1. We assume without loss of generality that $a_n \neq 0$. Let us define n variables by $u_1 = y, u_2 = y', ..., u_n = y^{(n-1)}$. It is easy to check that these satisfy the first-order linear system $u'(t) = Au(t)$ where

$$A = \begin{pmatrix} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ -\frac{a_0}{a_n} & -\frac{a_1}{a_n} & -\frac{a_2}{a_n} & \ldots & -\frac{a_{n-1}}{a_n} \end{pmatrix}$$

We see then that

$$\chi_A(\lambda) = \det(\lambda I - A) = \frac{1}{a_n} (a_n\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0)$$

The Jordan normal form of A will consist of Jordan blocks with eigenvalues the distinct roots $\lambda_1, ..., \lambda_m$ of the polynomial $a_n\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0$. Therefore the first coordinate of $u(t)$, which is $y(t)$, will generally be expressible in the form

$$y(t) = \sum_{j=1}^{m} p_j(t)e^{\lambda_j t}$$

where $p_j(t)$ is a polynomial of degree less than the multiplicity ν_j of the root λ_j in $a_n\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0$.

2. We give pictures of the phase curves and the vector fields in each case. For parts (b) and (c), the phase curves lie in two-dimensional planes, so we give pictures of the phase curves in these planes instead.

(a)
3. We know that A, B are similar to the rotation matrices

$$R_\alpha = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}, \quad R_\beta = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$$

respectively. Then the two systems are topologically equivalent if and only if $u'(t) = R_\alpha u(t)$ and $u'(t) = R_\beta u(t)$ are.

The flow of the former is $\phi_t(u) = e^{R_\alpha t}u = R_\alpha t u$ and of the latter $\psi_t(u) = R_\beta t u$. Suppose that the two systems are topologically equivalent via the homeomorphism $f : \mathbb{R}^2 \to \mathbb{R}^2$. Then we have

$$f(\phi_t(u)) = \psi_t(f(u)) \iff f(R_\alpha t u) = R_\beta t f(u)$$

Then for $t = \frac{2\pi}{\alpha}$, we obtain $f(u) = R_{2\pi\beta/\alpha} f(u)$ for all u and thus $R_{2\pi\beta/\alpha} = I \iff \frac{\beta}{\alpha} \in \mathbb{Z}$. By the same argument, setting $t = \frac{2\pi}{\beta}$, we get $\frac{\alpha}{\beta} \in \mathbb{Z}$. We conclude that we must have $\alpha = \pm \beta$. Both are possible, since we can easily
check that taking \(f = Id \) when \(\alpha = \beta \) or \(f \) to be the reflection along the \(x \)-axis when \(\alpha = -\beta \) we indeed get topological equivalences.

4. Suppose that \(f \) gives a topological equivalence between the two systems. Let \(\phi_t \) be the flow of \(u'(t) = Au(t) \) and \(\psi_t \) the flow of \(u'(t) = Bu(t) \). Then \(f(\phi_t(u)) = \psi_t(f(u)) \iff f(e^{At}u) = e^{Bt}f(u) \). In particular, for \(u = 0 \) we get \(f(0) = e^{Bt}f(0) \Rightarrow f(0) = 0 \) (the eigenvalues of \(e^{Bt} \) are \(e^\lambda \), where \(\lambda \) is an eigenvalue of \(B \), and therefore cannot be equal to 1). Then if \(u \) is in the stable subspace \(V_- \cong \mathbb{R} \) of the first system we have \(e^{At}u \to 0 \) as \(t \to +\infty \) and thus \(e^{Bt}f(u) \to f(0) = 0 \) as \(t \to +\infty \), i.e. \(f(u) \) lies in the stable subspace \(W_- \cong \mathbb{R}^2 \) of the second system. The same argument works for the inverse of \(f \), which in particular yields a continuous, injective map \(W_- \cong \mathbb{R}^2 \not\to \mathbb{R} \cong V_- \).

We show that such a map cannot exist. Consider the \(x \)-axis \(L \) inside \(\mathbb{R}^2 \). Then \(g|_L \) is a continuous, injective map from \(\mathbb{R} \) to \(\mathbb{R} \). In particular, it has to be monotonic and its image must be an open interval around 0. The same argument for the \(y \)-axis \(L' \) shows that \(g|_{L'} \) has image an open interval around 0. This implies that \(g(L) \) and \(g(L') \) intersect in more than one point, violating the injectivity of \(g \). We thus have a contradiction.

5. Let us take \(A = 0 \) and \(G(x_1, \ldots, x_n) = (x_1^2, \ldots, x_n^2) \). These clearly satisfy the two requirements. We see that any solution to \(u'(t) = Au(t) + G(u(t)) \) satisfies \(u_i(t) = \frac{a_i}{1-a_i} \) where \(a_i \) is the \(i \)-th coordinate of the initial condition \(u_0 \). For any \(\epsilon > 0 \), taking \(u_0 = \frac{\epsilon}{2} e_1 \) which satisfies \(||u_0|| < \epsilon \), we get \(u(t) = \frac{1}{2-\epsilon} e_1 \Rightarrow ||u(t)|| = \frac{1}{2-\epsilon} \to +\infty \) as \(t \to \frac{2}{\epsilon} \).

6. (a) This is algebraic manipulation using the formulas \(x(t) = r(t) \cos \theta(t) \) and \(y(t) = r(t) \sin \theta(t) \). For example, dropping the \(t \) from the notation for brevity, we have \(r^2 = x^2 + y^2 \) and hence

\[
r' = x'x + y'y = x^2 - r(x^2 + xy) + y^2 + r(xy - y^2) - x^2y = r^2(1-r)
\]

Dividing by \(r \), we get \(r'(t) = r(t)(1-r(t)) \). This covers the case \(r(t) = 0 \) for some \(t \) too, since the origin is an equilibrium point for the system. We can derive the other formula analogously.

(b) In polar coordinates we need to show equivalently that \(r(t) \to 1 \) and \(\theta(t) \to 2n\pi \) as \(t \to +\infty \) for some integer \(n \).

We can solve the first equation for \(r(t) \) by using separation of variables to obtain \(\frac{r(t)}{r(t)-1} = \frac{r(0)}{r(0)-1} e^t \), which implies that \(r(t) \to 1 \) as \(t \to +\infty \) assuming \(r(0) \neq 0 \).

If \(R(t) \) is an anti-derivative for \(r(t) \), then we can use separation of variables
again together with the double-angle formula \(1 - \cos \theta = 2 \sin^2 \left(\frac{\theta}{2} \right)\) to solve the second equation and get \(\cot \left(\frac{\theta(t)}{2} \right) = -R(t) + C\) for some constant \(C\).

It is clear that since \(r(t) \to 1, R(t) \to +\infty\) as \(t \to +\infty\), which implies that \(\theta(t) \to 2n\pi\) as desired.

(c) Note that if the initial condition is \((r_0, \theta_0)\), where for example we can take \(r_0 < 1, \theta_0 > 0\) both close to 1 and 0 respectively, then since both \(r(t), \theta(t)\) are increasing by the equations of our system, we will have

\[
\theta'(t) = r(t)(1 - \cos \theta(t)) \geq r_0(1 - \cos \theta_0) > 0
\]

as long as \(\theta(t) < \pi\) for example. This clearly implies that for some time \(t_0\) we will have \(\theta(t_0) = \frac{\pi}{2}\) and hence the solution will move “far” from \((1,0)\). Therefore \((1,0)\) is not a stable equilibrium point.