1. (10 points) Let
\[A = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \]
and consider the initial value problem
\[x'(t) = Ax(t), \quad x(0) = x_0. \]
Find all values of \(a, b \in \mathbb{R} \) such that
\begin{enumerate}
\item (a) 0 is a stable equilibrium.
\item (b) 0 is an asymptotically stable equilibrium.
\item (c) 0 is an unstable equilibrium.
\end{enumerate}
Justify your answers.
Finally, choose some values of \(a \) and \(b \) such that (c) above holds and sketch the corresponding phase portrait.

2. (10 points) Let \(A \) be a \((4 \times 4)\) complex matrix with eigenvalues \(-1 \pm i, \pm i\).
\begin{enumerate}
\item (a) Show that there exists a non-zero periodic solution \(x(t) \) to \(x'(t) = Ax(t) \).
\item (b) Show that there exists a non-zero solution \(x(t) \) to \(x'(t) = Ax(t) \) such that \(\|x(t)\| \to 0 \) as \(t \to \infty \).
\item (c) Show that there is an open and dense subset \(U \subset \mathbb{C}^4 \) such that if \(x_0 \in U \), then the unique solution to
\[x'(t) = Ax(t), \quad x(0) = x_0 \]
is not periodic and does not satisfy \(\|u(t)\| \to 0 \) as \(t \to \infty \).
\end{enumerate}

3. (20 points) Consider the system
\[\begin{cases}
y''_1(t) = -\omega_1^2 y_1(t), \\
y''_2(t) = -\omega_2^2 y_2(t),
\end{cases} \]
where \(\omega_1, \omega_2 \in \mathbb{R} \setminus \{0\} \) satisfies \(\frac{\omega_1}{\omega_2} \notin \mathbb{Q} \) and \(y_1, y_2 : \mathbb{R} \to \mathbb{R} \) are the unknowns. This system describes two particles attached to two different springs. The purpose of the problem is to show that for \(\omega_1, \omega_2 \) as above, the solution is in general not periodic, but is always "almost" periodic (in a sense to be made precise below).
(a) Show that $(y_1)^2 + \omega_1^{-2}(y'_1)^2$ and $(y_2)^2 + \omega_2^{-2}(y'_2)^2$ are independent of t.

(b) From now on, we fix the initial conditions $y_1(0), y'_1(0), y_2(0), y'_2(0)$ so that

$$(y_1(0))^2 + \omega_1^{-2}(y'_1(0))^2 \neq 0, \quad (y_2(0))^2 + \omega_2^{-2}(y'_2(0))^2 \neq 0.$$

Define an equivalence relation $x \sim y$ if $x - y \in 2\pi\mathbb{Z} = \{2\pi n : n \in \mathbb{Z}\}$. Define also the distance on \mathbb{R}/\sim by $d(\theta, \phi) = \min_{\phi' \sim \theta} |\theta' - \phi'|$. (Note that this depends only on the equivalence classes of θ and ϕ.) Let $(\theta_1, \theta_2) : \mathbb{R} \to \mathbb{R}/\sim$ be defined by

$$\cos \theta_i(t) = \frac{y_i(t)}{\sqrt{(y_i(t))^2 + \omega_i^{-2}(y'_i(t))^2}},$$

$$\sin \theta_i(t) = \frac{\omega_i^{-1}y'_i(t)}{\sqrt{(y_i(t))^2 + \omega_i^{-2}(y'_i(t))^2}},$$

for $i = 1, 2$.

By deriving equations for θ_1 and θ_2, or otherwise, show that for $i = 1, 2$, $(y_i, y'_i) : \mathbb{R} \to \mathbb{R}^2$ is periodic of period $\frac{2\pi}{\omega_i}$, but the solution $(y_1, y'_1, y_2, y'_2) : \mathbb{R} \to \mathbb{R}^4$ is not periodic.

(c) Show that for every $\delta > 0$, there exists $T \in \mathbb{R}$ such that $d(\theta_1(t + T), \theta_1(t)) < \delta$ and $d(\theta_2(t + T), \theta_2(t)) < \delta$ for every $t \in \mathbb{R}$. [Hint: First show by a pigeon hole principle argument that there exist $m_1, m_2 \in \mathbb{N}$ with $m_1 < m_2$ such that $d(\frac{2\pi m_1 \omega_1}{\omega_2}, \frac{2\pi m_2 \omega_1}{\omega_2}) < \delta$. Conclude that $d(0, \frac{2\pi (m_2 - m_1) \omega_1}{\omega_2}) < \delta$. Let $m = m_2 - m_1$. Now take $T = \frac{2\pi m}{\omega_2}$.]

(d) We say that a function $f : \mathbb{R} \to \mathbb{R}^n$ is almost periodic if for every $\epsilon > 0$, there exists $T > 0$ such that $\|f(t + T) - f(t)\| < \epsilon$ for all $t \in \mathbb{R}$. Conclude, using part (c) or otherwise, that the solution $(y_1, y'_1, y_2, y'_2) : \mathbb{R} \to \mathbb{R}^4$ is almost periodic.

4. (10 points) Problem 2.5 in Brendle.

5. (10 points) Problem 2.6 in Brendle.