1. We have, since \(u(0) = 0 \),

\[
\frac{d}{dt}u(t) = \cos\left(\frac{2t}{\pi}\right) (1 + u(t)^2) \implies \frac{du}{1 + u^2} = \cos\left(\frac{2t}{\pi}\right) \implies
\]

\[
\int_0^t \frac{du(\tau)}{1 + u(\tau)^2} d\tau = \int_0^t \cos\left(\frac{2\tau}{\pi}\right) d\tau \implies
\]

\[
\arctan(u(t)) - \arctan(u(0)) = \frac{\pi}{2} \sin\left(\frac{2t}{\pi}\right) \implies
\]

\[
u(t) = \tan\left(\frac{\pi}{2} \sin\left(\frac{2t}{\pi}\right)\right)
\]

For \(u(t) \) to be defined, we need \(-\frac{\pi}{2} < \frac{\pi}{2} \sin\left(\frac{2t}{\pi}\right) < \frac{\pi}{2}\) and thus \(-\frac{\pi^2}{4} < t < \frac{\pi^2}{4}\).

The maximal interval of existence is \(J = \left(-\frac{\pi^2}{4}, \frac{\pi^2}{4}\right) \).

2. If \(\alpha \in (0, 1) \), then we may find using separation of variables or by checking directly that \(u(t) = ((1 - \alpha)t)^{\frac{1}{1-\alpha}} \) and \(u(t) \equiv 0 \) are both solutions to the equation.

Let \(F(x) = |x|^{\alpha} \). If \(\alpha \geq 1 \), then the function \(G(x) = x^{\alpha} \) is continuously differentiable for \(x \geq 0 \) with derivative \(G'(x) = \alpha x^{\alpha-1} \). Thus for \(|y|, |x| < r \) we have

\[
|F(x) - F(y)| = |G(|x|) - G(|y|)| = \left| \int_{|y|}^{|x|} \alpha s^{\alpha-1} ds \right| \leq \alpha \max\{|x|^\alpha-1, |y|^{\alpha-1}\} ||x| - |y|| \leq L|x - y|
\]

where \(L = \alpha r^{\alpha-1} \).

Therefore, \(F \) satisfies the Lipschitz condition of the Picard-Lindelöf theorem, and the solution to \(u' = F(u) \) with \(u(0) = 0 \) is unique and since \(u \equiv 0 \) is a solution, it has to be the only solution to the initial value problem.

3. Let \(F \) be the vector field in question.

We first find the Hamiltonian \(H(p, q) \) for the system. We have

\[
-q - q^3 = -\frac{\partial H}{\partial q} \implies H(p, q) = \frac{q^2}{2} + \frac{q^4}{4} + f(p)
\]

Therefore we obtain from the second relation that

\[
p = \frac{\partial H}{\partial p} \iff f'(p) = p \iff f(p) = \frac{p^2}{2} + C
\]
Hence we may take $H(p, q) = \frac{p^2}{2} + \frac{q^2}{2} + \frac{q^4}{4}$.

Since H is a Hamiltonian, we have $\langle \nabla H, F \rangle = 0$ and moreover it is clear that H has a strict local minimum at $(0, 0)$. It is thus a Lyapunov function and by Lyapunov’s theorem it follows that $(0, 0)$ is a stable equilibrium.

4. (a) False. The solution to $u'(t) = a(t)u(t)$ is given by $u(t) = e^{\int_0^t a(s)ds}u(0)$.

For $a(t) = \cos t$ with period $T = 2\pi$ and any $u(0) \neq 0$ we obtain $u(t) = e^{\sin t} u(0)$, which is always periodic of period $T = 2\pi$ and not identically zero.

(b) True. Let $\epsilon > 0$ be given. Then there exist:

- $\delta_\infty > 0$ such that $|f(t) - f(s)| < \frac{\epsilon}{3}$ whenever $|t - s| < \delta_\infty$, since f being continuous on a closed interval implies that it is uniformly continuous.

- $N > 0$ such that $|f_n(t) - f(t)| < \frac{\epsilon}{3}$ for all t and $n > N$.

- For each $i = 1, ..., N$, $\delta_i > 0$ such that $|f_n(t) - f_n(s)| < \epsilon$ for all $|t - s| < \delta_i$.

Let $\delta = \min\{\delta_1, ..., \delta_N, \delta_\infty\}$.

Let $|t - s| < \delta$. If $n \leq N$, we have $|f_n(t) - f_n(s)| < \epsilon$. If $n > N$, then

$$|f_n(t) - f_n(s)| \leq |f_n(t) - f(t)| + |f(t) - f(s)| + |f_n(s) - f(s)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

We conclude that $\{f_n\}$ is equicontinuous.

(c) True. This is Newton’s equation with $V(y) = \frac{y^4}{4}$. Then $V(y) \geq 0$ for all y and by Theorem 2.5 in the notes for Hamiltonian systems it follows that the maximal interval of existence is \mathbb{R}.

(d) True. We know that $y(t) = \frac{1}{1+t}$ satisfies $y' = y^2$ with $y(0) = 1$ and its maximal interval of existence is $J = (-\infty, 1)$. But then

$$y'' = (y')' = (y^2)' = 2yy' = 2y^3 = -V'(y)$$

where we may take $V(y) = -\frac{y^4}{2}$. Therefore, for $V(y) = -\frac{y^4}{2}$ we have a solution with maximal interval of existence $(-\infty, 1)$.

2