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ASYMPTOTIC PROPERTIES OF MULTIPERIOD CONTROL 

RULES IN THE LINEAR REGRESSION MODEL* 


1. IXTRODUCTIOX 

IK A~ULTIPERIODCONTROL PROBLEMS with unkilown parameters. curreilt deci- 
sioiis aKect iiot only current performance, but also the alnoulit of information 
that is obtained about the uiiknown paraineters. The purpose of this study is 
to investigate such aspects of m~~l t ipe r iodcontrol in a siinple linear regression 
model with one unlino\vn parameter, where t!le illdependent variable is set at 
certain levels in order to bring the dependent variable to soine desired level. 
The approach uses the methods and criteria of statistical estimation theory (such 
as stroiig consisteiicy and eliiciency) to jiivestigate the properties of various 
control rules. This approacl~  sceins particularly useful in coiitrol problems of 
this type wliere estimation of unknown parameters plays an important role. 

Previous i:zvestigatioiis of this type of illultiperiod control problem (Aoki [2]), 
Zellner [9],aild Prescott [ 5 ] ) have been from a Bayesian point of view. By 
specifying a loss fiu~~ction, prior distributioris on the paraineters, and a distribu- 
tion for the random disturbance term, a Bayes co~ltrol  rule call be calculated, 
in principle, with the methods of dy~ialllic programming. However, as these 
studies have shown, ca1culatio.11 or even characterization of Bayes co~itrol  rules 
has proved quite difficult. The approach of this study is 11011-Bayesian. Thc 
methods and results should c o m p l e m e ~ ~ t  the usual Bayeslail viewpoint in even- 
tually leading to reasoiiabie decisioiis in  practical probleins. 

In Section 2 the nlodel is introduced and two coiltrol rules are defined. In 
Sectio:~3 we prove that these control rilles converge with probability 1 to tlie 
value \vI:icli would be used if the u~ilinown parameter were kliown with certainty. 
Iil Section 4 we derive tlie asyinptotic distribution of tlie coiitrol ruies aiitl 
parameter estimates, and in Section 5 we show that these coiitrol rules lead to 
parameter estilnates whicli have as small an asynlptotic variance as any other 
control rule in a fairly wide class. 111 particular this nieaiis that control rules 
which are designed for experimentation d o  not give parameter estimates which 
are any better asy~ilptotically than tile inore simple control rulcs of this paper. 

2. THE MODEL AUU DFkINITIOh OF CONTROL KULLS 

We cor~sidera linear ~.egressioil l~iodel. represented by 
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( 1 )  X, = put + 6, , t =  l , 2 ,  . . . ,  
where the control variable ut is used to control the e~ldogenous variable x,about 
some desired level a, where P is an unknown parameter, and where { E , }  is an 
independent sequence of (unobservable) random variables with zero mean and 
finite variance a2. Thus, we assuine that the slope is unknown and the intercept 
is known with certainty. Since the intercept is known we can assume that it is 
zero without loss of generality.3 This same model has been investigated from a 
Bayesian viewpoint by Prescott [§I. 

We define a control rule to be a sequence {u,}, the elements of which are chosen 
sequentially on the basis of past observations. More specifically each element of 
{u,} is a function of all random variables observed prior to time t ;  that is 

Thus a particular control rule can be thought of as a set of instructions which 
specifies the control action to take at each point in time for all possible develop- 
ments of the process until that point in time. In this study we consider two 
control rules satisfying this definition. 

One control rule that is particularly easy to calculate is the sequence defined 
by ul fixed and nonzero, but otherwise arbitrary, and 

where p, is the least squares estimate of /3 at time t defined by 

This is the value of the control rule which would be used if one treated ,d as 
known with certainty and equal to the least squares estimate. We call this rule 
the least squares certainty equivalence control rule. It is of particular interest to 
investigate the properties of this rule since we expect that it is frequently used 
in practice. 

A related control rule would be preferred to the least squares certainty equiva- 
lence control rule if there were some prior knowledge about the unknown 
parameter P. This prior knowledge might be due to some observations which 
have been made before the control problem starts. If the prior knowledge of ,8 
could be represented by a norillal prior distribution N(bo, go2) and if ct were dis- 
tributed according to N(0, a2)  with a 2  known, then it can be shown4 that the 
posterior distribution at any time t will also be normal N(b,, at2) where 

If the known intercept were a f 0 then, by redefining the endogenous variable x,*=x,-a 
and the target a* = a - a,  the model could be reduced to the zero intercept case of equation 
(1). 

See Raiffa and Schlaifer [6 (337)] for this calculation. 
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and 

If quadratic loss were the criterion of estimation, then the Bayes estimate of 
under these distribution assumptions would be the mean of the posterior distribu- 
tion b,. A cosltrol rule using this prior information is defined by the sequence 

We call this control rule the Bayesian certainty equivalerzce control rule. In our 
study the Bayesian approach is only used to define the control rule ( 7 ) ;  the 
estimate b, defined by ( 5 )  can alternatively be interpreted as a weighted average 
between the least squares estimate and a prior guess. 

The theoreins which follow are not based on the distribution assumptions of 
the Bayesian method. These assuinptions are only used to suggest the Bayesian 
certainty equivaleilce conlrol. The  follo~ving analysis assumes only that the 
error terins are independently and identically distributed with zero mean and 
finite variance. Subject'to these coilditions the distribution iuay have ally fornl. 

3. CONVERGENCE OF: CONTROL RULES 

In this section we show that under suitable conditions the two cosltrol rules 
defined above converge to the value alp with probability 1 .  We choose to prove 
convergence with probability 1 rather than convergence in probability because 
we would like the control to converge to the true value and remain there with 
high probability. This is guaranteed by convergence with probability 1, but not 
by convergence in probability. The latter says only that, for any sufficiently 
large ,fixed t ,  tile probability that the control is near its true value is arbitrarily 
close to one. Convergence in probability is enough in most ecoiion~etric investi- 
gations because one is usually referring to some fixed sample. Further, the use 
of strong convergence allows one to use some non-probabilistic results for arbi- 
trary sequences of numbers. Once a sequence of random variables is s l~own to 
have a certain property with probability 1, we then call ignore all sample points 
where the property does not occur and apply non-probabilistic results to the 
reinaining points. 

We  first prove three prelin~inary lemmas, of which the first two are non-
probabilistic. 

L E M M A1.  Let { z t }  be an arbitrary sequence of numbers suclz that zl f 0. I f  



then s t  < 2/zt for ever)' t .  

PROOF.Define 

and 

then s, = C:=,'v;.  Since, for any n > 0, zi+, is not an argument of usi, we call 
use backward induction to maximize s, with respect to z,, ztWl, . . .,z, in turf1 
and thus establish an upper bound. Let 

f 


v k + ~= max [ C I V ; ] ,  
2.-k ,,.,,2 ,  ;=I-k 

for k = 0, 1, . . ., t - 2. The11 s, < 1iz ;  -I- ? t , _ l  and to prove the lemma we 
must calculate v , -~ .  

Considering the last term in st, we have by differentiation, 

- - _ _ ,(10) v1 = max uJt = inax 23 - 1 
zi Z t  (rl  + z ; ) ~  (21 1.1 

wltere nl = 4. Therefore, since r1 = r2 4-z:_,, by differentiation, 

2 
(11) v2 = + vl )  = max Zt-1 + 

~l(1.2+ z:-I) Imax ( I ~ J , _ ~  
Z t - 1  

where a2  = [l + (al  - l ) / (a l  + I)]'. Now suppose that vk = l /akrk for some 
k , 3 < k I t - 1. Then 

(12) vk+]= max (wtWk + vk) = max + 
Z t - k  

where ak+l = [ l  + (ak - l)/(al, -I- 1)12, using the fact that the ~naximaild in 
equation (12) is equivalent to that of equation (1 1) with ak replaciilg a l  and 
rk+l replacing r2. Setting k = t - 2 in the recursive equation (12), we have that 
v t - ~= l/(a,-lz:), since r , - ~  = z;. Tllerefore 



476 JOHN H .  TAYLOR 

and since a t_ ,  > 1 we have s, < 212:. 

LEMMA2. Let {z,} be a sequence of numbers and let {a,} he an increasing 
sequence of positive numbers such that Ci=lzi/ai converges, 
( i )  If a, + co ,  then liin,,, l l a ,  C;=,zi = 0 ,  
(ii) If a, +M < co ,  then lim,,, l / a t  zi exists. 

PROOF. Part (i) is Kronecker's lemma. (See Feller [3(239)]). We need only 
consider part (ii). Define so = 0 and let 

then 

(14) Z t  = at(s, - s t - , ) ,  

and therefore 

Now, by assumption st converges to s ,  say, so that to complete the proof of the 
lemma we must show that the second terin on  the right hand side of (15) con-
verges. 

For an arbitrary E > 0 choose to so that, for all t > to ,  I st - sl < E.  Such a 
to exists by :he convergence assumption. We then have 

Now, because a, converges and to is fixed, the first two terms on the right hand 
side converge. Further 

and, since E is arbitrary, the third term in (16) is arbitrarily small. Thus 
1/a,C;, ,  zi converges. 

The following lemma is probabilistic and uses the martingale convergence 
theorem. (See Feller [3 (236)l). 

LEMMA3. Let {ei} be an independent sequence of  random variables with Eci= 0 
and EeT = o2< co and let {ui} be a sequence of  random variables with ul  fixed 
and nonzero and ci independent of {ui, ui-l, . . . , u,, ~ ~ - 1 ,  2,3, .  . . . Then. . . , E , } ,  i = 
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since I ui I/C$=,u: 5 111 ul 1. Thus {st}is  a martingale and to use the martingale 
convergence theorein it must be shown that Es: remains bounded for all t .  Froin 
the independeilce assumptions we have 

where the last inequality follows fro111 Leinilla 1 with zl= u l .  Thus the variance 
remains bounded for all t and by the inartingale convergence theorem st con-
verges with probability 1. 

The following theorem contains the maill coilvergeilce results about the multi- 
period control rules. The proof involves showing that, with probability 1, each 
control rule does not stop obtaining informatioi~ about the unknown parameter. 

THEOREM1. In the inodel st -- put + E , ,  if {ct} is an independent sequence of  
t zndom variables ~vitlz Ect = 0 clnd EE: = u2< 00 and ,G f 0, then ( i )  the least 
squares certainty equivalence control rule converges to a lp  with probability 1, and 
(i i )  if b, f 0 and a; f 0 then the Bayesian certainty equivalence conti.01 rzlle con- 
verges to a lp  with probabilitj~ 1 .  

PROOF. (i) The least squares certainty equivalence control rule can be written 

We first must establish that Cf=,u! 4 00 with probability 1. Let w be any 
sample point in the sample space B. Then we have from Lemma 3 that 

Thus we can apply Lemma 2, parts (i) and (ii), at each sample point with 



478 JOHN B. TAYLOIC 

zi = ui(w)si(w)and ai= C$=lu:(w) to obtain 

(23) 

i=l 

But this implies that 

and, from ( 2 1 ) ,  

(25)  P[wl liln u,+,(w) f O ]  = 1 , 
t - a  

and therefore, we have that 

(26 )  P[w 1 C u:(w) diverges] = 1 . 
i=l 

Having proved that Cf=,u; -+ co with probability 1, we can now apply 
Leinina 2(i) at every sample point to obtain 

and floin (21) this i~llplies that 

with probability 1. 
(ii) The argument for the Bayesian certainty equivale~~ce control rule is 

siiniiar, except that we must insure that the weights on the prior parameters 
converge to  zero with probability one. With Bayesian estimates we have 
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Now, since 

is nonzero, we can use the argument of equations (22) and (23) to sllow that 

( 3 1) P[o Ilim ~ , + ~ ( w )  
t -- # 01 = 1 , 

and therefore 

P[w I C
t 

u:(w) diverges] = 1 . 
i = l  

Thus, from Lemina 2(i) applied at every saniple point, 

and also, 

1 
(34) P w[ ( ) -.01= ' a 

From equation (29) this implies that 

with probability 1. 
This completes the proof of Theorem 1 fro111 wl~ich we liave the following 

corollary whicll stales that both the least squares estimate and the Bayesian 
estimate of p are stro~lgly consistent. 

COROLLARY1. Under the assumptions of Theorem I 
( i )  p,-+ ,B with probability 1, and 
(ii) b, -+ and aj -+0 with probability 1. 

PROOF.Once we have established that xi=,uj -+ co with probability one, 
the corollary follows immediately froin Lemma 2(i) as described in the proof 
of Theorem 1. 

4. THE ASYMPTOTIC DISTRIBUTION OF CONTROL RULES 

Additional information about the behavior of multiperiod control rules can 
be obtained by examining their asympto~ic distributions. To  obtain these distri- 
butions we first derive the asymptotic distributions of the estimates of the un- 



1;nown parameter p. We begin by proving a preliminary Ie~iiiiin~. 

L E M M A4. Let {vi}he N ~eq~ieizceof  ~,aiz(/om vcrriab1e.r such that pi + 0 wit11 
p i~obul~i l i t~~1 arzcl let {ii}be crn independent .requeizce of  rriizc/om vat.iab1e.s with 
Eci = rr2  < CC) ~ ~ r r l  . . . , el, pi,  Y ; - 1 ,  . . . , p j } ,0 cind EE;= ei independent of { E ~ . . , ,  

i =  2 ,3 ,  . . . .  
Then 

PROOF. We use a method of tru~lcation. Define v$ and vj' as 

NOR-, since u: is boutlded and since v: -> 0 with probability 1 me have that 
E ( V : ) ~-t 0. Therefore 

:~nd by Cl~ebysliev's inequality 

It remains to consider 

Froin the definition of ui' we have 

But since vi -t 0 with probability 1 

(40)  P[w I I vi(w) 1 2 c infinitely often] = 0 . 

I n  the following lemma and theorems we use the notation ''A" for  converges in proba- 

bility and "5" With the exception of Lemma 4 we use only the for  converges in distribution. 
weak consistency property of the control rules and parameter  estimates to derive the asymptotic 
distributions. 

5 
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Therefore, 

(41 )  P[(oju:'((c)) + 0 infinitely often] = 0 , 

so that 

m 

(42 )  P [ w  j C Y: ' (w)E~(w)  = 1 ,has a finite number of ilollzero terms] 
i=l 

and therefore 

From (37) we therefore have that 

THEOREM2. Under the assurnption of Theorem 1 ,  

N I Z ~  

(ii) 

- A 

PROOF. (i) T O  find the limiting distribution of d t (P, - P ) ,  we have fro111 
the definition of the least squares estimate, 

Froin Lemma 4 the first term in brackets converges to zero in probability with 
vi = ui- alp.  In addition, from Theorem 1 we have that u; -+ with 
probability 1, so that6 

If a sequence converges then the arithmetic mean of the sequence also converges to the 
same point. See Knopp [4 (35)l. We apply this result at every sample point to obtain the result 
of equation-(45). 



with probabilify I .  Therefoie, the difference between the right hand side of 
equal ion (43.) ant1 

coilverges in probability to zero. By the central limit theoren1 (46) converges 
in distribution to N(0, p2a2/a2). 

(ii) T o  find the limiting distribution of d t ( b ,  - P) we have, from the 
defiilitioli of b, 

Now, since mi -+ a//? with probability 1, we have 

wit11 probability 1, using the result of eq~lntion (45). Therefore equation (47) 
converges in p~obability to equation (44) and we can apply the same asgulllent 
as in part (i) to s l~ow that d t ( h ,  - ,!I)has the same linliting distribution as 
43'6- P). 

The results of Tlieorem 2 call now be used to derive the asymptotic distribu- 
tion of the control rules the~llselves in the followiilg theorem. 

THEOREM3. Under the assumptions of Theorem 1, if {u,} is dejined as  eithet. 
(i) the least squares certainty equivalence control rule, or (ii) the Bayesian cer-
tainty equivalence control rule, then 

PROOF. (i) The liilliting distributio~l of d 7 ( u ,  - alp) in the least squares 
case follows from 

P

Froin Corollary l(i)  ,8, -z P,  so that the difference between the right hand side of 
equation (50) and 4 - i - ( ~  - , 8 , ) a / ~ ~  The f rstconverges to zero in probability. 
part of the Theorem then follows from 



which follows directly Ssom Theore111 ?(i). 
(ii) Similarly in the case of Bayesian certainty ecluivalence control we have 

P
and from Corollary l( i i) ,  b, -+ P,  so that the difference between the right hand 
side of equation (52) and - b,)a/,Q2 converges to zero in probability. 
From Theorem 2(ii) we have 

which conlpletes the proof of the Theorem. 

5 .  ASYhlPTOTIC EFFICIENCY OF CONTROL RULES 

111 this section we consider how the asynlptotic normality results of Section 4 
might be used as criteria for judging the effective~less of c o ~ ~ t r o l  rules, as well as 
for suggesting whether there exist other control rules which 1nig11t d o  better. 
Once a particular control rule has been decided upon, its behavior over tiille will 
depend on the data geiierated by the random disturbance term. The situation 
is sinlilar to problems in t l ~ e  theory of estimation \vhere the saiuplillg distribu- 
tion of a11 estimate is investigated. In that t l~eory  an estiinate is considered 
good if its sampling distribution is collcentrated in some sense about the true 
parameter being estimated. In problems \vhere the exact sampling distribution 
is difficult or iwpossible to determine, olle might be able to find the asynlptotic 
distribution of the estimate and exailline its asymptotic efficiency. Since such 
criteria have been useful in the theory of estimation, it seems likely that they 
would be usefill in the theory of control with unlino\vn paranleters where esti- 
mation plays an  important part.7 

Because these results are asymptotic, they are Inore useful in control problen~s 
with a long time l ~ o r i z o i ~  However, there are inally and sinall discount rate. 
control problems, such as stabilizing the rate of inflation, where there is no  
natural terminal data nor any reason to discount the future. In such problems 
these results would be especially useful, but in problems of short duration they 
should be used with caution. 

The following theorem is a formal statelllent of how the conlrol rules defined 
and studied in this paper are asymptotically efficient. 

THEOREM4. Under the assunzptions of Theo~ern1 let {u,) be an!) conlrol rule 

7 For a more coinplete discussion on the usefulness of t h ~ s  criterion in the coiltrol problem 
4ee Taylor 171, 
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which converges to a lp  li~ith probability 1 .  Then the limiting clistributiorz of 
l /? (J ,  - p)  and of d?(b ,  - p)  is N(0, (p21a2)02). 

PROOF. In the proof of Theorenl 2 the only property of the least squares cer- 
tainty equivalence rule and the Bayesian certainty equivalence rule which we 
use is convergence to  the true value alp  with probability one. This is enough 
to  show that the first term in brackets in equation (44)  converges in probability 
to zero and that xi=,u?/t-+ a2/p2.  Since by assumption any control rule in 
the class defined in this theorem has this convergence property, we obtain the 
same results about the limiting distributions of d?(flr- P )  and d T ( b ,  - p). 

The importance of this theorem is that the least squares certainty equivalence 
control and the Bayesian certainty equivalence control lead to parameter esti- 
mates which have as small an asymptotic variance as any other control rule in 
the class of rules having the property of convergence to the true value with 
probability one. This class includes controls designed especially for experimenta- 
tion as long as the control converges with probability one to alp. The implica- 
tion is that asynlptotically there is nothing to gain by experimenting with controls 
to  obtain more information about parameter estimates. In the long run as much 
inforination can be obtained by the more easily calculated control rules of this 
paper. 

Colurnbia University, U.S.A. 

REFERENCES 

1 B J 	 ANDEKSON,T. W., "On Asymptotic Distributions of Estimates of Parameters of Stochastic 
Difference Equations," Anrzals of Mathematical Statistics, XXX (September, 1959), 676- 
87. 

[ 2 ] AOKI, MASANAO, Optimization of  Stochastic Systems (New York: Academic Press Inc., 
1967). 

13 ] FELLER,W., Ail Introdl/ction to Probability Theory and Its Applications, Volume I1 (New 
York: John Wiley and Sons, Inc., 1966). 

14 ] KNOPP, K., Infinite Sequences and Series (New York: Dover Publications, Inc., 1956). 
[ 5 ] PRESCOTT,E. C., "The Multiperiod Control Problem under Uncertainty," Econometrica, 

XXXX (November, 19721, 1043-57. 
[ 6 ]  	RAIFFA,H. AND R., SCHLAIFER,Applied Statistical Decision Theory (Cambridge: The 

M.I.T. Press, 1961). 
[4]TAYLOR,J. B.,"Multiperiod Optimization in Economic Systems with Unknown Parame- 

ters." Unpublished Ph. D. Dissertation, Economics Department, Stanford University, 
1973. 

[&I THEIL,H.,"A Note on Certainty Equivalence in Dynamic Programming," Econometrica, 
XXV (April, 1957), 346-49. 

[ 91 ZELLNER,A , , Iiztroduction to Bayesian Inference in Ecorlometrics (New York: John Wiley 
and Sons, Inc., 1971). 




