Individual forecasting and aggregate outcomes

"Rational expectations" examined

Edited by
Roman Frydman and Edmund S. Phelps
New York University Columbia University

CAMBRIDGE UNIVERSITY PRESS

Cambridge
London New York New Rochelle
Melbourne Sydney
Contents

List of contributors page vii
Preface ix

1. Introduction page 1
Roman Frydman and Edmund S. Phelps

2. The trouble with “rational expectations” and the problem of inflation stabilization page 31
Edmund S. Phelps
Comment Phillip Cagan 41

3. Expectations of others’ expectations and the transitional nonneutrality of fully believed systematic monetary policy page 47
Juan Carlos Di Tata
Comment Clive Bull 66

4. The stability of rational expectations in macroeconomic models page 69
George Evans
Comment Guillermo A. Calvo 94

5. Individual rationality, decentralization, and the rational expectations hypothesis page 97
Roman Frydman

6. Convergence to rational expectations equilibrium page 123
Margaret Bray
Comment Roy Radner 133

7. A distinction between the unconditional expectational equilibrium and the rational expectations equilibrium page 139
Roman Frydman
Contents

8. On mistaken beliefs and resultant equilibria 147
 Alan Kirman
 Comment Jerry Green 166

9. Equilibrium theory with learning and disparate expectations: some issues and methods 169
 Robert M. Townsend
 Comment John B. Taylor 198

10. Keynesianism, monetarism, and rational expectations: some reflections and conjectures 203
 Axel Leijonhufvud
 Comment Frank Hahn 223

Index 231
Contributors

Margaret Bray
Faculty of Economics and Politics
University of Cambridge

Clive Bull
Department of Economics
New York University

Phillip Cagan
Department of Economics
Columbia University

Guillermo A. Calvo
Department of Economics
Columbia University

Juan Carlos Di Tata
Columbia University
(Currently at International Monetary Fund)

George Evans
Department of Economics
Stanford University

Roman Frydman
Department of Economics
New York University

Jerry Green
Department of Economics
Harvard University

Frank Hahn
Faculty of Economics and Politics
University of Cambridge

Alan Kirman
Ecole des Hautes Etudes en Sciences Sociales
Universités d’Aix-Marseille II et III

Axel Leijonhufvud
Department of Economics
University of California at Los Angeles

Edmund S. Phelps
Department of Economics
Columbia University

Roy Radner
Bell Laboratories and New York University

John B. Taylor
Department of Economics
Princeton University

Robert M. Townsend
Graduate School of Industrial Organization
Carnegie-Mellon University
Comment by J. B. Taylor

Comment

JOHN B. TAYLOR

Implicit in almost all practical applications of the rational expectations method are two strong assumptions. First, it is assumed that *people know the model* of the economy used in the analysis and that they form expectations using this model. Second, it is assumed that *people know that all other people know the model* and form expectations in the same way. These two assumptions seem to restrict the range of applications
of rational expectations methods. They suggest that the methods are most realistic in situations where economic events are recurrent - such as business cycles - and where policy rules are in operation for a long time. As with most hypotheses used in economic analysis, however, these assumptions should be judged not only by their apparent realism but also by how successful they are in describing and forecasting economic behavior and by how they compare with alternative assumptions. As yet, there have been few attractive alternatives available.

In this elegant and constructive chapter, Robert Townsend proposes alternative, less restrictive assumptions that have the potential of broadening the range of economic problems to which rational expectations analysis can be applied. Moreover, he develops a methodology through which tractable results can be obtained using these alternative assumptions and shows how the methods work in some representative economic applications. In my view, these alternatives deserve careful consideration by those using rational expectations in situations where the more restrictive assumptions seem inappropriate, and, as Townsend suggests, they ought to be tried out in some practical economic policy problems. In these comments I shall discuss how the Townsend assumptions represent a generalization of existing expectational assumptions and consider the types of applications where some experimentation with the methods might be useful.

Rather than assuming that economic agents know the parameters of the model, Townsend assumes that some of these parameters are unobservable and evolve over time. For example, firms are assumed to be unaware of the intercept (θ in the chapter's notation) of the demand curve that they face. Instead, they know that this intercept moves according to the probability law

$$\theta_t = \rho \theta_{t-1} + v_t$$

and can only be observed with error $u_t = \theta_t + w_t$ [see equations (23) and (24) of the Townsend chapter]. The firms use this information structure to forecast future values of the intercept and thereby form expectations of future prices and make production decisions.

It is not difficult to imagine applications where this assumption might be more appropriate than assuming θ was known. In a commodity demand equation, the parameter θ could represent tastes that change gradually and that can be estimated with error through survey methods. In a money demand function, such an assumption could represent technological change in transactions technology that can be tracked only up to some measurement error. In a fiscal or monetary policy reaction function, such an assumption could be used to capture gradually shifting
economic policies that are never fully announced or believed. In this case, the probability law would represent how policy was evolving through time, and \(u_t \) could be a current policy announcement that is only imperfectly correlated with actual policy. Note that in each of these three examples Townsend's assumptions require that agents know the model that underlies these shifts: a model of taste change, a model of technological change in financial markets, or a (political?) model of policy change.

In a number of situations the Townsend assumptions might not be appropriate as an alternative to the "agents-know-the-model" assumption. For example, an important modeling task is to describe economic behavior during a transition from one policy regime to another. After a change in policy regime it would be inaccurate to assume that economic agents immediately understand the new policy. Instead, they might learn about the policy gradually as they observe policy decisions over a period of time. More generally, a structural parameter of the model might change, and agents would have to learn about this change through observation. In terms of Townsend's notation, these types of problems could be represented in terms of the parameter \(\rho \) of the autoregressive process. If \(\theta \) were the money supply growth rate, then a switch to \(\rho = 0 \) could represent a fixed monetary growth rate. People would learn about \(\rho \) only as they observed actual money growth rates. Because in Townsend's models people are assumed to know the process generating \(\theta \), this type of problem cannot be handled.

Learning about the parameters of the model in this latter sense has proved to be a quite difficult phenomenon to model adequately. There are three reasons for this difficulty. First, because agents must make decisions based on estimates of parameters, their actions cannot be considered exogenous to parameter estimation. The actions form the data on which the estimates of parameters are made. Because most conventional econometric procedures require that the data be exogenous, or endogenous in particularly restrictive ways, these market interactions with data generation require different techniques for analysis. Second, there is a possibility that, as agents gradually learn about the parameters, their

2 Chapter 6 by Margaret Bray in this book considers such a problem in a simple one-parameter learning situation.
actions will converge to some constant value that does not generate enough new information about the parameters. In the demand-curve example, a firm might begin selling the same quantity each period based on its estimate of the expected price; this prevents quantity from varying enough to get reliable estimates of the demand curve.\(^3\) In some instances, estimates are inconsistent, but few results are yet available. In any case, the analysis necessarily becomes quite complicated, even without the market interactions previously mentioned. The problem is much worse in a multiparameter situation, and this is one reason why many studies have focused on one-parameter examples.\(^4\) Third, the possibility that agents might affect how much information they can obtain about the parameters changes the nature of the optimal control problems in fundamental ways. A simple example is that of a firm experimenting with its prices, temporarily deviating from its best guess of the optimal price, in order to obtain information to be used in the future. Even in one-parameter partial equilibrium problems, this “dual-control” or “joint estimation and control” problem leads to significant complications. Solutions that may have been linear in a model where the parameter was known do not even have a closed form when the parameter is unknown.\(^5\)

Because of these computational difficulties with existing approaches to modeling learning, Townsend’s approach, although assuming that the laws governing parameter movement are known, may be a satisfactory alternative. For some applications, the distinction made here between knowing parameter values (\(\theta\)) and knowing the probability law generating the parameter values (\(\rho\)) may be sufficiently fine that Townsend’s more tractable approach could be used.

Thus far, I have discussed situations, as in Section 9.5 of the chapter, where expectations are assumed to be homogeneous. In Sections 9.6 and 9.7, Townsend considers ways to avoid this assumption and allow for heterogeneous, or disparate, expectations. With disparate expectations,

an infinite regress problem arises in which agents must not only forecast but also forecast the forecasts of others, and so on. Townsend deals with this infinite regress problem head-on, by augmenting the state variables to include forecast of forecasts— the second-order expectation, as well as third- and higher-order expectations. There is a modeling choice, however, about where to truncate the infinite regress, or whether to truncate it at all. An element of judgment is required here, but perhaps the decision could be made empirically. As Townsend has shown in an earlier study, the regress problem has implications for the serial correlation properties of the errors in statistically estimated decision rules.\(^6\) It would be interesting to examine whether, for example, the second- or third-order expectation truncation fits the data better than the first-order truncation that is conventionally used. But, in general, because it is impossible to know which truncation to assume, this may leave an element of arbitrariness in situations where there are other reasons for serial correlation. Clearly, some empirical work is necessary before we can say whether or not Townsend’s higher-order expectations model is an improvement over the first-order methods now in use.