \in X \). Let \(\rho_j \) be translation invariant metrics equivalent to \(d_j \) with \(\rho_j \leq 1 \); and let \(d \) be defined by (1). Show that a sequence \(\{x_n\}_{n=1}^\infty \) is Cauchy with respect to \(d \) if and only if it is Cauchy with respect to every \(d_j \).

(e) Now suppose that \(X_1, X_2, \ldots \) are vector spaces, \(X_1 \supseteq X_2 \supseteq \ldots \) and \(X = \cap_{k=1}^\infty X_k \). Let \(d_k \) be translation invariant metrics on \(X_k \), and suppose that the inclusion maps \(\iota_k : X_k \to X_{k-1} \) are all continuous. Let \(d \) be defined as in the previous part. Show that if \((X_k, d_k) \) is complete for every \(k \) then \((X, d) \) is complete.

(f) Let \(C^\infty(S^1) \) denote the set of complex-valued infinitely differentiable functions on \(S^1 = \mathbb{R}/(2\pi \mathbb{Z}) \). Let \(d_k \) be the metric given by the \(C^k \) norm:

\[
\|f\|_{C^k} = \sum_{m=0}^k \sup \{|f^{(m)}(x)| : x \in S^1\}.
\]

Let \(d \) be the corresponding metric (defined as in part (d)) on \(C^\infty(S^1) \). Show that \(C^\infty(S^1) \) is a complete metric space in which sequences \(\{x_n\}_{n=1}^\infty \) converge, resp. are Cauchy, if and only if they converge, resp. are Cauchy, in every \(C^k \). (Thus, convergence of a sequence \(\{f_n\}_{n=1}^\infty \) is just the uniform convergence of all derivatives \(\{f_n^{(k)}\}_{k=1}^\infty \).)

5. Suppose that \((X, \tau) \) is a compact topological space and let \(\mathcal{F} = \{f_1, f_2, \ldots\} \) be a countable collection of continuous real valued functions on \(X \) that separate points (i.e. for \(x \neq y \) there is a \(j \) such that \(f_j(x) \neq f_j(y) \)).

(a) Show that without loss of generality we may assume \(|f_j(x)| < \frac{1}{2} \) for all \(x \); assume this from now on.

(b) Let \(\rho_j(x, y) = |f_j(x) - f_j(y)| \). Show that \(\rho_j \) is a pseudometric. With \(d \) given by Equation (1) of Problem 4, show that \(d \) is a metric on \(X \); let \(\tau_d \) denote the metric topology on \(X \).

(c) Show that \(\tau_d = \tau \), i.e. \((X, \tau) \) is metrizable. (Hint: show that \(\tau_d \) is Hausdorff and it is the \(\mathcal{F} \)-weak topology, hence is weaker than \(\tau \).)

(d) Suppose \(Y \) is a separable Banach space. Show that the closed unit ball \(B \) in \(Y^* \) is metrizable in the weak-* topology. Conclude the following version of the sequential Banach–Alaoglu theorem: If \(Y \) is a separable Banach space, then the closed unit ball \(B \) in \(Y^* \) is sequentially compact in the weak-* topology, i.e. for any sequence in \(B \), there exists a convergent subsequence in the weak-* topology. (Note that by Problem 5 in HW 5, in general \(Y^* \) itself is not metrizable in the weak-* topology.)

(e) Suppose \(\{u_n\}_{n=1}^\infty \subset L^2([0,1]) \) satisfies \(\sup_{n \in \mathbb{N}} \|u_n\|_L^2([0,1]) \leq 1 \). Prove that there is a subsequence \(\{u_{n(m)}\}_{m=1}^\infty \) and an \(u \in L^2([0,1]) \) such that \(\int_0^1 u_{n(m)}(x)v(x) \, dx \to \int_0^1 u(x)v(x) \, dx \) as \(m \to +\infty \) for every \(v \in L^2([0,1]) \).
(f) (See also Reed–Simon IV.20) Let $Y = \ell^\infty$ and $\delta_1, \delta_2, \cdots \in Y^*$ be defined by

$$
\delta_n(\{c_k\}_{k=1}^\infty) = c_n.
$$

Prove that $\{\delta_n\}_{n=1}^\infty$ has no weak-* convergent subsequence. (This shows that for a general non-separable Banach space Y, the closed unit ball B in Y^* may not be sequentially compact.)