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ASYMPTOTIC PROPERTIES OF MULTIPERIOD CONTROL
RULES IN THE LINEAR REGRESSION MODEL*

By JoHN B. TAYLOR!

1. INTRODUCTION

IN MULTIPERIOD CONTROL PROBLEMS with unknown parameters, current deci-
sions affect not only current performance, but also the amount of information
that is obtained about the unknown parameters. The purpose of this study is
to investigate such aspects of multiperiod control in a simple linear regression
model with one unknown parameter, where the independent variable is set at
certain levels in order to bring the dependeunt variable to some desired level.
The approach uses the methods and criteria of statistical estimation theory (such
as strong consistency and efficiency) to investigate the properties of various
control rules. This approach seems particularly useful in control problems of
this type where estimation of unknown parameters plays an important role.

Previous investigations of this type of multiperiod control problem (Aoki[2]),
Zellner [9], and Prescott [5]) have been from a Bayesian point of view. By
specifying a loss function, prior distributions on the parameters, and a distribu-
tion for the random disturbance term, a Bayes control rule can be calculated,
in principle, with the methods of dynamic programming. However, as these
studies have shown, calculation or even characterization of Bayes control rules
has proved quite difficult. The approach of this study is non-Bayesian. The
methods and results should complement the usual Bayesian viewpoint in even-
tually leading to reasonable decisions in practical problems.

In Section 2 the model is introduced and two control rules are defined. In
Section 3 we prove that these control rules converge with probability 1 to the
value which would be used if the unknown parameter were known with certainty.
In Section 4 we derive the asymptotic distribution of the control rules and
parameter estimates, and in Section 5 we show that these control rules lead to
parameter estimates which have as small an asymptotic variance as any other
control rule in a fairly wide class. In particular this means that control rules
which are designed for experimentation do not give parameter estimates which
are any better asymptotically than the more simple control rules of this paper.

2. THE MODEL AND DEFINITION OF CONTROL RULES

We consider a linear regression model represented by
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(1) X, = Bu, + ¢, t=12...,

where the control variable u, is used to control the endogenous variable x, about
some desired level a, where 8 is an unknown parameter, and where {¢,} is an
independent sequence of (unobservable) random variables with zero mean and
finite variance ¢2. Thus, we assume that the slope is unknown and the intercept
is known with certainty. Since the intercept is known we can assume that it is
zero without loss of generality.® This same model has been investigated from a
Bayesian viewpoint by Prescott [5].

We define a control rule to be a sequence {u,}, the elements of which are chosen
sequentially on the basis of past observations. More specifically each element of
{u,} is a function of all random variables observed prior to time ¢#; that is

(2) ut:ut(xlr"'yxt—l;uly"-’ut—l)'

Thus a particular control rule can be thought of as a set of instructions which
specifies the control action to take at each point in time for all possible develop-
ments of the process until that point in time. In this study we consider two
control rules satisfying this definition.

One control rule that is particularly easy to calculate is the sequence defined
by u, fixed and nonzero, but otherwise arbitrary, and

(3) Upp1 = —~ r=1,2,...,

t

where ﬁ, is the least squares estimate of 8 at time ¢ defined by
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This is the value of the control rule which would be used if one treated 8 as
known with certainty and equal to the least squares estimate. We call this rule
the least squares certainty equivalence control rule. It is of particular interest to
investigate the properties of this rule since we expect that it is frequently used
in practice.

A related control rule would be preferred to the least squares certainty equiva-
lence control rule if there were some prior knowledge about the unknown
parameter 8. This prior knowledge might be due to some observations which
have been made before the control problem starts. If the prior knowledge of 8
could be represented by a normal prior distribution N(by, 042) and if ¢, were dis-
tributed according to N(0, ¢2) with ¢? known, then it can be shown* that the
posterior distribution at any time ¢ will also be normal N(b,, g,2) where

3 If the known intercept were « # 0 then, by redefining the endogenous variable x,*=x,—«a
and the target a* = a — a, the model could be reduced to the zero intercept case of equation
(1.

4 See Raiffa and Schlaifer [6 (337)] for this calculation,
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If quadratic loss were the criterion of estimation, then the Bayes estimate of 8
under these distribution assumptions would be the mean of the posterior distribu-
tion b,. A control rule using this prior information is defined by the sequence

7) U =L, t=0,1,..
( w =g

We call this control rule the Bayesian certainty equivalence control rule. In our
study the Bayesian approach is only used to define the control rule (7); the
estimate b, defined by (5) can alternatively be interpreted as a weighted average
between the least squares estimate and a prior guess.

The theorems which follow are not based on the distribution assumptions of
the Bayesian method. These assumptions are only used to suggest the Bayesian
certainty equivalence control. The following analysis assumes only that the
error terms are independently and identically distributed with zero mean and
finite variance. Subject’to these conditions the distribution may have any form.

3. CONVERGENCE OF CONTROL RULES

In this section we show that under suitable conditions the two control rules
defined above converge to the value a/8 with probability 1. We choose to prove
convergence with probability 1 rather than convergence in probability because
we would like the control to converge to the true value and remain there with
high probability. This is guaranteed by convergence with probability 1, but not
by convergence in probability. The latter says only that, for any sufficiently
large fixed t, the probability that the control is near its true value is arbitrarily
close to one. Convergence in probability is enough in most econometric investi-
gations because one is usually referring to some fixed sample. Further, the use
of strong convergence allows one to use some non-probabilistic results for arbi-
trary sequences of numbers. Once a sequence of random variables is shown to
have a certain property with probability 1, we then can ignore all sample points
where the property does not occur and apply non-probabilistic results to the
remaining points.

We first prove three preliminary lemmas, of which the first two are non-
probabilistic.

LEMMA 1. Let {z,} be an arbitrary sequence of numbers such that z; # 0. If
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(8) o=y [V,
i=1 Ez;_,

then s, < 2/z} for every t.

PRrOOF. Define

t-k
= 2 27, k=1,2...,t—1,r,=0
i=
and
2
z; .
wi:[.—-—_—’———’-—], i=1,2,...,¢;
(re-iy1 + 29)
then s, = X%, w;. Since, for any n > 0, z;,, is not an argument of w;, we can
use backward induction to maximize s, with respect to z, z_q, ..., z;, in turn

and thus establish an upper bound. Let

(9) Vkst = maX [Z wil,

zy zy i=t—k

.....

for k=0,1,...,¢t— 2. Then s, < 1/z} + v,_, and to prove the lemma we
must calculate v,_;.

Considering the last term in s,, we have by differentiation,

22
(10) 1 = max w, = max - = 1
% Zt (’1 ’+ Z ) ar,

where a; = 4. Therefore, since r; = r, - z2_;, by differentiation,

’

2 1
(11) vy, =max (w,_; + 1) = max[ Zi-1 + ]
Z—1 ! 7 L (ry + 23—1)2 ay(r, + z2-))
_ 1
ar, ’

where a, = [1 + (a; — 1)/(a; + 1)]>. Now suppose that vy = 1/a;r, for some
k,3<k<t— 1. Then

z2 1
(12) vy = max (W, + vi) = max[ t—k + ]
+ Zi—p 4 Zi—k (rk+1 + zr2_k)2 ak(rk+1 + th—k)
=1
A1k 41

where a;.1 = [1 + (ax — 1)/(ar + 1)]I3, using the fact that the maximand in
equation (12) is equivalent to that of equation (11) with a replacing a; and
ri41 teplacing r,. Setting k£ = ¢ — 2 in the recursive equation (12), we have that
v;_1 = 1/(a,_12}), since r,_y = z}. Therefore

5 < = <1+ >
Zl a;_1
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and since a,_; > 1 we have s, < 2/z3.

LEMMA 2. Let {z,} be a sequence of numbers and let {a,} be an increasing
sequence of positive numbers such that Y., z;/a; converges,
(i) If a;— oo, then lim,_, 1/a, > iy z; = 0,
(i) If a, > M < oo, then lim,_, 1/a, 3} z; exists.

ProOF. Part (i) is Kronecker’s lemma. (See Feller [3(239)]). We need only
consider part (ii). Define s, = 0 and let

tog
(13) s, = 3 =L, r=1,2...,
=1 aq;

then
(14) z, = a,(s; — 5;_1) »
and therefore

1 < 1 <4 1 =1
(1%) — 2 =— 2, a(s; — Sio1) = 8§ — — 2 (@i — a;)s; -

a; i=1 a, i=1 a, i=1

Now, by assumption s, converges to s, say, so that to complete the proof of the
lemma we must show that the second term on the right hand side of (15) con-
verges.
For an arbitrary ¢ > 0 choose ¢, so that, for all £ > #,, |s, — 5| <e. Sucha
t, exists by the convergence assumption. We then have
to-1

1 A 1 1
(16)  —- 20 (a1 — a;)s; = —(a, — ap)s + — 2 (@1 — a)(si — 5)
a, i1 a, a, i=1

1 =1
+ = 20 (@ — @) (s — 9) .
a i=t
Now, because a, converges and ¢, is fixed, the first two terms on the right hand
side converge. Further

-1
(17) LS @ — a)s — 9| < (@ —a)e <,
a; i=t a,
and, since ¢ is arbitrary, the third term in (16) is arbitrarily small. Thus
1/a,>>%-; z; converges.
The following lemma is probabilistic and uses the martingale convergence
theorem. (See Feller [3 (236)]).

LEMMA 3. Let {¢;} be an independent sequence of random variables with Ee;=0
and Ee} = ¢* < oo and let {u;} be a sequence of random variables with u, fixed
and nonzero and ¢; independent of {u;, u;_1, . . ., Uy, &_1, + - ., €1}, i =2,3,. ... Then

Loue
(18) S = Z] il i
i=
2 uj
Jj=1
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converges with probability 1.

Proor. We have that

U;E; U;
(]9) E-—il-ﬂl——s,'_],-..,sl =E-i—’S,~_1,...,Sl E(si|S,~_1,...,S1)

> U 2 U
Jj=1 Jj=1
Uu;

:E'T'—Si—l"“’sl ‘0

>

Jj=1

=0

since |u; |/ X 5-y w3 < 1/luy|. Thus {s,} is a martingale and to use the martingale
convergence theorem it must be shown that Es? remains bounded for all z. From
the independence assumptions we have

’

‘ A \2 R
(20) By M8\ = pp M\ < g2 2
=1 2u > uj Ui
Jj=1 j=1

~r2

where the last inequality follows from Lemma 1 with z; =u;. Thus the variance
remains bounded for all ¢+ and by the martingale convergence theorem s, con-
verges with probability 1.

The following theorem contains the main convergence results about the multi-
period control rules. The proof involves showing that, with probability 1, each
control rule does not stop obtaining information about the unknown parameter.

THEOREM 1. In the model x, = Bu, + ¢, if {e} is an independent sequence of
random variables with Ee, = 0 and Ee} = ¢ < oo and 8 # 0, then (i) the least

squares certainty equivalence control rule converges to alp with probability 1, and

(ii) if by # 0 and o} +# O then the Bayesian certainty equivalence control rule con-
verges to alB with probability 1.

ProoF. (i) The least squares certainty equivalence control rule can be written

(21) U1 =

M-|a

U;e;
g+

uj

M-~

1

We first must establish that > {_; u? — co with probability 1. Let @ be any
sample point in the sample space £. Then we have from Lemma 3 that

. t
(22) Plo| > -’ﬁfﬂ)—e’—(ﬂ converges| = 1.
= > (o)

Jj=1

Thus we can apply Lemma 2, parts (i) and (ii), at each sample point with
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z; = u(w)e;(®) and a; = X%, ul(w) to obtain

Z ui(w)e;(w)

(23) Plo|=———— converges | = 1.

3 (o)

i=1
But this implies that

5 1(@)ei(0)
(24) Plollima| 8 + FZL—u——] #0|=1
o ¥ ()
and, from (21),
(25) Plo|limuy, (w) 0] =1,
t—c0

and therefore, we have that
t
(26) Plw| Z u}(w) diverges] = 1.

Having proved that >i_; u? — co with probability 1, we can now apply
Lemma 2(i) at every sample point to obtain

Z ui(w)e;(w)
(27) Plo 8 ——— —o|=1,

‘_Zl u (@)

Il

and from (21) this implies that
a
(28) U1 — 'E

with probability 1.

(ii) The argument for the Bayesian certainty equivalence control rule is
similar, except that we must insure that the weights on the prior parameters
converge to zero with probability one. With Bayesian estimates we have

~ 1 1 ¢

0'% 0'2 i=1

by 1 L, t
- + "'—2'(:8 2o uf + X uE)
7§ o i=1 i=1 _

o5 o,
2 U
i=1
b Z U;€;
L+ p+
2 uf Zuz
i=1

i=1

(29) Urp1 = 4

Il
2
0
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Now, since
2
g 1 +1
od &
O Xub
i=1
is nonzero, we can use the argument of equations (22) and (23) to show that

(31) Plo|limu (o) + 0] =1,
t-rc0

(30)

and therefore
t

(32) Plow| Y ul(w) diverges] = 1.
i=1

Thus, from Lemma 2(i) applied at every sample point,

> u(@)ei()

(33) Pa)"=’ —0l=1,
2 uf()
i=1

and also,

(34) Plw _t__l_..__ -0l =1.
> ui(w)
i=1

From equation (29) this implies that
a
(35) U — —
B

with probability 1.

This completes the proof of Theorem 1 from which we have the following
corollary which states that both the least squares estimate and the Bayesian
estimate of 8 are strongly consistent.

COI(OLLARY 1. Under the assumptions of Theorem 1
(i) B:— B with probability 1, and
(ii) b, — B and o? — O with probability 1.

ProoF. Once we have established that > {_; u? — oo with probability one,
the corollary follows immediately from Lemma 2(i) as described in the proof
of Theorem 1.

4. THE ASYMPTOTIC DISTRIBUTION OF CONTROL RULES

Additional information about the behavior of multiperiod control rules can
be obtained by examining their asymptotic distributions. To obtain these distri-
butions we first derive the asymptotic distributions of the estimates of the un-
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known parameter 8. We begin by proving a preliminary lemmaJ,

LEmMA 4. Let {v;} be a sequence of random variables such that v; — 0 with
probability 1 and let {e;} be an independent sequence of random variables with
Ee; = 0 and Ee? = ¢% < o0 and ¢; independent of {e;_1, -, €1, Vi, Vi_ts - +» Y1}
i=23....

Then
t
2 Vig; p
i=1
—— _—) 0 .
o
ProoF. We use a method of truncation. Define v} and v/ as
(36) vi=vy;, vW=0 if |y|<ec,

vi=0, /=y if |y|>c,
then y; = v/ + v/ and

(37) = D Vi€ = e 3 Ve + —e= > Ve
'\/l : : - :

Now, since v/ is bounded and since v} — 0 with probability 1 we have that
E(Y))* — 0. Therefore

1 t

2 ViE; o 2 E(v)?
i=1 — i=1

vVt t

and by Chebyshev’s inequality

(38) E

—0,

It remains to consider

t
2 Ve
i=1 —_—
V'
From the definition of v{ we have
(39) P[yf # 0] = P|vi| > c].
But since v; — 0 with probability 1

(40) Plw||v;(w)| > c infinitely often] = 0.

. . P .
5 In the following lemma and theorems we use the notation “—" for converges in proba-

d . .. . . .
bility and “—” for converges in distribution. With the exception of Lemma 4 we use only the
weak consistency property of the control rules and parameter estimates to derive the asymptotic
distributions.
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Therefore,

41) Plo|v!(®w) + 0 infinitely often] = 0,

so that

(42) Plo| % v/ (w)e;(w) has a finite number of nonzero terms] = 1,
=1

and therefore

[ 5 o (@)ei(@) ]
43 P w L—:————' —> 0 = 1 .
43) Ve
From (37) we therefore have that
t
2 Vi
—iil-:— ‘——p—") 0 .
t

THEOREM 2. Under the assumption of Theorem 1,

(i) VTG - p - N<o, _‘5-22—02>
and
(ii) VTl — p) - N<o, {;02).

ProoF. (i) To find the limiting distribution of 1/7(,@, — B), we have from
the definition of the least squares estimate,

‘I/: Us€;
— A _ t i=
(44) VI =P =
=
! a t
_ px (“' B T@)ei a %16'
‘ vt BVt
P

From Lemma 4 the first term in brackets converges to zero in probability with
y; = u; — a/B. In addition, from Theorem 1 we have that u? — (a/f)? with
probability 1, so that®

(45) 29, (%)2

t

6 If a sequence converges then the arithmetic mean of the sequence also converges to the
same point. See Knopp [4 (35)]. We apply this result at every sample point to obtain the result
of equation_(45).
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with probability 1. Therefore, the difference between the right hand side of
equation (44) and

c i &
A6 B &
(“46) eV

converges in probability to zero. By the central limit theorem (46) converges
in distribution to N(0, 8%?/a?).

(ii) To find the limiting distribution of vz (b, — B) we have, from the
definition of b,

’\/ t t + - t
— 0§ 2 u 2 uf
(47) Vb —p) = =L =1
g + 1
0§ 2 uf

(48)

with probability 1, using the result of equation (45). Therefore equation (47)
converges in probability to equation (44) and we can apply the same argument
as in part (i) to show that V't (b, — B) has the same limiting distribution as
'\/ t (‘81 - 18)

The results of Theorem 2 can now be used to derive the asymptotic distribu-
tion of the control rules themselves in the following theorem.

THEOREM 3. Under the assumptions of Theorem 1, if {u,} is defined as either
(i) the least squares certainty equivalence control rule, or (ii) the Bayesian cer-
tainty equivalence control rule, then

(49) 'V7<m—~%>_i+NQL€;>.

ProoOF. (i) The limiting distribution of V7 (4, — a/B) in the least squares
case follows from

~—( a a a _— A
(50) V(L - L) =L VT (=B
B B BB
From Corollary 1(i) B, A B, so that the difference between the right hand side of

equation (50) and V' 7 (8 — ,@,)a/ﬁ2 converges to zero in probability. The first
part of the Theorem then follows from
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— . d 2
(51) V@ = falp = N0, 57 ),
which follows directly {rom Theorem 2(i).
(ii) Similarly in the case of Bayesian certainty equivalence control we have

(52) V(L - _;.) =55 VTe-H,

and from Corollary 1(ii), b, A - 3, so that the difference between the right hand
side of equation (52) and V7 (8 — b,)a/B* converges to zero in probability.
From Theorem 2(ii) we have

VT —b)a d 2
(53) ! (‘; —b)a 2, N(O,—;T

which completes the proof of the Theorem.

5. ASYMPTOTIC EFFICIENCY OF CONTROL RULES

In this section we consider how the asymptotic normality results of Section 4
might be used as criteria for judging the effectiveness of control rules, as well as
for suggesting whether there exist other control rules which might do better.
Once a particular control rule has been decided upon, its behavior over time will
depend on the data generated by the random disturbance term. The situation
is similar to problems in the theory of estimation where the sampling distribu-
tion of an estimate is investigated. In that theory an estimate is considered
good if its sampling distribution is concentrated in some sense about the true
parameter being estimated. In problems where the exact sampling distribution
is difficult or impossible to determine, one might be able to find the asymptotic
distribution of the estimate and examine its asymptotic efficiency. Since such
criteria have been useful in the theory of estimation, it seems likely that they
would be useful in the theory of control with unknown parameters where esti-
mation plays an important part.’

Because these results are asymptotic, they are more useful in control problems
with a long time horizon and small discount rate. However, there are many
control problems, such as stabilizing the rate of inflation, where there is no
natural terminal data nor any reason to discount the future. In such problems
these results would be especially useful, but in problems of short duration they
should be used with caution.

The following theorem is a formal statement of how the control rules defined
and studied in this paper are asymptotically efficient.

THEOREM 4. Under the assumptions of Theorem 1 let {u,} be any control rule

7 For a more complete discussion on the usefulness of this criterion in the control problem
see Taylor [7],
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which converges to alB with probability 1. Then the limiting distribution of

VT (B, — B) and of V1 (b, — B) is N(0, (8*/a>)a?).

Proor. In the proof of Theorem 2 the only property of the least squares cer-
tainty equivalence rule and the Bayesian certainty equivalence rule which we
use is convergence to the true value a/8 with probability one. This is enough
to show that the first term in brackets in equation (44) converges in probability
to zero and that > i, u}/t — a?/B% Since by assumption any control rule in
the class defined in this theorem has this convergence property, we obtain the
same results about the limiting distributions of v 7 (8, — 8) and V7 (b, — ).

The importance of this theorem is that the least squares certainty equivalence
control and the Bayesian certainty equivalence control lead to parameter esti-
mates which have as small an asymptotic variance as any other control rule in
the class of rules having the property of convergence to the true value with
probability one. This class includes controls designed especially for experimenta-
tion as long as the control converges with probability one to a/8. The implica-
tion is that asymptotically there is nothing to gain by experimenting with controls
to obtain more information about parameter estimates. In the long run as much
information can be obtained by the more easily calculated control rules of this

paper.

Columbia University, U.S.A.
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