For problem 1, consider the ODE
\[u'(t) = F(u(t)), \tag{1} \]
where \(F : \mathbb{R}^n \to \mathbb{R}^n \) is smooth.

1. (10 points) Prove that a bounded \(\omega \)-limit set is connected, i.e., show that if \(\Omega \) is a bounded \(\omega \)-limit set (which is therefore closed by what we have discussed), it cannot be written as \(\Omega = \Omega_1 \cup \Omega_2 \), where \(\Omega_1 \) and \(\Omega_2 \) are disjoint closed sets. [Hint: Suppose we have such \(\Omega_1 \) and \(\Omega_2 \), first show that they must be separated by some positive distance \(\delta > 0 \). Then show by the intermediate value theorem that there must be a point in \(\Omega \) which is distance \(\frac{\delta}{2} \) away from \(\Omega_1 \). Conclude that this is a contradiction.]

2. (30 points) Investigate further the following example from lectures: Consider the ODE
\[x'(t) = \sin x(t)\left(-\frac{1}{10}\cos x(t) - \cos y(t)\right), \]
\[y'(t) = \sin y(t)\left(\cos x(t) - \frac{1}{10}\cos y(t)\right). \]

(a) Show that \(\left(\frac{\pi}{2}, \frac{\pi}{2}\right), (0,0), (0, \pi), (\pi,0) \) and \((\pi, \pi) \) are all unstable equilibrium points.

(b) Consider initial data \((x(0), y(0)) \in (0, \pi) \times (0, \pi) \setminus \{(\frac{\pi}{2}, \frac{\pi}{2})\} \). Show that the \(\omega \)-limit set \(\Omega \subset Q \), where \(Q \) is defined to be the square bounded by \(x = 0, \pi \) and \(y = 0, \pi \). [Hint: Consider the function \(\sin x(t)\sin y(t) \).]

(c) Take the assumptions and notations as above. Show that \(\Omega \neq \{e\} \) for some equilibrium point \(e \). [Hint: Show that this would contradict the stable manifold theorem.]

(d) Take the assumptions and notations as above. Show that \(\Omega \) must contain at least one closed line segment of \(Q \). [Hint: Assume not. Use problem 1 and other properties of \(\omega \)-limit sets that we proved to show that \(\Omega = \{e\} \) for some equilibrium point \(e \).]

(e) (Finally, you do not have to turn this in, but you may want to think about why in fact \(\Omega = Q \).)