1. Solve the PDE \(u_{xx} - 2 u_{xy} - 3 u_{yy} = 0 \) with the initial conditions \(u(r, 2r) = 0 \) and \(u_x(r, 2r) = 2r^2 \).

2. (a) Given \(u \in D'(\mathbb{R}^n) \). Define the distribution \(\partial_i u \). [You only need to write down the definition without proving that it is a distribution.]

(b) Let \(u \in D'(\mathbb{R}^2) \) be defined by

\[u(\varphi) = \int_{-\infty}^{\infty} \int_{-\infty}^{x} \varphi(x, y) \, dy \, dx \]

for every \(\varphi \in C^\infty_c(\mathbb{R}^2) \). Compute \(\partial_x u \) and simplify your answer.

3. Let \(f \in C(\mathbb{R}^n) \) (i.e. \(f : \mathbb{R}^n \to \mathbb{R} \) is a continuous function). Suppose that for every \(\varphi \in C^\infty_c(\mathbb{R}^n) \)

\[\int_{\mathbb{R}^n} f(x) \varphi(x) \, dx = 0. \]

Prove that \(f(x) = 0 \) for every \(x \). [You may use without proof the fact that for every \(x_0 \in \mathbb{R}^n \) and \(\epsilon > 0 \), there is a function \(\chi \in C^\infty_c(\mathbb{R}^n) \) with the following properties: (1) \(\chi(x) \geq 0 \) for all \(x \), (2) \(\int_{\mathbb{R}^n} \chi(x) \, dx = 1 \), (3) \(\text{supp}(\chi) \subset B(x_0, \epsilon) \).]

4. Consider the initial value problem \(u_t + uu_x = 0 \) and \(u(0, x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \in [0, 1] \\ 0 & \text{if } x > 1 \end{cases} \). Consider the piecewise continuous function \(u \) defined by

\[u(t, x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{t}{2} & \text{if } 0 < x < t \\ 1 & \text{if } t < x < 1 + \frac{t}{2} \\ 0 & \text{if } x > 1 + \frac{t}{2} \end{cases} \text{ for } 0 \leq t < 2, \]

\[u(t, x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{x}{t} & \text{if } 0 < x < \sqrt{2t} \\ 0 & \text{if } x > \sqrt{2t} \end{cases} \text{ for } t \geq 2. \]

Prove that \(u \) is a weak solution to the given initial value problem. [You may prove it using a result proved in HW about the Rankine–Hugoniot jump condition, provided that the result is clearly stated.]

5. Consider the boundary value problem for the Poisson equation in a bounded open domain \(\Omega \subseteq \mathbb{R}^2 \) with smooth boundary \(\partial\Omega \):

\[\begin{cases} \partial^2_{xx} u + \partial^2_{yy} u = f & \text{in } \Omega, \\ u \mid_{\partial\Omega} = 0, \end{cases} \quad (1) \]

where \(f \) is a smooth function.

(a) Prove that there exists a constant \(C_1 > 0 \) such that the following inequality holds for any \(C^1 \) function \(u \) with \(u \mid_{\partial\Omega} = 0. \)

\[\int_{\Omega} u^2(x, y) \, dx \, dy \leq C_1 \int_{\Omega} [(\partial_x u)^2 + (\partial_y u)^2](x, y) \, dx \, dy. \]

(b) Using part (a), prove that there exists a constant \(C_2 > 0 \) such that the following inequality holds for any \(C^2 \) solution \(u \) solving (1):

\[\int_{\Omega} [(\partial_x u)^2 + (\partial_y u)^2 + u^2](x, y) \, dx \, dy \leq C_2 \int_{\Omega} f^2(x, y) \, dx \, dy. \]

[You may use the result in part (a) to deduce part (b) even if you did not solve part (a).]