1. (5 points) Find the solution to the differential equation \(u'(t) = -\frac{2t}{1+t^2}u(t) + 1 \) with initial condition \(u(0) = 1 \).

2. (5 points) Let \(F : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a smooth function. Suppose \(u : (-1, 1) \rightarrow \mathbb{R}^n \) is a continuous function such that for every \(t \in (-1, 1) \), the following holds:
\[
 u(t) = u_0 + \int_0^t F(u(\tau)) \, d\tau.
\]
Show that \(u \) is differentiable and satisfies:
\[
 u'(t) = F(u(t)), \quad u(0) = u_0
\]
for \(t \in (-1, 1) \).

3. (10 points) Given an ODE
\[
u'(t) = F(u(t)), \quad u(0) = u_0,\]
define
\[
T_- := \inf\{T : \text{a solution } u(t) \text{ exists for } t \in (T, 0]\}
\]
and
\[
T_+ := \sup\{T : \text{a solution } u(t) \text{ exists for } t \in [0, T])\}.
\]
(a) Consider the ODE for \(u : I \subset \mathbb{R} \rightarrow \mathbb{R} \).
\[
 u'(t) = (u(t))^2, \quad u(0) = u_0.
\]
For each \(u_0 \), find \(T_- \) and \(T_+ \). Conclude that the ODE has a global solution (i.e., a solution \(u : \mathbb{R} \rightarrow \mathbb{R} \)) if and only if \(u_0 = 0 \).
(b) Find a smooth function \(F : \mathbb{R} \rightarrow \mathbb{R} \) such that for some \(u_0 \in \mathbb{R} \), the solution to
\[
 u'(t) = F(u(t)), \quad u(0) = u_0
\]
has \(T_- \), \(T_+ \) both finite.

4. (10 points, cf. Problem 1 on p. 54) Find a periodic solution to \(u'(t) = -u(t) + \sin t \). Is the solution you found stable? Justify your answer.

5. (10 points) Consider linear equations of the form
\[
u'(t) = a(t)u(t) + f(t)
\]
with \(a : \mathbb{R} \rightarrow \mathbb{R}, f : \mathbb{R} \rightarrow \mathbb{R} \) smooth.
(a) Give an example of \(a \) and \(f \) which are both periodic of period \(T \) such that there are no periodic solutions of period \(T \). Justify your answer.
(b) Give an example of \(a \) and \(f \) which are both periodic of period \(T \) such that there are infinitely many distinct periodic solutions of period \(T \). Justify your answer.

6. (10 points) Let \(I \subset \mathbb{R} \) be an open interval. Suppose \(F : I \to \mathbb{R} \) is a bounded function and suppose there exists \(C > 0 \) such that for every \(x, y \in I \),
\[
|F(x) - F(y)| \leq C|x - y|\log|x - y|.
\]
Consider now the initial value problem
\[
\begin{align*}
u'(t) &= F(u(t)), & u(0) &= u_0,
\end{align*}
\]
where \(F(u_0) = 0 \) for some \(u_0 \in I \). Show that \(u(t) = u_0 \) is the unique solution to the initial value problem above.

7. (10 points) Consider the initial value problem
\[
\begin{align*}
u'(t) &= v(t), & v'(t) &= -4u(t), & u(0) &= 0, & v(0) &= 2.
\end{align*}
\]
(a) Show, by explicit computation, that \(u(t) = \sin 2t, v(t) = 2\cos 2t \) is a solution.
(b) Consider the Picard’s iteration (i.e., \(u_0(t) = 0, v_0(t) = 2 \) and \(u_k(t) = \int_0^t v_{k-1}(s) \, ds, v_k(t) = 2 - 4\int_0^t u_{k-1}(s) \, ds \) for \(k \geq 1 \)). Show explicitly that there exists \(\epsilon > 0 \) such that for \(|t| < \epsilon \), \(u_k(t) \to \sin 2t \), \(v_k(t) \to 2\cos 2t \) as \(k \to \infty \). [Hint: Compare \(u_k(t) \) with the Taylor’s series of \(\sin 2t \) around \(t = 0 \). You may use any results from 61CM provided they are clearly stated.]

8. (Bonus problem, 10 points) Show that
\[
u'(t) = \sqrt{u(t)}, \quad u(0) = 0
\]
has infinitely many distinct solutions \(u : [0, 1] \to \mathbb{R} \).