MIDTERM 2 REVIEW CHECKLIST

The midterm will only concern material regarding linear algebra and linear ODEs that we discussed. Here is a list of things that we have discussed:

Here is a list of main results:

• On linear algebra, we proved
 – exp is well-defined: $e^{A+B} = e^A e^B$ if $AB = BA$.
 – Any matrix is similar to an upper triangular matrix.
 – Diagonalizable matrices are dense.
 – Cayley–Hamilton theorem.
 – Decomposition of C^n into generalized eigenspaces for any given complex matrix.
 – Any matrix can be decomposed uniquely into its diagonalizable and nilpotent part, and the two parts commute.
 – Every nilpotent matrix is equivalent to one in a block diagonal form where each block is one of the following:

$$J_m := \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 0 & 1 \\
0 & \ldots & \ldots & 0 & 0
\end{bmatrix}$$

 – Every complex matrix is equivalent to a Jordan canonical form.

• On linear ODEs, we proved
 – $x'(t) = Ax(t)$, $x(0) = x_0$ can be solved by $x(t) = e^{At}x_0$.
 – General form of solutions to linear ODEs.
 – For linear real ODEs $u'(t) = Au(t)$ such that A has no eigenvalues on the imaginary axis, \mathbb{R}^n decomposed into stable and unstable subspaces.

Here are some things that we should be able to do using the techniques and methods that we have discussed:

• Compute operator norms of matrices and/or proving properties of operator norms.

• Given a (complex) matrix A,
 – Determine whether it is diagonalizable.
 – Find its eigenvalues, eigenvectors and generalized eigenvectors.
 – Find its Jordan canonical form (and find a basis such that it is in Jordan canonical form after a change of basis).
 – Find L and N such that $A = L + N$, L diagonalizable, $N'' = 0$ and $LN = NL$.
 – Compute e^{At}.

• Given a matrix A, or properties about its eigenvalues/eigenfunctions, sketch phase portraits for the corresponding linear ODE $x'(t) = Ax(t)$.

• Solving linear ODEs using exponentials of matrices.

• Determine whether 0 is a stable (and/or asymptotically stable) equilibrium to a linear ODE.

Finally, you are encouraged to review all the homework problems, as well as problems that are marked as Exercise in the notes.