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I. INTRCDUCTION

In recent years there has been an extensive amount of
economic research devoted to deriving investment demand func—
tions from stochastic dynamic models of firm behavior.2 Two
advantages of such derived demand functions are related to
econcmic policy and have motivated much of this research.
First, the parameters of the demand functions depend explicitly
on technological properties of the firm's production process
and therefore can be assumed to be independent of economic
policy which is external to the fTirm. Second, the investment
demand functions show how the firm's decisions depend on ex-
pected future variables, and thereby permit one to investigate
how anticipations of future policy actions might influence the

effectiveness of economic policy. Reduced-form functions in
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which investment demand is written as a fixed distributed lag
of past variables, regardless of the stochastic process affect-
ing these variables, do not have these advantages.

Although policy questions have been investigated using
dynamic models of firm investment behavior, to date there has
been little research on the calculation or characterization of
optimal policy using such models.3 In this paper we consider
the problem of finding optimal control rules to stabilize
fluctuations in investment demand using such a model. In the
model used here the dynamics of investment are generated by
heterogeneous gestation lags between the start and completion
of capital projects, rather than by adjustment costs in the
installation of capital. Gestation lags permit an analytic
calculation of optimal stabilization policy under a wide range
of stochastic processes generating firms' desired capital
stock, and potentially can be estimated using technological
data on capital construction.

The paper is organized as follows. In Section II the
dynamic investment model is presented and an investment demand
equation 1s derived. 1In Section II1 a procedure for calcula-
ting the optimal stabilization policy rules is derived for an
arbitrary autoregressive process generating the fluctuations
in sales. In Section IV the optimal rules are calculated for
the case of a second-order autoregressive business cycle model.
In Section V we examine through stochastiec simulation the
effects of using certain subeptimal policy rules which might

3Policy questions relating to investment in dynamie models

have been addressed by Sargent (1979, p. 34¢), Kydland and

Prescott (1980), Summers (1981), Hayashi (1982), and Taylor

{1382). Lucas (1376) addressee similar policy issues in a
more general setting.
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be employed when there are practical constraints on the

design of the optimal rules.
I1. AN INVESTMENT MODEL WITH HETEROGENEOUS GESTATION LAG84

Suppose that firms use n different types of capital in-
puts. Let the stock of capital of type i at the start of
time period t be denoted by kit‘ i=1,...,n. The types of
capital differ in their gestation times; that is, the time it
takes to build a unit of capital. Capital of type i 1is

assumed to take i periods to build. Let Sie be the walue

of capital projects of type 1 started at time t. Then we

have

Kigeg = (8K 005 1 * Sy (1)

where hi is a constant proportional depreciation rate for

each type of capital. According to equation (1) capital pro-
jects of type i started at time t are completed and added
to the capital stock at time t+i. Depreciation of the amount

hikit+i—1 is subtracted from gross completions to get the

net increase in capital.5
Investment expenditure, or "value put in place," during
the gestation period of each project depends on the techno-

logy of comstruction. Let X be the value put in place on

a capital project of type i during period t. Let wij be
the fraction of the project of type i put in place during

——

This approach to investment demand which emphasizes

heterogenzous gestation lags was applied to a Swedish in-
vestment problem in Tayler (1382),

) . . .

Where confusion does not aritse, we generally omit a

comma between the different indices in the double subseripts.
Yo multiplication of subseript indices appears in this paper,
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the jth period following the start of the project. Then

total investment expenditures on projects of type i are

given by the distributed lag

i
X., = ) W..8.. ..., (2)
it j=1 ij7it=3+1
i
for i =1,...,n. Note that } wig =1 for each
J=1
i=1,...,n and in particular that w = 1., The fractions

11
wij are determined by the construction technology. In some
cases such weights can be obtained in surveys,

In order to obtain an investment demand function we
assume that firms decide at each time peried 1T on a sequence

of capital projects of each type in order to minimize the ex-

pected value of the intertemporal objective

T oetls ] di(v.y. -k, o+ Vocx. 1, (3)
t=1 i=p ittt j=1 LAt

where $ 1is a discount factor, vy and di' i=1,.,.,n

are fixed positive parameters, the c. are the costs of

it
investment goods of type 1, and Vi is a measure of sales.

The variable yt is assumed to follow a known univariate
stochastic process exogenous to the firm. As will be ex-
plained below the variables Cigr which are also exogenous

to the firm, will be policy determined as a function of Vi
The interpretation of (3) is that a firm's production process
calls for capital of each type in a fixed ratio vy to total
sales Vo and that it is costly for the firm to deviate from
that amount of capital in either a positive or a negative
direction, This approach is similar to assuming a fixed co-
efficient production function with capital input ceoefficients

equal to v_1

i but it permits more flexibility in that the
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firm can deviate (at some cost) from these input coefficients.
Note that we assume that there are no interaction affects in
the costs of deviating from these input coefficients for
different types of capital: one type of capital deviating
from its appropriate level, neither increases nor decreases
the costs of another type of capital deviating from its
appreopriate level. The lack of interaction makes possible a
convenient analytical solution of the model, and seems reason—
able given the fixed coefficient production interpretation of
the objective function.

By substituting equation (1) and (2) inte (3) and differ-

entiating with respect to the k noting that k.,

it’ it+i 9T

equivalently Syt is a decision variable at time t, the

following optimal level of starts can be obtained for each
time period

Sit T ViVeaq - (Ithydkgeos o
io1 (4)

J A
d JEO B B(l‘-hi)cit*‘j*‘l) 2
i

wij+1(°it+j

where the hat over a variable represents its minimum mean
square predictor, or conditional expectation given information
through period t. In the case of Yir for example,

§t+i = E(yt+ifyt,yt_1,...). Equation (4) heolds for each type
of project from i = 1,...,n and can be substituted into (2)
in order to obtain the demand for investment., Note that equa-
tion (4) indicates that the resulting investment demand func-—
tion depends explicitly on technological parameters and on
expectations of future variables, a general property of demand
functions obtained from intertemporal investment models men-

tioned in the introduction.
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In the special case where the depreciation rates hi =0
and the discount factor is equal to 1, the optimal level of
starts depends on a distributed lead in the expected changes
in the cost of investment goods. In the case where deprecia-
tion rates are hi = 1, the distributed lead is in the Ievel

of the costs of investment goods.
II1. OPTIMAL POLICY RULES

The model has been designed so that Ve is a correlated
disturbance that causes fluctuations in investment. We view
vy, as driven by an exogenous time series process represent-
ing, for example, business cycle fluctuations. One objective
of policy is to reduce the fluctuations in investment by using
investment incentives to offset the influence of this distur-
bance. Investment incentives affect the actual cost paid by
firms for investment goods which we have represented by (:it
in the model. Hence, the optimal contrcl problem we consider
is that of choosing a sequence of policy Znstruments ci;y S0
as to minimize the fluctuations in the target Xi¢e The opti-
mal choice of Cit depends on the stochastic process for Vi
As with most optimal control or regulator problems the effect
of the disturbances can be completely offset if there are a
sufficient number of instruments. As indicated by (4), the
number of instruments needed for complete offset is equal to
the number of different types of capital. In principle,
therefore, it is necessary to have investment incentives for

each type of capital so that each of the ¢ can be set

it
independently., In practice, tax incentives have differed
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for capital with different useful lives, but not for capital

with different gestation periods.6

In order to offset the effects of demand fluctuations on
investment it is necessary that the cost variable Ci¢ respond

to Yy in such a way that the forecasts of future values of

c exactly offset the forecasts of future Vi in eguation

it
(4). That is, Cit needs to be set so that

i ~ i-1 j ~ ~

BT ViViey = jzo BWi541(Cigey ~ BAA-RIC L 109) - (B)
for 1 =1,...,n. It is clear from equation (4) that. such a
choice of c. will eliminate the effect of the disturbance

it

¥ on starts and thereby on investment expenditures. Our

objective is to calculate and characterize these optimal Ciye

Assume that yt is determined by the following pth order

autoregressive process:
Ve T 0q¥pq * oot *pViop tu, . (6)

where ut is an uncorrelated random variable with a zero

mean. Equation (6) can be used to generate predictions of the
future values of Vi that appear in equation (5) using re-
sults from prediction theory. BSee Anderson (1971, Ch. 5). In

order to cbtain the optimal rule for the determination of the

Ciy Wwe start with the general linear form

“it T Bia¥e Y Byg¥yg oo BV s N

where the coefficients Bi1 through g5 are as yet un-

P

determined. Predictions of future cit can be obtained using

[ . . .

For example, in the United States the investment taxr
eredit depends on the useful life of the capital equipment
purchased.
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{7) and the predictions of vy generated by (6). The problem
of finding the optimal rule is thus reduced to the problem of
finding the values of the coefficients that satisfy equation
(5) for all t. These values can be found by substituting
into (5) the forecasts of Vi and Cit using (6) and (7),
and finding the values of g4 through gip which bring the
coefficients of Vi through yt—p+1 to equality on both sides
of (5). We now show how this procedure results in a set of

linear equations in g1 through g5 which are straight-

p
forward to solve, even for fairly large values of n and p.
The procedure has some similarities to the feedforward control
schemes proposed by Box and Jenkins (19270, Ch. 12) for conven-
tional linear regulator problems.

The forecasts of future Vi are given by

Va1 = Vs1¥y Y ¥ga¥eo1 b oo Y VgpViope1 fOT S > 1, (8)

where the v-coefficients can be obtained recursively from the

equations
Ysi T %3¥s-1,1 7 Yso1, 541 J=1,....p-1
¢
Ysp Spfs-1,1"
The recursion starts at s = 1 with Ylj = aj, j=1,...,p.

See Anderson (1971, p. 168) for a derivation of the recursion

relationships in (9). Note alsc that for s < 1.

yt+s T Yi+s

The forecasts of future Cyy Aare
- s . p
c. = 1 g, .Y, . 4+ 1 g2..V cix s (10)
it+s j=1 ij7t+s—-j+1 j=g+1 ijt+s-j+1

where the values for can be obtained from (8),

Yi+g-j+1
Starting with the case where i = 1 ({the single periocd

construction projects) we substitute these forecasting



S
—_
(%33

OPTIMAL STABILIZATION RULES

eguations into (5) as follows. When 1 = 1 equation (5)

becomes :

Ba1V1T g = Wy (B - BU-hC ) (11)
which can be written as

Bd1V1§t+1 = wy (Byqvy ¥ + glpyt_p+1) (12)

_B(luhl)wn( glly.t+1 + g12yt + ...+ glpyt_p+2)wll r

after substitution of €yt and Cle+1 from (10) with s =1
and i = 1. Using equation (8) to substitute for Vie1 in
(12), we obtain

Sdlvl(vllyt*'---*-Ylpyt_p+l)

= w1108y * t BV iope1’

- B(l-hl)[gll(Y11Yt+...+Y1pyt_p+1)

+ glzyt + ...t glpyt_p+2)]wll . (13)
Equating the coefficients of Vi yt—l""’yt—p+1 in (13)

results in a set of linear equations in through glp

€11
which will be useful to write out in detail

Bdyvivyp = Wy (1-8(1-hy)y, 4089 - wp8(1-hydgy,
Bd)Vi¥ig = ~W13B(1-Ny)Y¥ 58,5 + Wy8 5 - W1 B(1-h )B4,

B viY¥ya = ~W1B(1-by)y g8y + Wy1855 - Wy B(1-hy)g,, .

BdyViY¥1pa1

“W11B(I-hy 0y, 5809ty 8p 17w B(I-Ry DEy
Bdlvly1p = —wllB(l—hl)ylpg11 + wllglp . (14)

Although we have written (14) using the general notation in-

troduced for an arbitrary gestation lag, in this case we have
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that Yij =y,

in (14) are clearly linear in the p unknowns

j=1,...,p and Wy < 1. The p equations

€11 through

glp and can be solved to obtain the optimal control rule for

c In the special case of full depreciation (h = 1) the

it”
off-diagonal terms in the system of equations in (14) ire

equal to Zerc, so that the solution is given simply by

By Bdlvlaj for j=1,...,p. In this special case the

j =
optimal control coefficients are proportional to the coeffi-

cients of the difference equation generating the disturbance Y-

The equations in (14) can alternatively be organized in

. —_ 1 _
matrix form. Let g, = (gil""’gip) and 18'_(Ysl""’ysp)'
The equation system becomes

A8y = Xq8d4vy s (15)

where él is a p x p matrix. Denoting the representative

(1)

element of A, by ajm the non-zero elements of the matrix

are given by

all) = wy (1= B(1-hdvy)

a(1
hE

(1)  _ I
aj-l,j - -wllﬁ(l—hl) » J = 2’-‘ P,

all = -wB(l-hYL S =2, (16)

=w11: j=2:--'1p;

and all other elements are equal to zero, The optimal values

for the control rule coefficients for ¢

1t are then written as

-1
g1 = A17x;B8dyvy . (17)
This same procedure can be used to compute the control

rule coefficients for the cit variables corresponding to the

longer gestation lags. That is, the forecasting equations
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with values of i from 2 throcugh n can be substituted into
{5), and equations in the control rule coefficients can be

obtained by equating coefficients of For

Yo yt—l""'yt—p+1'
each value of i there will be p linear equations in p un-
knowns. Before considering the results for the general case
it is useful to consider the equations for 1i = 2. 1In this

two-period case
-1 2 ’
By = Ay 158 vod, . (18)

The non-zero elements of A, are given by

ail) = wyy + Blwgy - (Lohydwy )y - BPwe(lohy)vy

agf) = Blwgy - (1-by)wyy vy - B2w22(1-h2)Y2j, i=2,...,p.

ajs’ = Blwyy - (I-hydwyy) - 82wy (l-by)vyy

ags) = wyy - BPwyp(1-hy)vy,

agg) = —Bzwzz(l-hz)Ylj, i=3,...,p,

agg) = Wy, i=3,....p,

agf%‘] = B(Wyy — (1=hy)w ;) , i=3,...,p,

aS?%J = -8%w,,(1-hy) , 3=3,....p.
(19)

The remaining elements of 52 are equal to zero. Note that
with full depreciation (h2= 1) the matrix 52 does not be-
come diagonal, unlike in the one period projects. The develop-
ment of the coefficients of Ai as 1 dincreases from 1 to 2,
continues for 1 equal 3 and so on, establishing a general

formula which can be used for any value of i,
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In order to express the solution for g in the general

case, some additional notation is useful., Defimne a sequence
b. .
1]
Pig = ¥i1
= ‘j —_ - i = i— 1 >
bij B (wi,j+1 (1 hi)wi,j) , J=1,...,i-1 (for i>2)
= _gli1_ 20
bii Bl hi)wii (20)
for each i = 1,...,n. The bij coefficients thus depend on

the structural parameters of the model and are easily computed,

The solution in the general case can be written
_ -1 i
Ei = AyTy;BTvidy 2
where the non-zero elements of the p x p matrix Ay, de-

noted by a(l)

3m are given by the following set of equations

for 1 =1

I .

(1) ;

Bim’ T Pimejt L PigVomer g d=hoomum=1,..04,
q=m

2(1) o i b, v i j=m p,m=1 i

J'm L lq q-m+1,J » * E] r ¥ r r

g=m
(i) _ _ .
aj—i+r,j bi,i—r ' I‘—O, sl .]_1+1:‘--rp-

(22)
Note the equations in (22) are equivalent to the equations in

{16) for i =1, and to the equations in (19) for i = 2.
These equations provide an easily computable way to evaluate
the matrix éi for an arbitrary i and p. Hence, the en-
tire set of optimal control coefficients B> i=1,...,n can
be computed. Since the dimension of the matrix éi is equal
to the order of the autogressive model generating the distur-

bances (which will usually be relatively small) and is not
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infiuenced by the length of the gestation lag (which could be
quite long), computation costs should be low for this procedure.
IV, PROPERTIES OF OPTIMAL POLICY IN A SECOND ORDER CYCLICAL

MODEL

In this section we examine the properties of the optimal
rules for the case where sales disturbances Vi follow a
second order process (p = 2). A second order model permits
a fairly close approximation to the stochastic properties of
business cycles observed in most countries, if Vi is inter-
preted as proportional to detrended fluctuations in real GNP
or some other measure of the state of aggregate economic
activity.

For the second order model the optimal policy rules have
the form

Cit = Bi1¥i * 8i0¥4_1 - i RS W (23)

which is a special case of equation (7). The control coeffi-
cients £i1 and o completely characterize the policy and
of course are different for each type of capital 1i.

The policy coefficients associated with i = 1, the
single pericd projects, are obtained by solving equation (15)

and are given by
ay +a,(1-h,)B 7
gy, = Bvydy L 2z 1 : (24)

o
12 T BV1dy 2 . (25)
L 1-8(1-hy)(ay +ag(1l-hy)B) |

1f depreciation occurs in one period (h1=11) then the policy

rules ¢an be characterized easily. In that case the policy

coefficients are proportional to the parameters of the
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autoregressive process oy and Oy - For example, if Ve is

proportional to real GNP and = 1.4 and = -5, then

%1 %2
the stabilization rules call for an increase in investment

costs 1f real GNP is above normal levels, or if real GNP has

been growing. For parameter values g8=1 and wv,d, = 1, (24)

111

and (25) imply

it = 1.4yt - .5yt_1

(26)

A AR

Note that it is never optimal to react only to current Yt
unless 0y = 0, 1in which case the model is first-order.

As we show in the next section failure to react to lagged Vi
as in (26) can lead to a policy rule which destabilizes output.
According to equation (26) investment costs should be raised
by an extra amount if real GNP has been growing.

The results are different if depreciation rates are
smaller, The proportionality of the g1i and oy will no
longer hold, and the size of the reaction coefficients will
be larger. Consider, for example the opposite extreme where
h=0. The stabilization rule becomes

Clp = AV, * 5y -y ) (27)
The reaction coefficients are much larger than in (26) and the
size of the coefficient on the first difference of yt is

larger relative to the size of the coefficient on the level

of Yy

V. STOCHASTIC SIMULATION RESULTS WITH SUBOPTIMAL POLICIES

The optimal policy rules derived and examined in the
previous two sections have several features which are not

usually characteristic of investment stabilization pdlicy in



OPTIMAL STABILIZATION RULES 221

practice. First, the policy is dynramie: lagged values of Vi
influence the optimal policy. In practice only the current
level of Vi seems to have bedn a factor in the determinaticn
investment stabilization policy. Second, the policy instru-
ments Wary continuously with the values of Y+ In practice
the peolicy instruments are likely to be set discretely — they
are either on or off depending on the state of the business
cycle. Third, the policy instrument must be targetted at the
components of investment, distinguishing between different
types of capital by gestation time. If the instrument is not
targetted to each type of capital, perhaps because of the re-

striction that cit = cjt

for i # j, then there will be an
insufficient number of instruments and a constrained optima-
tion approach is necessary. The methods developed in Chow
(1980) might be used in such a situation. In this section of
the paper we examine through the use of some simulation experi-
ments what happens when policy is restricted to be suboptimal

either because lagged values are omitted or because the in-

strument settings are limited to discrete values.

A. Omigsion of Lagged Variables

Consider the case where n=1 and p=2, and it is
therefore optimal for €19 to be non-zero. Suppose, however,
that £y5 is restricted to be zero. In order to determine
the possible impact of such a restricted investment policy on
the stability of investment, we performed stochastic simula-
tion for the set of parameter values for the intertemporal
model calculated in Tayloer (1882). There values are v, = .2

1 -7
d1= .07, h1= .026, and PB= .94, VWe also set @y = 1.4 and
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g ==5 as in the previous section. The variance of invest-
ment was then calculated by performing 1,000 Monte Carlo
simulations of 30 periods each, with the shocks u, being
drawn from a normal distribution with mean 0 and variance 1
and with the path of investment being determined by the model.
The simulations were started from kl,O = 0. The variance of

investment was found to be an inereasing function of for

€11
this set of autoregressive parameter values. In the steady

state (approximated at t = 30), the variance of x was

1t

equal to .00069 when gy1 = 0, increased to .00125 at

€11 = .002, and increased further to .00201 when = .004.

€11
Hence, this type of suboptimal policy could actually lead to

perverse destabilization of investment.? This particular sub-
optimal policy is worse than no pelicy at all. Note that for

this example the optimal wvalues for 211 and g1p5 4are .090

and -.048, respectively.

B. Discrete Values for the Instruments
Consider the case where n=1 and p=1, The optimal
policy rule then has the form clt = ByqVy- Suppose, however,
that only discrete changes in Clt are feasible in practice,
and that C1t¢ is therefore set according to the rule
c* if vy 2 0
€yt = 0 if vy = 0 . (28)

-c* if Yy < 0

?Christiano (1882) has shown analytically that such per-
verse destablization can cccur when ¥ follows an
ARMA(1,1} procese. Baumol {(1561) and Howrey (1966) have
investigated similar problems with suboptimal policy rulés
in models where anticipations of future policy do not
affect decisions explieitly,
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For this policy the forecasts of investment costs are not
linear functions of ¥y, as with the forecasting rules used
in Section 2. Nevertheless the forecasts of C1i41

Vi which is necessary for evaluating the decision

condi-

tional on
rule (4), can be evaluated for the case where u, is normally
distributed. Using this conditional expectation for

C1t+1

and the rule in (28) we stochastically simulated the model

with the same parameter values used for the previously des-
cribed set of stochastic simulations. The results are shown

in the first column of Table I. (The other columns in Table I
marked by the parameter & signify a different discrete policy
rule described below). The results indicate that while there
is some reduction in the variance of investment with the dis-
crete model, it is very small. Moreover when the step size
{c*) 1increases beyond some small value the variance of invest-
ment begins to increase rapidly, indicating the potential for
some destablization. The restriction of C1t to a discrete
set of values results in a serious deterioration of the per-

formance of the policy.

Table I. The Variance of Investment (Var mlt) for

Alternative Digerete Policy Rulee?

§
c* 4 .1 .2 .3 .4 .o N .7 .8 .9 .10
000 .33 48 .83 .33 .33 .33 .88 .33 .33 .33 .33
.00l .31 L7 12 18 24 .26 .88 .29 360 V300 .47
002 1,15 .47 .08 09 .24 .27 &6 30 .30 .32 .64

003 2.87 1,24 .28 .23 .31 .38 .36 .85 .36 .38 .84

Each entry of the table is the Var(x,, ) x 1000 and is computed
by stochastic simulations using the ihDestment rule in equation (29)
in the text for different values of c¢* and S. The variance is
computed at t=30 which approximates the steady state variance,
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One of the reasons for the poor results with this sub-

optimal policy is that ¢ moves by a large amount when vy

1t t
deviates only slightly from 0. An improvement would therefore
be expected if the rule were modified so that
c* if Yt > 8
€1y = 0 if (ytJ < & (28)
-c* if Vi < - 8

With rule (29) small movements in Y will not trigger a
large response in clt' Clearly equation (29) reduces to
equation (28) when ¢ = 0, The simulation results for this
alternative are shown in Table I in the columns marked with
different values of §. As expected there is some reduction
in the variance of X1t but not as much as would be possible
with the completely continuous optimal rule. Note also that
Table T suggests that the best policy of the form (29) has
§ between .2 and .3 and c* near .002. These values depend
on the parameters used in the simulation experiment, but they
indicate the advantages of choosing the step-size and trigger
points optimally even if policy is restricted to a discrete
set of values. To the extent that such constraints are impor-
tant in practice, further research to characterize how the

best step-size and trigger values depend on the parameters of

the model in this and more complicated examples would be useful.

VI. CONCLUDING REMARKS

This paper has considered the problem of obtaining optimal
control rules for stabilizing investment fluctuations in a
model where investment demand depends on expected future values

of the policy instruments., Simple expressions for evaluating
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the control rules were derived using results from prediction
theory. These expressions were used to characterize some of
the main properties of the contrel rules. In addition, the
loss from using certain suboptimal rules was investigated.
While suboptimal rules are clearly inferior to optimal rules,
and in some cases inferior to no feedback rule at all, practi-
cal constraints on economic policy could lead to the use of
such rules.

Although the formula for the control rule was derived for
a particular dynamic investment model, the prediction theory
apprecach that was employed could be used in other similar
problems, The essential characteristic of the control problem
studied here is that the target variable depends on forecasts
of future values of the control instruments and on future exo-
genous variables. In the traditional control problem, the
target variables depend on current and lagged values of the
control instruments and the exogenous variables., This dif-
ference indicates why prediction theory is particularly useful

for the type of problem studied in this paper,
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